Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.453
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 83-102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941606

RESUMEN

Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens-chrono-immunotherapies-that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.


Asunto(s)
Ritmo Circadiano , Neoplasias , Humanos , Ritmo Circadiano/inmunología , Animales , Neoplasias/inmunología , Neoplasias/terapia , Inmunoterapia/métodos , Inmunidad Innata , Inmunidad Adaptativa
2.
Cell ; 185(2): 235-249, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34995481

RESUMEN

How cells become specialized, or "mature," is important for cell and developmental biology. While maturity is usually deemed a terminal fate, it may be more helpful to consider maturation not as a switch but as a dynamic continuum of adaptive phenotypic states set by genetic and environment programing. The hallmarks of maturity comprise changes in anatomy (form, gene circuitry, and interconnectivity) and physiology (function, rhythms, and proliferation) that confer adaptive behavior. We discuss efforts to harness their chemical (nutrients, oxygen, and growth factors) and physical (mechanical, spatial, and electrical) triggers in vitro and in vivo and how maturation strategies may support disease research and regenerative medicine.


Asunto(s)
Diferenciación Celular , Animales , Investigación Biomédica , Proliferación Celular , Humanos , Modelos Biológicos
3.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30193114

RESUMEN

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Asunto(s)
Relojes Circadianos/fisiología , Metaboloma , Animales , Dieta Alta en Grasa , Metabolismo Energético , Hígado/metabolismo , Masculino , Redes y Vías Metabólicas , Metabolómica , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Corteza Prefrontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Cell ; 174(4): 831-842.e12, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-30057115

RESUMEN

Overnutrition disrupts circadian metabolic rhythms by mechanisms that are not well understood. Here, we show that diet-induced obesity (DIO) causes massive remodeling of circadian enhancer activity in mouse liver, triggering synchronous high-amplitude circadian rhythms of both fatty acid (FA) synthesis and oxidation. SREBP expression was rhythmically induced by DIO, leading to circadian FA synthesis and, surprisingly, FA oxidation (FAO). DIO similarly caused a high-amplitude circadian rhythm of PPARα, which was also required for FAO. Provision of a pharmacological activator of PPARα abrogated the requirement of SREBP for FAO (but not FA synthesis), suggesting that SREBP indirectly controls FAO via production of endogenous PPARα ligands. The high-amplitude rhythm of PPARα imparted time-of-day-dependent responsiveness to lipid-lowering drugs. Thus, acquisition of rhythmicity for non-core clock components PPARα and SREBP1 remodels metabolic gene transcription in response to overnutrition and enables a chronopharmacological approach to metabolic disorders.


Asunto(s)
Ritmo Circadiano , Dieta/efectos adversos , Hígado/metabolismo , Obesidad/metabolismo , PPAR alfa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Lipogénesis , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/patología , PPAR alfa/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
5.
Cell ; 175(1): 71-84.e18, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30173913

RESUMEN

Light exerts a range of powerful biological effects beyond image vision, including mood and learning regulation. While the source of photic information affecting mood and cognitive functions is well established, viz. intrinsically photosensitive retinal ganglion cells (ipRGCs), the central mediators are unknown. Here, we reveal that the direct effects of light on learning and mood utilize distinct ipRGC output streams. ipRGCs that project to the suprachiasmatic nucleus (SCN) mediate the effects of light on learning, independently of the SCN's pacemaker function. Mood regulation by light, on the other hand, requires an SCN-independent pathway linking ipRGCs to a previously unrecognized thalamic region, termed perihabenular nucleus (PHb). The PHb is integrated in a distinctive circuitry with mood-regulating centers and is both necessary and sufficient for driving the effects of light on affective behavior. Together, these results provide new insights into the neural basis required for light to influence mood and learning.


Asunto(s)
Afecto/efectos de la radiación , Aprendizaje/efectos de la radiación , Luz , Afecto/fisiología , Animales , Encéfalo/fisiología , Ritmo Circadiano , Aprendizaje/fisiología , Ratones , Ratones Endogámicos C57BL , Fototerapia/métodos , Retina/metabolismo , Retina/fisiología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Células Ganglionares de la Retina/efectos de la radiación , Transducción de Señal/fisiología , Núcleo Supraquiasmático/metabolismo , Visión Ocular/fisiología , Vías Visuales/metabolismo , Percepción Visual/fisiología
6.
Cell ; 170(4): 678-692.e20, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802040

RESUMEN

Normal homeostatic functions of adult stem cells have rhythmic daily oscillations that are believed to become arrhythmic during aging. Unexpectedly, we find that aged mice remain behaviorally circadian and that their epidermal and muscle stem cells retain a robustly rhythmic core circadian machinery. However, the oscillating transcriptome is extensively reprogrammed in aged stem cells, switching from genes involved in homeostasis to those involved in tissue-specific stresses, such as DNA damage or inefficient autophagy. Importantly, deletion of circadian clock components did not reproduce the hallmarks of this reprogramming, underscoring that rewiring, rather than arrhythmia, is associated with physiological aging. While age-associated rewiring of the oscillatory diurnal transcriptome is not recapitulated by a high-fat diet in young adult mice, it is significantly prevented by long-term caloric restriction in aged mice. Thus, stem cells rewire their diurnal timed functions to adapt to metabolic cues and to tissue-specific age-related traits.


Asunto(s)
Células Madre Adultas/patología , Senescencia Celular , Ritmo Circadiano , Epidermis/patología , Músculo Esquelético/patología , Células Madre Adultas/fisiología , Animales , Autofagia , Restricción Calórica , Relojes Circadianos , Daño del ADN , Dieta Alta en Grasa , Homeostasis , Ratones , Estrés Fisiológico , Transcriptoma
7.
Mol Cell ; 83(10): 1677-1692.e8, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207626

RESUMEN

PERIOD (PER) and Casein Kinase 1δ regulate circadian rhythms through a phosphoswitch that controls PER stability and repressive activity in the molecular clock. CK1δ phosphorylation of the familial advanced sleep phase (FASP) serine cluster embedded within the Casein Kinase 1 binding domain (CK1BD) of mammalian PER1/2 inhibits its activity on phosphodegrons to stabilize PER and extend circadian period. Here, we show that the phosphorylated FASP region (pFASP) of PER2 directly interacts with and inhibits CK1δ. Co-crystal structures in conjunction with molecular dynamics simulations reveal how pFASP phosphoserines dock into conserved anion binding sites near the active site of CK1δ. Limiting phosphorylation of the FASP serine cluster reduces product inhibition, decreasing PER2 stability and shortening circadian period in human cells. We found that Drosophila PER also regulates CK1δ via feedback inhibition through the phosphorylated PER-Short domain, revealing a conserved mechanism by which PER phosphorylation near the CK1BD regulates CK1 kinase activity.


Asunto(s)
Relojes Circadianos , Proteínas Circadianas Period , Animales , Humanos , Fosforilación , Retroalimentación , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Serina/metabolismo , Mamíferos/metabolismo
8.
Genes Dev ; 37(11-12): 454-473, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364987

RESUMEN

The circadian clock plays an essential role in coordinating feeding and metabolic rhythms with the light/dark cycle. Disruption of clocks is associated with increased adiposity and metabolic disorders, whereas aligning feeding time with cell-autonomous rhythms in metabolism improves health. Here, we provide a comprehensive overview of recent literature in adipose tissue biology as well as our understanding of molecular mechanisms underlying the circadian regulation of transcription, metabolism, and inflammation in adipose tissue. We highlight recent efforts to uncover the mechanistic links between clocks and adipocyte metabolism, as well as its application to dietary and behavioral interventions to improve health and mitigate obesity.


Asunto(s)
Tejido Adiposo , Relojes Circadianos , Humanos , Tejido Adiposo/fisiología , Relojes Circadianos/genética , Obesidad , Ritmo Circadiano/genética , Metabolismo Energético
9.
Genes Dev ; 37(9-10): 432-448, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164645

RESUMEN

A wide range of sequencing methods has been developed to assess nascent RNA transcription and resolve the single-nucleotide position of RNA polymerase genome-wide. These techniques are often burdened with high input material requirements and lengthy protocols. We leveraged the template-switching properties of thermostable group II intron reverse transcriptase (TGIRT) and developed Butt-seq (bulk analysis of nascent transcript termini sequencing), which can produce libraries from purified nascent RNA in 6 h and from as few as 10,000 cells-an improvement of at least 10-fold over existing techniques. Butt-seq shows that inhibition of the superelongation complex (SEC) causes promoter-proximal pausing to move upstream in a fashion correlated with subnucleosomal fragments. To address transcriptional regulation in a tissue, Butt-seq was used to measure the circadian regulation of transcription from fly heads. All the results indicate that Butt-seq is a simple and powerful technique to analyze transcription at a high level of resolution.


Asunto(s)
ADN Polimerasa Dirigida por ARN , ARN , ARN/genética , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , Intrones , Análisis de Secuencia de ARN/métodos , Transcripción Genética/genética
10.
Physiol Rev ; 103(3): 2231-2269, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36731029

RESUMEN

Salt-inducible kinases (SIKs), which comprise a family of three homologous serine-threonine kinases, were first described for their role in sodium sensing but have since been shown to regulate multiple aspects of physiology. These kinases are activated or deactivated in response to extracellular signals that are cell surface receptor mediated and go on to phosphorylate multiple targets including the transcription cofactors CRTC1-3 and the class IIa histone deacetylases (HDACs). Thus, the SIK family conveys signals about the cellular environment to reprogram transcriptional and posttranscriptional processes in response. In this manner, SIKs have been shown to regulate metabolic responses to feeding/fasting, cell division and oncogenesis, inflammation, immune responses, and most recently, sleep and circadian rhythms. Sleep and circadian rhythms are master regulators of physiology and are exquisitely sensitive to regulation by environmental light and physiological signals such as the need for sleep. Salt-inducible kinases have been shown to be central to the molecular regulation of both these processes. Here, we summarize the molecular mechanisms by which SIKs control these different domains of physiology and highlight where there is mechanistic overlap with sleep/circadian rhythm control.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Factores de Transcripción , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Cloruro de Sodio , Ritmo Circadiano , Sueño
11.
Annu Rev Neurosci ; 45: 387-402, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35395164

RESUMEN

Any experiment conducted in a rodent laboratory is done so against the backdrop of each animal's physiological state at the time of the experiment. This physiological state can be the product of multiple factors, both internal (e.g., animal sex, strain, hormone cycles, or circadian rhythms) and external (e.g., housing conditions, social status, and light/dark phases). Each of these factors has the potential to influence experimental outcomes, either independently or via interactions with others, and yet there is little consistency across laboratories in terms of the weight with which they are considered in experimental design. Such discrepancies-both in practice and in reporting-likely contribute to the perception of a reproducibility crisis in the field of behavioral neuroscience. In this review, we discuss how several of these sources of variability can impact outcomes within the realm of common learning and memory paradigms.


Asunto(s)
Laboratorios , Roedores , Animales , Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Reproducibilidad de los Resultados
12.
Annu Rev Biochem ; 83: 159-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606145

RESUMEN

This article introduces three reviews on the theme of circadian rhythms.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Biología/métodos , Biología/tendencias , Humanos , Cinética , Sustancias Macromoleculares
13.
EMBO J ; 43(10): 2015-2034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627599

RESUMEN

Circadian clocks temporally coordinate daily organismal biology over the 24-h cycle. Their molecular design, preserved between fungi and animals, is based on a core-oscillator composed of a one-step transcriptional-translational-negative-feedback-loop (TTFL). To test whether this evolutionarily conserved TTFL architecture is the only plausible way for achieving a functional circadian clock, we adopted a transcriptional rewiring approach, artificially co-opting regulators of the circadian output pathways into the core-oscillator. Herein we describe one of these semi-synthetic clocks which maintains all basic circadian features but, notably, it also exhibits new attributes such as a "lights-on timer" logic, where clock phase is fixed at the end of the night. Our findings indicate that fundamental circadian properties such as period, phase and temperature compensation are differentially regulated by transcriptional and posttranslational aspects of the clockworks.


Asunto(s)
Relojes Circadianos , Transcripción Genética , Relojes Circadianos/genética , Animales , Ritmo Circadiano/genética , Evolución Molecular , Regulación de la Expresión Génica
14.
Annu Rev Neurosci ; 43: 119-140, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32075519

RESUMEN

While neurons and circuits are almost unequivocally considered to be the computational units and actuators of behavior, a complete understanding of the nervous system must incorporate glial cells. Far beyond a copious but passive substrate, glial influence is inextricable from neuronal physiology, whether during developmental guidance and synaptic shaping or through the trophic support, neurotransmitter and ion homeostasis, cytokine signaling and immune function, and debris engulfment contributions that this class provides throughout an organism's life. With such essential functions, among a growing literature of nuanced roles, it follows that glia are consequential to behavior in adult animals, with novel genetic tools allowing for the investigation of these phenomena in living organisms. We discuss here the relevance of glia for maintaining circadian rhythms and also for serving functions of sleep.


Asunto(s)
Ritmo Circadiano/fisiología , Neuroglía/fisiología , Neuronas/fisiología , Sueño/fisiología , Animales , Drosophila/fisiología , Humanos , Neurotransmisores/metabolismo
15.
Annu Rev Pharmacol Toxicol ; 64: 89-114, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37722720

RESUMEN

Today's challenge for precision medicine involves the integration of the impact of molecular clocks on drug pharmacokinetics, toxicity, and efficacy toward personalized chronotherapy. Meaningful improvements of tolerability and/or efficacy of medications through proper administration timing have been confirmed over the past decade for immunotherapy and chemotherapy against cancer, as well as for commonly used pharmacological agents in cardiovascular, metabolic, inflammatory, and neurological conditions. Experimental and human studies have recently revealed sexually dimorphic circadian drug responses. Dedicated randomized clinical trials should now aim to issue personalized circadian timing recommendations for daily medical practice, integrating innovative technologies for remote longitudinal monitoring of circadian metrics, statistical prediction of molecular clock function from single-timepoint biopsies, and multiscale biorhythmic mathematical modelling. Importantly, chronofit patients with a robust circadian function, who would benefit most from personalized chronotherapy, need to be identified. Conversely, nonchronofit patients could benefit from the emerging pharmacological class of chronobiotics targeting the circadian clock.


Asunto(s)
Relojes Circadianos , Neoplasias , Masculino , Femenino , Humanos , Ritmo Circadiano , Cronoterapia , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas
16.
Annu Rev Genomics Hum Genet ; 25(1): 259-285, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38669479

RESUMEN

Healthy sleep is vital for humans to achieve optimal health and longevity. Poor sleep and sleep disorders are strongly associated with increased morbidity and mortality. However, the importance of good sleep continues to be underrecognized. Mechanisms regulating sleep and its functions in humans remain mostly unclear even after decades of dedicated research. Advancements in gene sequencing techniques and computational methodologies have paved the way for various genetic analysis approaches, which have provided some insights into human sleep genetics. This review summarizes our current knowledge of the genetic basis underlying human sleep traits and sleep disorders. We also highlight the use of animal models to validate genetic findings from human sleep studies and discuss potential molecular mechanisms and signaling pathways involved in the regulation of human sleep.


Asunto(s)
Trastornos del Sueño-Vigilia , Sueño , Humanos , Trastornos del Sueño-Vigilia/genética , Sueño/genética , Animales , Transducción de Señal/genética
17.
EMBO J ; 42(19): e114164, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37554073

RESUMEN

Cellular circadian rhythms confer temporal organisation upon physiology that is fundamental to human health. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body, but their physiological function is poorly understood. Here, we present a novel biochemical assay for haemoglobin (Hb) oxidation status which relies on a redox-sensitive covalent haem-Hb linkage that forms during SDS-mediated cell lysis. Formation of this linkage is lowest when ferrous Hb is oxidised, in the form of ferric metHb. Daily haemoglobin oxidation rhythms are observed in mouse and human RBCs cultured in vitro, or taken from humans in vivo, and are unaffected by mutations that affect circadian rhythms in nucleated cells. These rhythms correlate with daily rhythms in core body temperature, with temperature lowest when metHb levels are highest. Raising metHb levels with dietary sodium nitrite can further decrease daytime core body temperature in mice via nitric oxide (NO) signalling. These results extend our molecular understanding of RBC circadian rhythms and suggest they contribute to the regulation of body temperature.


Asunto(s)
Eritrocitos , Hemoglobinas , Humanos , Ratones , Animales , Eritrocitos/metabolismo , Hemoglobinas/metabolismo , Oxidación-Reducción , Hemo/metabolismo , Ritmo Circadiano
18.
Proc Natl Acad Sci U S A ; 121(41): e2415567121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39356670

RESUMEN

Casein kinase 1δ (CK1δ) controls essential biological processes including circadian rhythms and wingless-related integration site (Wnt) signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ1 and δ2, are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C termini (XCT), but with marked changes in potential phosphorylation sites. Here, we test whether the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and hydrogen/deuterium exchange mass spectrometry, we show that the δ1 XCT is preferentially phosphorylated by the kinase and the δ1 tail makes more extensive interactions across the kinase domain. Mutation of δ1-specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in the circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion-binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ. These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.


Asunto(s)
Quinasa Idelta de la Caseína , Fosforilación , Humanos , Quinasa Idelta de la Caseína/metabolismo , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Ritmo Circadiano , Animales , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Células HEK293 , Ratones , Dominios Proteicos , Mutación
19.
Proc Natl Acad Sci U S A ; 121(30): e2319782121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008664

RESUMEN

Crosstalk between metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to disease. Here, we investigated whether maintenance of circadian rhythms depends on specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to signal from a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function across a series of pancreatic adenocarcinoma cell lines. Metabolic profiling of congenic tumor cell clones revealed substantial diversity among these lines that we used to identify clones to generate circadian reporter lines. We observed diverse circadian profiles among these lines that varied with their metabolic phenotype: The most hypometabolic line [exhibiting low levels of oxidative phosphorylation (OxPhos) and glycolysis] had the strongest rhythms, while the most hypermetabolic line had the weakest rhythms. Pharmacological enhancement of OxPhos decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, inhibition of OxPhos enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.


Asunto(s)
Ritmo Circadiano , Glucólisis , Fosforilación Oxidativa , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Ritmo Circadiano/fisiología , Línea Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Fibroblastos/metabolismo , Adenosina Trifosfato/metabolismo
20.
Proc Natl Acad Sci U S A ; 121(21): e2318690121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739791

RESUMEN

Cyanobacteria are photosynthetic bacteria whose gene expression patterns are globally regulated by their circadian (daily) clocks. Due to their ability to use sunlight as their energy source, they are also attractive hosts for "green" production of pharmaceuticals, renewable fuels, and chemicals. However, despite the application of traditional genetic tools such as the identification of strong promoters to enhance the expression of heterologous genes, cyanobacteria have lagged behind other microorganisms such as Escherichia coli and yeast as economically efficient cell factories. The previous approaches have ignored large-scale constraints within cyanobacterial metabolic networks on transcription, predominantly the pervasive control of gene expression by the circadian (daily) clock. Here, we show that reprogramming gene expression by releasing circadian repressor elements in the transcriptional regulatory pathways coupled with inactivation of the central oscillating mechanism enables a dramatic enhancement of expression in cyanobacteria of heterologous genes encoding both catalytically active enzymes and polypeptides of biomedical significance.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Fotosíntesis , Fotosíntesis/genética , Relojes Circadianos/genética , Biotecnología/métodos , Cianobacterias/genética , Cianobacterias/metabolismo , Regiones Promotoras Genéticas , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA