RESUMEN
Extra-axial cavernous hemangiomas (ECHs) are complex vascular lesions mainly found in the spine and cavernous sinus. Their removal poses significant risk due to their vascularity and diffuse nature, and their genetic underpinnings remain incompletely understood. Our approach involved genetic analyses on 31 tissue samples of ECHs employing whole-exome sequencing and targeted deep sequencing. We explored downstream signaling pathways, gene expression changes, and resultant phenotypic shifts induced by these mutations, both in vitro and in vivo. In our cohort, 77.4% of samples had somatic missense variants in GNA14, GNAQ, or GJA4. Transcriptomic analysis highlighted significant pathway upregulation, with the GNAQ c.626A>G (p.Gln209Arg) mutation elevating PI3K-AKT-mTOR and angiogenesis-related pathways, while GNA14 c.614A>T (p.Gln205Leu) mutation led to MAPK and angiogenesis-related pathway upregulation. Using a mouse xenograft model, we observed enlarged vessels from these mutations. Additionally, we initiated rapamycin treatment in a 14-year-old individual harboring the GNAQ c.626A>G (p.Gln209Arg) variant, resulting in gradual regression of cutaneous cavernous hemangiomas and improved motor strength, with minimal side effects. Understanding these mutations and their pathways provides a foundation for developing therapies for ECHs resistant to current therapies. Indeed, the administration of rapamycin in an individual within this study highlights the promise of targeted treatments in treating these complex lesions.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Subunidades alfa de la Proteína de Unión al GTP , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Animales , Ratones , Femenino , Masculino , Subunidades alfa de la Proteína de Unión al GTP/genética , Mutación , Adulto , Persona de Mediana Edad , Transducción de Señal , Hemangioma Cavernoso/genética , Hemangioma Cavernoso/patología , Adolescente , Secuenciación del Exoma , Sirolimus/farmacología , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genéticaRESUMEN
The role of radiosurgery in preventing haemorrhage in brainstem cavernous malformations remains a subject of debate. This study aims to evaluate whether radiosurgery provides a protective benefit against haemorrhage in these patients. This multicentre, prospective observational study was conducted in 17 centres and enrolled eligible patients with brainstem cavernous malformations consecutively. Data collected included clinical baseline information, radiosurgery planning details, periodic follow-up evaluations, and any adverse radiation effects. The primary outcome of the study was the incidence of first prospective haemorrhage, while the secondary outcome was the development of new or worsening neurological dysfunctions. The impact of radiosurgery was assessed using multivariate Cox regression analysis. From March 2016 to August 2018, the study enrolled 377 patients: 280 in the observation group receiving standard care alone and 97 in the radiosurgery group receiving both radiosurgery and standard care. The overall cohort consisted of 173 females (45.9%) with a mean age of 40.5 years (range, 18-68 years), and there were no significant differences in baseline characteristics between the two groups. After a median follow-up period of 70 months, haemorrhage occurred in 25.0% (n = 70) of patients in the observation group and 10.3% (n = 10) of patients in the radiosurgery group. Multivariate Cox regression analysis identified radiosurgery as an independent protective factor against haemorrhage (hazard ratio 0.379, 95% confidence interval 0.195-0.738, P = 0.004). Following 1:2 propensity score matching, the incidence of prospective haemorrhage were 24.9% (45/181) in the observation group compared to 10.3% (10/97) in the radiosurgery group (hazard ratio 0.379, 95% confidence interval 0.190-0.755, P = 0.006). Adverse radiation effects were observed in 12 patients (12.4%), with none were permanent. Additionally, new or worsening neurological dysfunctions were significantly more common in the observation group (28.9%) compared to the radiosurgery group (16.5%) (P = 0.016). These results suggest that radiosurgery is associated with a low rate of haemorrhage in patients with brainstem cavernous malformations and could provide a benefit in selected patients. However, further research is required to confirm these findings.
RESUMEN
BACKGROUND: Symptomatic brainstem cavernous malformations (BSCMs) pose a high risk of morbidity and mortality due to recurrent hemorrhage, warranting aggressive management. However, few studies have compared the effectiveness of different treatment modalities for BSCMs. We aimed to assess the association of treatment modalities with recurrent hemorrhage and neurological outcomes in patients with BSCM. METHODS: We conducted a retrospective cohort study using an observational registry database covering population of southwest and southeast China. Adult patients with BSCM were included and followed up between March 1, 2011, to March 31, 2023. We compared outcomes between microsurgery and stereotactic radiosurgery (SRS) in propensity score-matched case pairs, incorporating demographic, medical history, and lesion characteristics. The outcomes studied included recurrent hemorrhage and poor prognosis (defined as a Glasgow Outcome Scale score, <4). Absolute rate differences and hazard ratios (HRs) with 95% CIs were calculated using Cox models. RESULTS: Among 736 diagnosed patients with BSCM, 96 (48 matched pairs) were included after exclusions and propensity score matching (mean age, 43.1 [SD, 12.1] years; 50% women). During the median 5-year follow-up, no significant differences in recurrent hemorrhage (4.2% [microsurgery] versus 14.6% [SRS], HR, 3.90 [95% CI, 0.46-32.65]; P=0.21) and poor prognosis (12.5% [microsurgery] versus 8.3% [SRS], HR, 0.29 [95% CI, 0.08-1.08]; P=0.07) were observed between microsurgery and SRS recipients. Furthermore, either microsurgery or SRS correlated with fewer recurrent hemorrhage (HR, 0.09 [95% CI, 0.02-0.39]; P=0.001; HR, 0.21 [95% CI, 0.07-0.69]; P=0.01) compared with conservative treatment. CONCLUSIONS: In this study, both microsurgery and SRS were safe and effective for BSCM, demonstrated comparable outcomes in recurrent hemorrhage and poor prognosis. However, interpretation should be cautious due to the potential for residual confounding. REGISTRATION: URL: https://www.chictr.org.cn/; Unique identifier: ChiCTR2300070907.
RESUMEN
Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central/genética , MAP Quinasa Quinasa Quinasa 3/genética , Mutación , Secuencia de Aminoácidos , Fosfatidilinositol 3-Quinasa Clase I/genética , Células Endoteliales/metabolismo , Mutación de Línea Germinal , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , MAP Quinasa Quinasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas , Modelos MolecularesRESUMEN
Krev-interaction trapped protein 1 (KRIT1) is an endothelial scaffold protein that promotes adherens junction (AJ) stability. The precise mechanism by which KRIT1 promotes barrier stabilization is unclear. We tested the ability of a panel of KRIT1 constructs containing mutations that inhibit Rap1 binding, ICAP1α binding, disrupt KRIT1's phosphotyrosine-binding (PTB) domain, or direct KRIT1 to the plasma membrane, either alone or in combination, to restore barrier function in KRIT1-deficient endothelial cells. We found that ablating the 192NPAY195 motif or disrupting the PTB domain was sufficient to restore AJ protein localization and barrier function to control levels, irrespective of the junctional localization of KRIT1 or Rap1 binding. The ability of our KRIT1 constructs to rescue AJ and barrier function in KRIT1-depleted endothelial cells correlated with decreased ß1 integrin activity and maintenance of cortical actin fibers. Taken together, our findings indicate that Rap1 binding, ICAP1α binding and junctional localization are not required for the ability of KRIT1 to stabilize endothelial contacts, and suggest that the ability of KRIT1 to limit integrin activity could be involved in barrier stabilization.
Asunto(s)
Células Endoteliales , Proteínas Asociadas a Microtúbulos , Comunicación Celular , Integrina beta1 , Proteína KRIT1/genética , Proteínas Proto-OncogénicasRESUMEN
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Células Endoteliales , Perfilación de la Expresión Génica , Transcriptoma , Microambiente TumoralRESUMEN
INTRODUCTION: This study aimed to assess the impact of gamma knife radiosurgery on brainstem cavernous malformations (CMs). METHODS: A total of 85 patients (35 females; median age 41.0 years) who underwent gamma knife radiosurgery for brainstem CMs at our institute between 2006 and 2015 were enrolled in a prospective clinical observation trial. Risk factors for hemorrhagic outcomes were evaluated, and outcomes were compared across different margin doses. RESULTS: The pre-radiosurgery annual hemorrhage rate (AHR) was 32.3% (44 hemorrhages during 136.2 patient-years). The median planning target volume was 1.292 cc. The median margin and maximum doses were 15.0 and 29.2 Gy, respectively, with a median isodose line of 50.0%. The post-radiosurgery AHR was 2.7% (21 hemorrhages during 769.9 patient-years), with a rate of 5.5% within the first 2 years and 2.0% thereafter. The post-radiosurgery AHR for patients with margin doses of ≤13.0 Gy (n = 15), 14.0-15.0 Gy (n = 50), and ≥16.0 Gy (n = 20) was 5.4, 2.7, and 0.6%, respectively. Correspondingly, transient adverse radiation effects were observed in 6.7 (1/15), 10.0 (5/50), and 30.0% (6/20) of cases, respectively. An increased margin dose per 1 Gy (hazard ratio: 0.530, 95% CI: 0.341-0.826, p = 0.005) was identified as an independent protective factor against post-radiosurgery hemorrhage. Margin doses of ≥16.0 Gy were associated with improved hemorrhagic outcomes (hazard ratio: 0.343, 95% confidence interval [CI]: 0.157-0.749, p = 0.007), but an increased risk of adverse radiation effects (odds ratio: 3.006, 95% CI: 1.041-8.677, p = 0.042). CONCLUSION: The AHR of brainstem CMs decreased following radiosurgery, and our study revealed a significant dose-response relationship. Margin doses of 14-15 Gy were recommended. Further studies are required to validate our findings.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Malformaciones Arteriovenosas Intracraneales , Radiocirugia , Adulto , Femenino , Humanos , Tronco Encefálico/cirugía , Estudios de Seguimiento , Hemangioma Cavernoso del Sistema Nervioso Central/radioterapia , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Hemangioma Cavernoso del Sistema Nervioso Central/complicaciones , Hemorragia/complicaciones , Hemorragia/cirugía , Estudios Prospectivos , Radiocirugia/efectos adversos , Resultado del Tratamiento , MasculinoRESUMEN
BACKGROUND: Cavernous malformations (CMs), also known as cavernomas or cavernous angiomas, are vascular malformations characterized by sinusoidal spaces lined by endothelial cells. Giant CMs (GCMs) are extremely rare, with limited understanding of their presentation and management. We present a case of symptomatic GCM in a newborn and review the literature on this rare entity. CASE DESCRIPTION: A 1-month-old newborn presented with focal seizures and signs of increased intracranial pressure. Imaging revealed a massive right frontal-parietal GCM, prompting surgical resection. Histopathological examination confirmed the diagnosis of cerebral cavernous malformation. The patient recovered well postoperatively with no neurological deficits. CONCLUSIONS: GCMs are exceedingly rare in children and have not been reported in newborns until now. Symptoms typically include seizures and mass effects. Gross total resection is the standard treatment, offering favorable outcomes. Further research is needed to understand the natural history and optimal management of GCMs, particularly in newborns, emphasizing the importance of heightened clinical awareness for timely diagnosis and appropriate management.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Femenino , Humanos , Masculino , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Imagen por Resonancia Magnética , LactanteRESUMEN
OBJECTIVE: Cerebral cavernous malformations (CCMs) are cerebral vascular lesions that occasionally occur with seizures. We present a retrospective case series from IRCCS Gaslini Children's Hospital, a systematic review, and meta-analysis of the literature with the goal of elucidating the post-surgery seizure outcome in children with CCMs. METHODS: a retrospective review of children with cavernous malformation related epilepsy who underwent surgery at Gaslini Children's Hospital from 2005 to 2022 was conducted. We also conducted a comprehensive search on PubMed/MEDLINE and Scopus databases from January 1989 to August 2022. Inclusion criteria were: presence of CCMs-related epilepsy, in under 18 years old subjects with a clear lesion site. Presence of post-surgery seizure outcome and follow-up ≥ 12 months. RESULTS: we identified 30 manuscripts and 223 patients with CCMs-related epilepsy, including 17 patients reported in our series. We identified 85.7% Engel class I subjects. The risk of expected neurological deficits was 3.7%; that of unexpected neurological deficits 2.8%. We found no statistically significant correlations between Engel class and the following factors: site of lesion, type of seizure, drug resistance, duration of disease, type of surgery, presence of multiple CCMs. However, we found some interesting trends: longer disease duration and drug resistance seem to be more frequent in subjects in Engel class II, III and IV; multiple cavernomas would not seem to influence seizure outcome. CONCLUSIONS: epilepsy surgery in children with CCMs is a safe and successful treatment option. Further studies are necessary to define the impact of clinical features on seizure prognosis.
Asunto(s)
Epilepsia , Hemangioma Cavernoso del Sistema Nervioso Central , Procedimientos Neuroquirúrgicos , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Epilepsia/cirugía , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Hemangioma Cavernoso del Sistema Nervioso Central/complicaciones , Procedimientos Neuroquirúrgicos/métodos , Estudios Retrospectivos , Convulsiones/cirugía , Convulsiones/etiología , Resultado del Tratamiento , LactanteRESUMEN
OBJECTIVE: To determine the outcomes of stereotactic radiosurgery (SRS) for deep-seated (brainstem, basal ganglia, thalamus, cerebellar peduncle) intracranial cavernous malformations (ICMs). METHODS: A systematic review and meta-analysis was performed according to PRISMA and MOOSE guidelines. The main outcomes were comparing pre- and post-SRS hemorrhage rates, using the pooled risk ratios (RR) as the measure of effect. Additionally, the study assessed lesion volume changes and radiation-injury incidence. RESULTS: Data of 850 patients across 14 studies were included in the meta-analysis. The pooled RR of all deep-seated ICMs show a decrease in hemorrhage rate after SRS compared to pre-SRS over the total follow-up period (RR =0.13), initial 2 years (RR =0.22), and after 2 years (RR =0.07). For 9 studies that reported hemorrhage rate of the brainstem only, the pooled RR shows a decrease of hemorrhage rate after SRS compared to pre-SRS over the total follow-up period (RR =0.13), initial 2 years (RR =0.19), and after 2 years (RR =0.07). Volumetric regression was achieved in 44.25% and stability in 56.1%. The pooled incidence of symptomatic and permanent radiation injury was 9% (95% CI, 7-11) and 3% (95% CI, 0-1.9%), respectively. CONCLUSION: SRS appears effective in reducing hemorrhage rates for deep-seated ICMs. The risk of symptomatic radiation injury is low. Given the high risk of surgical morbidity, SRS is a reasonable treatment option for patients with deep-seated ICMs with at least one prior hemorrhage.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Radiocirugia , Radiocirugia/métodos , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Resultado del TratamientoRESUMEN
BACKGROUND: Cavernous malformations (CMs) are clusters of thin-walled sinusoidal vessels without well-defined walls. Though they can occur anywhere in the neuroaxis, cranial nerve (CN) CMs are rare. METHOD: We report a 47-year-old male with gradual CN III palsy. Initial imaging showed no significant findings, but a follow-up MRI revealed a growing lesion along CN III. Intraoperative findings confirmed a CN III CM. Diagnosing and treating CN III CM are complex. Radiological findings lack specificity, requiring consideration of various diagnoses for patients with isolated CN III palsy and abnormal radiological findings. CONCLUSION: Surgery is the gold standard, aiming for complete lesion removal while minimizing neurological complications.
Asunto(s)
Enfermedades del Nervio Oculomotor , Nervio Oculomotor , Humanos , Masculino , Persona de Mediana Edad , Nervios Craneales , Enfermedades del Nervio Oculomotor/etiología , Enfermedades del Nervio Oculomotor/cirugía , ParálisisRESUMEN
BACKGROUND: Eagle jugular syndrome (EJS), recently identified as a cause of cerebrovascular disease (CVD) due to venous obstruction by an elongated styloid process (SP), is reported here alongside a case of concurrent de novo cerebral cavernous malformation (CCM). This study aims to explore the potential causal relationship between EJS and de novo CCM through a comprehensive literature review. METHOD: Systematic literature reviews, spanning from 1995 to 2023, focused on EJS cases with definitive signs and symptoms and de novo CCM cases with detailed clinical characteristics. Data on the pathophysiology and clinical manifestations of EJS, as well as potential risk factors preceding de novo CCM, were collected to assess the relationship between the two conditions. RESULT: Among 14 patients from 11 articles on EJS, the most common presentation was increased intracranial hypertension (IIH), observed in 10 patients (71.4%), followed by dural sinus thrombosis in four patients (28.6%). In contrast, 30 patients from 28 articles were identified with de novo CCM, involving 37 lesions. In these cases, 13 patients developed CCM subsequent to developmental venous anomalies (43%), seven following dural arteriovenous fistula (dAVF) (23%), and two after sinus thrombosis (6%). In a specific case of de novo brainstem CCM, the development of an enlarged condylar emissary vein, indicative of venous congestion due to IJV compression by the elongated SP, was noted before the emergence of CCM. CONCLUSION: This study underscores that venous congestion, a primary result of symptomatic EJS, might lead to the development of de novo CCM. Thus, EJS could potentially be an indicator of CCM development. Further epidemiological and pathophysiological investigations focusing on venous circulation are necessary to clarify the causal relationship between EJS and CCM.
Asunto(s)
Hiperemia , Osificación Heterotópica , Trombosis de los Senos Intracraneales , Hueso Temporal , Humanos , Tronco Encefálico/diagnóstico por imagen , Hiperemia/epidemiología , Osificación Heterotópica/epidemiología , Trombosis de los Senos Intracraneales/epidemiología , Hueso Temporal/anomalíasRESUMEN
BACKGROUND: We aimed to evaluate long-term outcomes of gamma knife radiosurgery (GKS) for cerebral cavernous malformations (CCMs). METHODS: Among the 233 CCM patients who underwent GKS, 79 adult patients (96 lesions) followed for over 10 years were included and analyzed retrospectively. Annual hemorrhage rate (AHR) was analyzed the entire cohort of 233 patients and the subset of 79 enrolled patients by dividing lesions into overall CCM lesions and brainstem lesions. AHR, neurologic outcome, adverse radiation effect (ARE), and changes of lesions in magnetic resonance imaging (MRI) were compared before and after GKS. Cox-regression analysis was performed to identify risk factors for hemorrhage following GKS. RESULTS: Mean follow-up duration of 79 enrolled patients was 14 years (range, 10-23 years). The AHR of all CCMs for entire cohort at each time point was 17.8% (pre-GKS), 5.9% (≤ 2 years post-GKS), 1.8% (≤ 10 years post-GKS). The AHR of all CCM for 79 enrolled patients was 21.4% (pre-GKS), 3.8% (2 years post-GKS), 1.4% (10 years post-GKS), and 2.3% (> 10 years post-GKS). The AHR of brainstem cavernous malformation (CM) for entire cohort at each time point was 22.4% (pre-GKS), 10.1% (≤ 2 years post-GKS), 3.2% (≤ 10 years post-GKS). The AHR of brainstem CM for 79 enrolled patients was 27.2% (pre-GKS), 5.8% (2 years post-GKS), 3.4% (10 years post-GKS), and 3.5% (> 10 years post-GKS). Out of the 79 enrolled patients, 35 presented with focal neurologic deficits at the initial clinical visit. Among these patients, 74.3% showed recovery at the last follow-up. Symptomatic ARE occurred in five (6.4%) patients. No mortality occurred. Most lesions were decreased in size at the last follow-up MRI. Previous hemorrhage history (hazard ratio [HR], 8.38; 95% confidence interval [CI], 1.07-65.88; P = 0.043), and brainstem location (HR, 3.10; 95% CI, 1.26-7.64; P = 0.014) were significant risk factors for hemorrhage event. CONCLUSION: GKS for CCM showed favorable long-term outcomes. GKS should be considered for CCM, especially when it has a previous hemorrhage history and brainstem location.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Imagen por Resonancia Magnética , Radiocirugia , Humanos , Adulto , Masculino , Femenino , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Estudios Retrospectivos , Persona de Mediana Edad , Resultado del Tratamiento , Adulto Joven , Adolescente , Estudios de Seguimiento , Modelos de Riesgos Proporcionales , Anciano , Factores de Riesgo , Tronco Encefálico/patología , Tronco Encefálico/diagnóstico por imagenRESUMEN
BACKGROUND: Cerebral Cavernous Malformations (CCM) is a genetic disease characterized by vascular abnormalities in the brain and spinal cord, affecting 0.4-0.5 % of the population. We identified two novel pathogenic mutations, CCM1/KRIT1 c.811delT (p.Trp271GlyfsTer5) and CCM2/MGC4607 c.613_614insGG p.Glu205GlyfsTer31), which disrupt crucial protein domains and potentially alter disease progression. OBJECTIVE: The study aims to comprehensively analyze a Brazilian cohort of CCM patients, integrating genetic, clinical, and structural aspects. Specifically, we sought to identify novel mutations within the CCM complex, and explore their potential impact on disease progression. METHODS: We conducted a detailed examination of neuroradiological and clinical features in both symptomatic and asymptomatic CCM patients, performing genetic analyses through sequencing of the CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes In silico structural predictions were carried out using PolyPhen-2, SIFT, and Human Genomics Community tools. Protein-protein interactions and docking analyses were explored using the STRING database. RESULTS: Genetic analysis identifies 6 pathogenic mutations, 4 likely pathogenic, 1 variants of uncertain significance, and 7 unclassified mutations, including the novel mutations in CCM1 c.811delT and CCM2 c.613_614insGG. In silico structural analysis revealed significant alterations in protein structure, supporting their pathogenicity. Protein-protein interaction analysis indicated nuanced impacts on cellular processes. Clinically, we observed a broad spectrum of symptoms, including seizures and focal neurological deficits. However, no statistically significant differences were found in lesion burden, age of first symptom onset, or sex between the identified CCM1/KRIT1 and CCM2/MGC4607 mutations among all patients studied. CONCLUSION: This study enhances the understanding of CCM by linking clinical variability, genetic mutations, and structural effects. The identification of these novel mutations opens new avenues for research and potential therapeutic strategies.
Asunto(s)
Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central , Proteína KRIT1 , Mutación , Fenotipo , Proteínas Proto-Oncogénicas , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proteína KRIT1/genética , Femenino , Masculino , Adulto , Proteínas Proto-Oncogénicas/genética , Persona de Mediana Edad , Brasil , Análisis Mutacional de ADN , Adulto Joven , Proteínas Portadoras/genética , Adolescente , Progresión de la Enfermedad , Estudios de Asociación Genética , Niño , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Asociadas a Microtúbulos/genética , Factores de RiesgoRESUMEN
Cerebral cavernous malformation (CCM) or familial cavernomatosis is a rare, autosomal dominant, inherited disease characterized by the presence of vascular malformations consisting of blood vessels with an abnormal structure in the form of clusters. Based on the altered gene (CCM1/Krit1, CCM2, CCM3) and its origin (spontaneous or familial), different types of this disease can be found. In this work we have isolated and cultivated primary endothelial cells (ECs) from peripheral blood of a type 1 CCM patient. Differential functional and gene expression profiles of these cells were analyzed and compared to primary ECs from a healthy donor. The mutation of the familial index case consisted of a heterozygous point mutation in the position +1 splicing consensus between exons 15 and 16, causing failure in RNA processing and in the final protein. Furthermore, gene expression analysis by quantitative PCR revealed a decreased expression of genes involved in intercellular junction formation, angiogenesis, and vascular homeostasis. Cell biology analysis showed that CCM1 ECs were impaired in angiogenesis and cell migration. Taken together, the results obtained suggest that the alterations found in CCM1 ECs are already present in the heterozygous condition, suffering from vascular impairment and somewhat predisposed to vascular damage.
Asunto(s)
Células Endoteliales , Uniones Intercelulares , Humanos , Movimiento Celular/genética , Exones , ConsensoRESUMEN
BACKGROUND: Stereotactic radiosurgery (SRS) for cerebral cavernous malformations has been used for more than 30 years. However, indications for this method and outcomes are still discussable. OBJECTIVE: To analyze available literature data on SRS for cerebral cavernous malformations with assessment of indications for treatment, radiation parameters, radiological and clinical complications and outcomes. RESULTS: The final analysis included 20 reports describing post-SRS outcomes in 1834 patients with cerebral cavernous malformations. The main radiation parameter was mean radiation dose to the edge of cavernous malformation (prescribed dose, 13.25±2.16 Gy). In natural course of malformation, mean incidence of hemorrhages from cavernous malformation when counted after the second hemorrhage was 25.9±14.6%, after the patient's birth - 2.59±0.44%. Mean follow-up period after SRS was 66.7±24.1 months. Incidence of hemorrhages from cavernous malformation after SRS for the first 2 years of follow-up was assessed in 14 studies (4.67±3.51%). Incidence of hemorrhages ≥2 years after SRS was analyzed in 12 studies (1.55±0.8%). CONCLUSION: Despite significant global experience in SRS for cerebral cavernous malformations and many studies devoted to this problem, clear patient selection criteria have not yet been formulated. Modern selection principles have insufficient evidence base.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Radiocirugia , Femenino , Humanos , Masculino , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Radiocirugia/métodos , Radiocirugia/efectos adversosRESUMEN
Family cerebral cavernous malformations (FCCMs) are mainly inherited through the mutation of classical CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. FCCMs can cause severe clinical symptoms, including epileptic seizures, intracranial hemorrhage (ICH), or functional neurological deficits (FNDs). In this study, we reported a novel mutation in KRIT1 accompanied by a NOTCH3 mutation in a Chinese family. This family consists of 8 members, 4 of whom had been diagnosed with CCMs using cerebral MRI (T1WI, T2WI, SWI). The proband (II-2) and her daughter (III-4) had intracerebral hemorrhage and refractory epilepsy, respectively. Based on whole-exome sequencing (WES) data and bioinformatics analysis from 4 patients with multiple CCMs and 2 normal first-degree relatives, a novel KRIT1 mutation, NG_012964.1 (NM_194456.1): c.1255-1G > T (splice-3), in intron 13 was considered a pathogenic gene in this family. Furthermore, based on 2 severe and 2 mild CCM patients, we found an SNV missense mutation, NG_009819.1 (NM_000435.2): c.1630C > T (p.R544C), in NOTCH3. Finally, the KRIT1 and NOTCH3 mutations were validated in 8 members using Sanger sequencing. This study revealed a novel KRIT1 mutation, NG_012964.1 (NM_194456.1): c.1255-1G > T (splice-3), in a Chinese CCM family, which had not been reported previously. Moreover, the NOTCH3 mutation NG_009819.1 (NM_000435.2): c.1630C > T (p.R544C) might be a second hit and associated with the progression of CCM lesions and severe clinical symptoms.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Femenino , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Proteínas Proto-Oncogénicas/genética , Pueblos del Este de Asia , Proteínas Asociadas a Microtúbulos/genética , Linaje , Mutación , Proteína KRIT1/genética , Receptor Notch3/genéticaRESUMEN
KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.
Asunto(s)
Transporte Activo de Núcleo Celular , Proteína KRIT1/metabolismo , Proteína Quinasa C-alfa , Células HeLa , Humanos , Fosforilación , Proteína Quinasa C-alfa/genética , Acetato de TetradecanoilforbolRESUMEN
ß1 integrins are important in blood vessel formation and function, finely tuning the adhesion of endothelial cells to each other and to the extracellular matrix. The role of integrins in the vascular disease, cerebral cavernous malformation (CCM) has yet to be explored in vivo. Endothelial loss of the gene KRIT1 leads to brain microvascular defects, resulting in debilitating and often fatal consequences. We tested administration of a monoclonal antibody that enforces the active ß1 integrin conformation, (clone 9EG7), on a murine neonatal CCM mouse model, Krit1flox/flox ;Pdgfb-iCreERT2 (Krit1ECKO ), and on KRIT1-silenced human umbilical vein endothelial cells (HUVECs). In addition, endothelial deletion of the master regulator of integrin activation, Talin 1 (Tln1), in Krit1ECKO mice was performed to assess the effect of completely blocking endothelial integrin activation on CCM. Treatment with 9EG7 reduced lesion burden in the Krit1ECKO model and was accompanied by a strong reduction in the phosphorylation of the ROCK substrate, myosin light chain (pMLC), in both retina and brain endothelial cells. Treatment of KRIT1-silenced HUVECs with 9EG7 in vitro stabilized cell-cell junctions. Overnight treatment of HUVECs with 9EG7 resulted in significantly reduced total surface expression of ß1 integrin, which was associated with reduced pMLC levels, supporting our in vivo findings. Genetic blockade of integrin activation by Tln1ECKO enhanced bleeding and did not reduce CCM lesion burden in Krit1ECKO mice. In sum, targeting ß1 integrin with an activated-specific antibody reduces acute murine CCM lesion development, which we found to be associated with suppression of endothelial ROCK activity.
Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Animales , Humanos , Ratones , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Integrina beta1/metabolismo , Anticuerpos Monoclonales/metabolismo , Integrinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismoRESUMEN
OBJECTIVES: To test whether quantitative susceptibility mapping (QSM) of cerebral cavernous malformations (CCMs) assessed at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. METHODS: Familial CCM patients were enrolled in the longitudinal multicentre study Treat-CCM. The 3-T MRI scan allowed performing a semi-automatic segmentation of CCMs and computing the maximum susceptibility in each segmented CCM (QSMmax) at baseline. CCMs were classified as haemorrhagic and non-haemorrhagic at baseline and then subclassified according to the 1-year (t1) evolution. Between-group differences were tested, and the diagnostic accuracy of QSMmax in predicting the presence or absence of haemorrhagic signs in CCMs was calculated with ROC analyses. RESULTS: Thirty-three patients were included in the analysis, and a total of 1126 CCMs were segmented. QSMmax was higher in haemorrhagic CCMs than in non-haemorrhagic CCMs (p < 0.001). In haemorrhagic CCMs at baseline, the accuracy of QSMmax in differentiating CCMs that were still haemorrhagic from CCMs that recovered from haemorrhage at t1 calculated as area under the curve (AUC) was 0.78 with sensitivity 62.69%, specificity 82.35%, positive predictive value (PPV) 93.3% and negative predictive value (NPV) 35.9% (QSMmax cut-off ≥ 1462.95 ppb). In non-haemorrhagic CCMs at baseline, AUC was 0.91 in differentiating CCMs that bled at t1 from stable CCMs with sensitivity 100%, specificity 81.9%, PPV 5.1%, and NPV 100% (QSMmax cut-off ≥ 776.29 ppb). CONCLUSIONS: The QSMmax in CCMs at baseline showed high accuracy in predicting the presence or absence of haemorrhagic signs at 1-year follow-up. Further effort is required to test the role of QSM in follow-up assessment and therapeutic trials in multicentre CCM studies. KEY POINTS: ⢠QSM in semi-automatically segmented CCM was feasible. ⢠The maximum magnetic susceptibility in a single CCM at baseline may predict the presence or absence of haemorrhagic signs at 1-year follow-up. ⢠Multicentric studies are needed to enforce the role of QSM in predicting the CCMs' haemorrhagic evolution in patients affected by familial and sporadic forms.