Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256034

RESUMEN

The ageing phenotype is strongly driven by the exhaustion of adult stem cells (ASCs) and the accumulation of senescent cells. Cardiovascular diseases (CVDs) and heart failure (HF) are strongly linked to the ageing phenotype and are the leading cause of death. As the human heart is considered as an organ with low regenerative capacity, treatments targeting the rejuvenation of human cardiac stem cells (hCSCs) are of great interest. In this study, the beneficial effects of human blood serum on proliferation and senescence of hCSCs have been investigated at the molecular level. We show the induction of a proliferation-related gene expression response by human blood serum at the mRNA level. The concurrent differential expression of the TGFß target and inhibitor genes indicates the participation of TGFß signalling in this context. Surprisingly, the application of TGFß1 as well as the inhibition of TGFß type I and type II receptor (TGFßRI/II) signalling strongly increased the proliferation of hCSCs. Likewise, both human blood serum and TGFß1 reduced the senescence in hCSCs. The protective effect of serum on senescence in hCSCs was enhanced by simultaneous TGFßRI/II inhibition. These results strongly indicate a dual role of TGFß signalling in terms of the serum-mediated effects on hCSCs. Further analysis via RNA sequencing (RNA-Seq) revealed the participation of Ras-inactivating genes wherefore a prevention of hyperproliferation upon serum-treatment in hCSCs via TGFß signalling and Ras-induced senescence is suggested. These insights may improve treatments of heart failure in the future.


Asunto(s)
Células Madre Adultas , Insuficiencia Cardíaca , Adulto , Humanos , Suero , Insuficiencia Cardíaca/genética , Factor de Crecimiento Transformador beta , Proliferación Celular , Proteína Smad2
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612406

RESUMEN

Cardiovascular diseases (CVDs) are often linked to ageing and are the major cause of death worldwide. The declined proliferation of adult stem cells in the heart often impedes its regenerative potential. Thus, an investigation of the proliferative potential of adult human cardiac stem cells (hCSCs) might be of great interest for improving cell-based treatments of cardiovascular diseases. The application of human blood serum was already shown to enhance hCSC proliferation and reduce senescence. Here, the underlying signalling pathways of serum-mediated hCSC proliferation were studied. We are the first to demonstrate the involvement of the transcription factor NF-κB in the serum-mediated proliferative response of hCSCs by utilizing the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). RNA-Sequencing (RNA-Seq) revealed ATF6B, COX5B, and TNFRSF14 as potential targets of NF-κB that are involved in serum-induced hCSC proliferation.


Asunto(s)
Células Madre Adultas , Enfermedades Cardiovasculares , Adulto , Humanos , FN-kappa B , Suero , Envejecimiento
3.
Eur Heart J ; 43(22): 2139-2156, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35262692

RESUMEN

AIMS: Cardiomyopathy patients are prone to ventricular arrhythmias (VA) and sudden cardiac death. Current therapies to prevent VA include radiofrequency ablation to destroy slowly conducting pathways of viable myocardium which support re-entry. Here, we tested the reverse concept, namely that boosting local tissue viability in zones of slow conduction might eliminate slow conduction and suppress VA in ischaemic cardiomyopathy. METHODS AND RESULTS: Exosomes are extracellular vesicles laden with bioactive cargo. Exosomes secreted by cardiosphere-derived cells (CDCEXO) reduce scar and improve heart function after intramyocardial delivery. In a VA-prone porcine model of ischaemic cardiomyopathy, we injected CDCEXO or vehicle into zones of delayed conduction defined by electroanatomic mapping. Up to 1-month post-injection, CDCEXO, but not the vehicle, decreased myocardial scar, suppressed slowly conducting electrical pathways, and inhibited VA induction by programmed electrical stimulation. In silico reconstruction of electrical activity based on magnetic resonance images accurately reproduced the suppression of VA inducibility by CDCEXO. Strong anti-fibrotic effects of CDCEXO, evident histologically and by proteomic analysis from pig hearts, were confirmed in a co-culture assay of cardiomyocytes and fibroblasts. CONCLUSION: Biological substrate modification by exosome injection may be worth developing as a non-destructive alternative to conventional ablation for the prevention of recurrent ventricular tachyarrhythmias.


Asunto(s)
Cardiomiopatías , Ablación por Catéter , Isquemia Miocárdica , Taquicardia Ventricular , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Cardiomiopatías/cirugía , Ablación por Catéter/métodos , Cicatriz/prevención & control , Humanos , Isquemia Miocárdica/cirugía , Isquemia Miocárdica/terapia , Proteómica , Porcinos , Taquicardia Ventricular/etiología , Taquicardia Ventricular/prevención & control
4.
Cell Tissue Res ; 389(2): 309-326, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35661920

RESUMEN

The heart's limited regenerative capacity raises the need for novel stem cell-based therapeutic approaches for cardiac regeneration. However, the use of stem cells is restrictive due to poor determination of their properties and the factors that regulate them. Here, we investigated the role of desmin, the major muscle-specific intermediate filament protein, in the characteristics and differentiation capacity of cardiac side population (CSP) and Sca1+ stem cells of adult mice. We found that desmin deficiency affects the microenvironment of the cells and leads to increased numbers of CSP but not Sca1+ cells; CSP subpopulation composition is altered, the expression of the senescence marker p16INK4a in Sca1+ cells is increased, and early cardiomyogenic commitment is impaired. Specifically, we found that mRNA levels of the cardiac transcription factors Mef2c and Nkx2.5 were significantly reduced in des-/- CSP and Sca1+ cells, while differentiation of CSP and Sca1+ cells demonstrated that in the absence of desmin, the levels of Nkx2.5, Mef2c, Tnnt2, Hey2, and Myh6 mRNA are differentially affected. Thus, desmin deficiency restricts the regenerative potential of CSP and Sca1+ cells, both directly and indirectly through their microenvironment.


Asunto(s)
Miocitos Cardíacos , Células Madre , Animales , Diferenciación Celular/genética , Desmina/genética , Desmina/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
5.
Clin Sci (Lond) ; 136(16): 1179-1203, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35979890

RESUMEN

Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Adulto , Diferenciación Celular/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Regeneración
6.
Pediatr Cardiol ; 43(7): 1481-1493, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35394149

RESUMEN

Mortality in infants with hypoplastic left heart syndrome (HLHS) is strongly correlated with right ventricle (RV) dysfunction. Cell therapy has demonstrated potential improvements of RV dysfunction in animal models related to HLHS, and neonatal human derived c-kit+ cardiac-derived progenitor cells (CPCs) show superior efficacy when compared to adult human cardiac-derived CPCs (aCPCs). Neonatal CPCs (nCPCs) have yet to be investigated in humans. The CHILD trial (Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome) is a Phase I/II trial aimed at investigating intramyocardial administration of autologous nCPCs in HLHS infants by assessing the feasibility, safety, and potential efficacy of CPC therapy. Using an open-label, multicenter design, CHILD investigates nCPC safety and feasibility in the first enrollment group (Group A/Phase I). In the second enrollment group, CHILD uses a randomized, double-blinded, multicenter design (Group B/Phase II), to assess nCPC efficacy based on RV functional and structural characteristics. The study plans to enroll 32 patients across 4 institutions: Group A will enroll 10 patients, and Group B will enroll 22 patients. CHILD will provide important insights into the therapeutic potential of nCPCs in patients with HLHS.Clinical Trial Registration https://clinicaltrials.gov/ct2/home NCT03406884, First posted January 23, 2018.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Adulto , Animales , Ventrículos Cardíacos , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/cirugía , Lactante , Recién Nacido , Células Madre , Trasplante Autólogo
7.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077021

RESUMEN

Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.


Asunto(s)
Células Madre Adultas , Células Madre , Anciano , Envejecimiento/fisiología , Animales , Humanos , Ratones , Músculo Esquelético/fisiología , Células Madre/fisiología , Cicatrización de Heridas
8.
Adv Exp Med Biol ; 1345: 47-59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582013

RESUMEN

The field of tissue engineering and regenerative medicine is able to depict the mechanism of cardiac repair and development of cardiac function as well, in order to reveal findings to new therapeutic designs for clinical treatment. The foremost approach of this scientific field is the fabrication of scaffolds, which contain cells that can be used as cardiac grafts in the body, to have the preferred recovery. Cardiac tissue engineering has not been completely organized for routine clinical usages. Hence, engineering innovations hold promise to character research and treatment options in the years to come. Our group has extensive experience with regard to the structure of the heart, which makes us to our decision to continue with the preparation of heart, with the aim of developing a new ECM scaffold. Herein, we aim to assess the state-of-the-art fabrication methods, advances in decellularization and recellularization techniques. We also highlight the major achievements toward the production of a bioengineered heart obtained from decellularization and recellularization techniques.


Asunto(s)
Trasplante de Corazón , Andamios del Tejido , Bioingeniería , Matriz Extracelular , Humanos , Donantes de Tejidos , Ingeniería de Tejidos
9.
Eur Heart J ; 41(36): 3451-3458, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32749459

RESUMEN

AIMS: Cardiosphere-derived cells (CDCs) are cardiac progenitor cells that exhibit disease-modifying bioactivity in various models of cardiomyopathy and in previous clinical studies of acute myocardial infarction (MI), dilated cardiomyopathy, and Duchenne muscular dystrophy. The aim of the study was to assess the safety and efficacy of intracoronary administration of allogeneic CDCs in the multicentre, randomized, double-blinded, placebo-controlled, intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR) trial. METHODS AND RESULTS: We enrolled patients 4 weeks to 12 months after MI, with left ventricular ejection fraction (LVEF) ≤45% and LV scar size ≥15% of LV mass by magnetic resonance imaging (MRI). A pre-specified interim analysis was performed when 6-month MRI data were available. The trial was subsequently stopped due to the low probability of detecting a significant treatment effect of CDCs based on the primary endpoint. Patients were randomly allocated in a 2:1 ratio to receive CDCs or placebo in the infarct-related artery by stop-flow technique. The primary safety endpoint was the occurrence, during 1-month post-intracoronary infusion, of acute myocarditis attributable to allogeneic CDCs, ventricular tachycardia- or ventricular fibrillation-related death, sudden unexpected death, or a major adverse cardiac event (death or hospitalization for heart failure or non-fatal MI or need for left ventricular assist device or heart transplant). The primary efficacy endpoint was the relative percentage change in infarct size at 12 months post-infusion as assessed by contrast-enhanced cardiac MRI. We randomly allocated 142 eligible patients of whom 134 were treated (90 to the CDC group and 44 to the placebo group). The mean baseline LVEF was 40% and the mean scar size was 22% of LV mass. No primary safety endpoint events occurred. There was no difference in the percentage change from baseline in scar size (P = 0.51) between CDCs and placebo groups at 6 months. Compared with placebo, there were significant reductions in LV end-diastolic volume (P = 0.02), LV end-systolic volume (P = 0.02), and N-terminal pro b-type natriuretic peptide (NT-proBNP) (P = 0.02) at 6 months in CDC-treated patients. CONCLUSION: Intracoronary infusion of allogeneic CDCs in patients with post-MI LV dysfunction was safe but did not reduce scar size relative to placebo at 6 months. Nevertheless, the reductions in LV volumes and NT-proBNP reveal disease-modifying bioactivity of CDCs. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT01458405.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Función Ventricular Izquierda , Método Doble Ciego , Corazón , Humanos , Volumen Sistólico , Resultado del Tratamiento
10.
Eur Heart J ; 41(45): 4332-4345, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32330934

RESUMEN

AIMS: Cardiac myxomas usually develop in the atria and consist of an acid-mucopolysaccharide-rich myxoid matrix with polygonal stromal cells scattered throughout. These human benign tumours are a valuable research model because of the rarity of cardiac tumours, their clinical presentation and uncertain origin. Here, we assessed whether multipotent cardiac stem/progenitor cells (CSCs) give rise to atrial myxoma tissue. METHODS AND RESULTS: Twenty-three myxomas were collected and analysed for the presence of multipotent CSCs. We detected myxoma cells positive for c-kit (c-kitpos) but very rare Isl-1 positive cells. Most of the c-kitpos cells were blood lineage-committed CD45pos/CD31pos cells. However, c-kitpos/CD45neg/CD31neg cardiac myxoma cells expressed stemness and cardiac progenitor cell transcription factors. Approximately ≤10% of the c-kitpos/CD45neg/CD31neg myxoma cells also expressed calretinin, a characteristic of myxoma stromal cells. In vitro, the c-kitpos/CD45neg/CD31neg myxoma cells secrete chondroitin-6-sulfate and hyaluronic acid, which are the main components of gelatinous myxoma matrix in vivo. In vitro, c-kitpos/CD45neg/CD31neg myxoma cells have stem cell properties being clonogenic, self-renewing, and sphere forming while exhibiting an abortive cardiac differentiation potential. Myxoma-derived CSCs possess a mRNA and microRNA transcriptome overall similar to normal myocardium-derived c-kitpos/CD45neg/CD31negCSCs , yet showing a relatively small and relevant fraction of dysregulated mRNA/miRNAs (miR-126-3p and miR-335-5p, in particular). Importantly, myxoma-derived CSCs but not normal myocardium-derived CSCs, seed human myxoma tumours in xenograft's in immunodeficient NOD/SCID mice. CONCLUSION: Myxoma-derived c-kitpos/CD45neg/CD31neg CSCs fulfill the criteria expected of atrial myxoma-initiating stem cells. The transcriptome of these cells indicates that they belong to or are derived from the same lineage as the atrial multipotent c-kitpos/CD45neg/CD31neg CSCs. Taken together the data presented here suggest that human myxomas could be the first-described CSC-related human heart disease.


Asunto(s)
Neoplasias Cardíacas , Mixoma , Animales , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA