Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; 24(13): e202300094, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37067386

RESUMEN

Micro- and nanoscale information on the activating and deactivating coking behaviour of zeolite catalyst materials increases our current understanding of many industrially applied processes, such as the methanol-to-hydrocarbon (MTH) reaction. Atom probe tomography (APT) was used to reveal the link between framework and coke elemental distributions in 3D with sub-nanometre resolution. APT revealed 10-20 nanometre-sized Al-rich regions and short-range ordering (within nanometres) between Al atoms. With confocal fluorescence microscopy, it was found that the morphology of the zeolite crystal as well as the secondary mesoporous structures have a great effect on the microscale coke distribution throughout individual zeolite crystals over time. Additionally, a nanoscale heterogeneous distribution of carbon as residue from the MTH reaction was determined with carbon-rich areas of tens of nanometres within the zeolite crystals. Lastly, a short length-scale affinity between C and Al atoms, as revealed by APT, indicates the formation of carbon-containing molecules next to the acidic sites in the zeolite.

2.
Mol Pharm ; 20(4): 2080-2093, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36897219

RESUMEN

Amorphous-Amorphous phase separation (AAPS) is an important phenomenon that can impede the performance of amorphous solid dispersions (ASDs). The purpose of this study was to develop a sensitive approach relying on dielectric spectroscopy (DS) to characterize AAPS in ASDs. This includes detecting AAPS, determining the size of the active ingredient (AI) discrete domains in the phase-separated systems, and accessing the molecular mobility in each phase. Using a model system consisting of the insecticide imidacloprid (IMI) and the polymer polystyrene (PS), the dielectric results were further confirmed by confocal fluorescence microscopy (CFM). The detection of AAPS by DS was accomplished by identifying the decoupled structural (α-)dynamics of the AI and the polymer phase. The α-relaxation times corresponding to each phase correlated reasonably well with those of the pure components, implying nearly complete macroscopic phase separation. Congruent with the DS results, the occurrence of the AAPS was detected by means of CFM, making use of the autofluorescent property of IMI. Oscillatory shear rheology and differential scanning calorimetry (DSC) detected the glass transition of the polymer phase but not that of the AI phase. Furthermore, the otherwise undesired effects of interfacial and electrode polarization, which can appear in DS, were exploited to determine the effective domain size of the discrete AI phase in this work. Here, stereological analysis of CFM images probing the mean diameter of the phase-separated IMI domains directly stayed in reasonably good agreement with the DS-based estimates. The size of phase-separated microclusters showed little variation with AI loading, implying that the ASDs have presumably undergone AAPS upon manufacturing. DSC provided further support to the immiscibility of IMI and PS, as no discernible melting point depression of the corresponding physical mixtures was detected. Moreover, no signatures of strong attractive AI-polymer interactions could be detected by mid-infrared spectroscopy within this ASD system. Finally, dielectric cold crystallization experiments of the pure AI and the 60 wt % dispersion revealed comparable crystallization onset times, hinting at a poor inhibition of the AI crystallization within the ASD. These observations are in harmony with the occurrence of AAPS. In conclusion, our multifaceted experimental approach opens new venues for rationalizing the mechanisms and kinetics of phase separation in amorphous solid dispersions.


Asunto(s)
Nitrocompuestos , Polímeros , Cristalización/métodos , Polímeros/química , Neonicotinoides , Solubilidad , Rastreo Diferencial de Calorimetría
3.
Eur Spine J ; 32(5): 1678-1687, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36922425

RESUMEN

PURPOSE: The sole determination of volumetric bone mineral density (vBMD) is insufficient to evaluate overall bone integrity. The accumulation of advanced glycation endproducts (AGEs) stiffens and embrittles collagen fibers. Despite the important role of AGEs in bone aging, the relationship between AGEs and vBMD is poorly understood. We hypothesized that an accumulation of AGEs, a marker of impaired bone quality, is related to decreased vBMD. METHODS: Prospectively collected data of 127 patients undergoing lumbar fusion were analyzed. Quantitative computed tomography (QCT) measurements were performed at the lumbar spine. Intraoperative bone biopsies were obtained and analyzed with confocal fluorescence microscopy for fluorescent AGEs, both trabecular and cortical. Spearman's correlation coefficients were calculated to examine relationships between vBMD and fAGEs, stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), race, diabetes mellitus and HbA1c was used to investigate associations between vBMD and fAGEs. RESULTS: One-hundred and twenty-seven patients (51.2% female, 61.2 years, BMI of 28.7 kg/m2) with 107 bone biopsies were included in the final analysis, excluding patients on anti-osteoporotic drug therapy. In the univariate analysis, cortical fAGEs increased with decreasing vBMD at (r = -0.301; p = 0.030), but only in men. In the multivariable analysis, trabecular fAGEs increased with decreasing vBMD after adjusting for age, sex, BMI, race, diabetes mellitus and HbA1c (ß = 0.99;95%CI=(0.994,1.000); p = 0.04). CONCLUSION: QCT-derived vBMD measurements were found to be inversely associated with trabecular fAGEs. Our results enhance the understanding of bone integrity by suggesting that spine surgery patients with decreased bone quantity may also have poorer bone quality.


Asunto(s)
Densidad Ósea , Vértebras Lumbares , Masculino , Humanos , Femenino , Hemoglobina Glucada , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Tomografía Computarizada por Rayos X/métodos , Envejecimiento
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003569

RESUMEN

Life on the molecular scale is based on a versatile interplay of biomolecules, a feature that is relevant for the formation of macromolecular complexes. Fluorescence-based two-color coincidence detection is widely used to characterize molecular binding and was recently improved by a brightness-gated version which gives more accurate results. We developed and established protocols which make use of coincidence detection to quantify binding fractions between interaction partners labeled with fluorescence dyes of different colors. Since the applied technique is intrinsically related to single-molecule detection, the concentration of diffusing molecules for confocal detection is typically in the low picomolar regime. This makes the approach a powerful tool for determining bi-molecular binding affinities, in terms of KD values, in this regime. We demonstrated the reliability of our approach by analyzing very strong nanobody-EGFP binding. By measuring the affinity at different temperatures, we were able to determine the thermodynamic parameters of the binding interaction. The results show that the ultra-tight binding is dominated by entropic contributions.


Asunto(s)
Reproducibilidad de los Resultados , Termodinámica , Difusión
5.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203434

RESUMEN

In multiple sclerosis (MS), mitochondrial alterations appear to contribute to disease progression. The sphingosine-1-phosphate receptor modulator siponimod is approved for treating secondary progressive MS. Its preceding compound fingolimod was shown to prevent oxidative stress-induced alterations in mitochondrial morphology. Here, we assessed the effects of siponimod, compared to fingolimod, on neuronal mitochondria in oxidatively stressed hippocampal slices. We have also advanced the model of chronic organotypic hippocampal slices for live imaging, enabling semi-automated monitoring of mitochondrial alterations. The slices were prepared from B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J mice that display fluorescent neuronal mitochondria. They were treated with hydrogen peroxide (oxidative stress paradigm) ± 1 nM siponimod or fingolimod for 24 h. Afterwards, mitochondrial dynamics were investigated. Under oxidative stress, the fraction of motile mitochondria decreased and mitochondria were shorter, smaller, and covered smaller distances. Siponimod partly prevented oxidatively induced alterations in mitochondrial morphology; for fingolimod, a similar trend was observed. Siponimod reduced the decrease in mitochondrial track displacement, while both compounds significantly increased track speed and preserved motility. The novel established imaging and analysis tools are suitable for assessing the dynamics of neuronal mitochondria ex vivo. Using these approaches, we showed that siponimod at 1 nM partially prevented oxidatively induced mitochondrial alterations in chronic brain slices.


Asunto(s)
Azetidinas , Clorhidrato de Fingolimod , Animales , Ratones , Clorhidrato de Fingolimod/farmacología , Receptores de Esfingosina-1-Fosfato , Compuestos de Bencilo
6.
Biopolymers ; 113(4): e23484, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34914092

RESUMEN

Cell-penetrating peptides (CPPs) have been extensively used to deliver peptide nucleic acid (PNA) in cells. We have previously found that replacement of cytosine in triplex-forming PNAs with 2-aminopyridine (M) not only enhanced RNA binding, but also improved cellular uptake of PNAs. In this study, we used confocal fluorescence microscopy to evaluate the ability of CPPs to further improve cellular uptake of M-modified PNAs. We found that PNAs conjugated with Tat and octa-arginine peptides were effectively taken up in MCF7 cells when supplied in cell media at 1 µM. Remarkably, M-modified PNA without any CPP conjugation also showed strong uptake when the concentration was increased to 5 µM. Majority of PNA conjugates remained localized in distinct cytoplasmic vesicles, as judged by dot-like fluorescence patterns. However, M-modified PNAs conjugated with Tat, octa-arginine, and even a simple tri-lysine peptide also showed dispersed fluorescence in cytoplasm and were taken up in nuclei where they localized in larger vesicles, most likely nucleoli. Endosomolytic peptides or chemicals (chloroquine and CaCl2 ) did not release the conjugates from cytosolic vesicles, which suggested that the PNAs were not entrapped in endosomes. We hypothesize that M-modified PNAs escape endosomes and accumulate in cellular compartments rich in RNA, such as nucleoli, stress granules, and P-bodies.


Asunto(s)
Péptidos de Penetración Celular , Ácidos Nucleicos de Péptidos , Aminopiridinas , Arginina , Células HeLa , Humanos , Ácidos Nucleicos de Péptidos/metabolismo , ARN
7.
Chemistry ; 26(4): 863-872, 2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31660647

RESUMEN

Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure-activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.


Asunto(s)
Compuestos de Boro/química , Colorantes Fluorescentes/química , Ionóforos/química , Fluorescencia , Microscopía Fluorescente , Coloración y Etiquetado
8.
Exp Eye Res ; 181: 25-37, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30653966

RESUMEN

Epithelial wound healing is essential for maintaining the function and clarity of the cornea. Successful repair after injury involves the coordinated movements of cell sheets over the wounded region. While collective migration has been the focus of studies, the effects that environmental changes have on this form of movement are poorly understood. To examine the role of substrate compliancy on multi-layered epithelial sheet migration, we performed traction force and confocal microscopy to determine differences in traction forces and to examine focal adhesions on synthetic and biological substrates. The leading edges of corneal epithelial sheets undergo retraction or contraction prior to migration, and alterations in the sheet's stiffness are affected by the amount of force exerted by cells at the leading edge. On substrates of 30 kPa, cells exhibited greater and more rapid movement than on substrates of 8 kPa, which are similar to that of the corneal basement membrane. Vinculin and its phosphorylated residue Y1065 were prominent along the basal surface of migrating cells, while Y822 was prominent between neighboring cells along the leading edge. Vinculin localization was diffuse on a substrate where the basement membrane was removed. Furthermore, when cells were cultured on fibronectin-coated acrylamide substrates of 8 and 50 kPa and then wounded, there was an injury-induced phosphorylation of Y1065 and substrate dependent changes in the number and size of vinculin containing focal adhesions. These results demonstrate that changes in substrate stiffness affected traction forces and vinculin dynamics, which potentially could contribute to the delayed healing response associated with certain corneal pathologies.


Asunto(s)
Células Epiteliales/fisiología , Epitelio/fisiología , Análisis de Varianza , Fenómenos Biomecánicos , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Córnea/fisiología , Células Epiteliales/metabolismo , Humanos , Limbo de la Córnea/citología , Fosforilación , Vinculina/fisiología
9.
BMC Pulm Med ; 19(1): 3, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30612556

RESUMEN

BACKGROUND: EGFR mutations are routinely explored in lung adenocarcinoma by sequencing tumoral DNA. The aim of this study was to evaluate a fluorescent-labelled erlotinib based theranostic agent for the molecular imaging of mutated EGFR tumours in vitro and ex vivo using a mice xenograft model and fibred confocal fluorescence microscopy (FCFM). METHODS: The fluorescent tracer was synthesized in our laboratory by addition of fluorescein to an erlotinib molecule. Three human adenocarcinoma cell lines with mutated EGFR (HCC827, H1975 and H1650) and one with wild-type EGFR (A549) were xenografted on 35 Nude mice. MTT viability assay was performed after exposure to our tracer. In vitro imaging was performed at 1 µM tracer solution, and ex vivo imaging was performed on fresh tumours excised from mice and exposed to a 1 µM tracer solution in PBS for 1 h. Real-time molecular imaging was performed using FCFM and median fluorescence intensity (MFI) was recorded for each experiment. RESULTS: MTT viability assay confirmed that addition of fluorescein to erlotinib did not suppress the cytotoxic of erlotinib on tumoral cells. In vitro FCFM imaging showed that our tracer was able to distinguish cell lines with mutated EGFR from those lines with wild-type EGFR (p < 0.001). Ex vivo FCFM imaging of xenografts with mutated EGFR had a significantly higher MFI than wild-type (p < 0.001). At a cut-off value of 354 Arbitrary Units, MFI of our tracer had a sensitivity of 100% and a specificity of 96.3% for identifying mutated EGFR tumours. CONCLUSION: Real time molecular imaging using fluorescent erlotinib is able to identify ex vivo tumours with EGFR mutations.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , Imagen Molecular/métodos , Proteínas Mutantes/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/química , Femenino , Humanos , Ratones , Ratones Desnudos , Microscopía Fluorescente , Mutación , Trasplante de Neoplasias
10.
Am J Physiol Renal Physiol ; 315(6): F1592-F1600, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30089032

RESUMEN

Myogenic contraction of renal arterioles is an important regulatory mechanism for renal blood flow autoregulation. We have previously demonstrated that integrin-mediated mechanical force increases the occurrence of Ca2+ sparks in freshly isolated renal vascular smooth muscle cells (VSMCs). To further test whether the generation of Ca2+ sparks is a downstream signal of mechanotransduction in pressure-induced myogenic constriction, the relationship between Ca2+ sparks and transmural perfusion pressure was investigated in intact VSMCs of pressurized rat afferent arterioles. Spontaneous Ca2+ sparks were found in VSMCs when afferent arterioles were perfused at 80 mmHg. The spark frequency was significantly increased when perfusion pressure was increased to 120 mmHg. A similar increase of spark frequency was also observed in arterioles stimulated with ß1-integrin-activating antibody. Moreover, spark frequency was significantly higher in arterioles of spontaneous hypertensive rats at 80 and 120 mmHg. Spontaneous membrane current recorded using whole cell perforated patch in renal VSMCs showed predominant activity of spontaneous transient inward currents instead of spontaneous transient outward currents when holding potential was set close to physiological resting membrane potential. Real-time PCR and immunohistochemistry confirmed the expression of Ca2+-activated Cl- channel (ClCa) TMEM16A in renal VSMCs. Inhibition of TMEM16A with T16Ainh-A01 impaired the pressure-induced myogenic contraction in perfused afferent arterioles. Our study, for the first time to our knowledge, detected Ca2+ sparks in VSMCs of intact afferent arterioles, and their frequencies were positively modulated by the perfusion pressure. Our results suggest that Ca2+ sparks may couple to ClCa channels and trigger pressure-induced myogenic constriction via membrane depolarization.


Asunto(s)
Anoctamina-1/metabolismo , Presión Arterial , Señalización del Calcio , Hipertensión/metabolismo , Riñón/irrigación sanguínea , Mecanotransducción Celular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Vasoconstricción , Animales , Anoctamina-1/genética , Arteriolas/metabolismo , Arteriolas/fisiopatología , Modelos Animales de Enfermedad , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Potenciales de la Membrana , Músculo Liso Vascular/fisiopatología , Ratas Endogámicas SHR , Ratas Sprague-Dawley
11.
Exp Eye Res ; 170: 127-137, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29496505

RESUMEN

Deposition of matrix proteins during development and repair is critical to the transparency of the cornea. While many cells respond to a hypoxic state that can occur in a tumor, the cornea is exposed to hypoxia during development prior to eyelid opening and during the diurnal sleep cycle where oxygen levels can drop from 21% to 8%. In this study, we used 2 three-dimensional (3-D) models to examine how stromal cells respond to periods of acute hypoxic states. The first model, a stromal construct model, is a 3-D stroma-like construct that consists of human corneal fibroblasts (HCFs) stimulated by a stable form of ascorbate for 1, 2, and 4 weeks to self-assemble their own extracellular matrix. The second model, a corneal organ culture model, is a corneal wound-healing model, which consists of wounded adult rat corneas that were removed and placed in culture to heal. Both models were exposed to either normoxic or hypoxic conditions for varying time periods, and the expression and/or localization of matrix proteins was assessed. No significant changes were detected in Type V collagen, which is associated with Type I collagen fibrils; however, significant changes were detected in the expression of both the small leucine-rich repeating proteoglycans and the larger heparan sulfate proteoglycan, perlecan. Also, hypoxia decreased both the number of Cuprolinic blue-positive glycosaminoglycan chains along collagen fibrils and Sulfatase 1, which modulates the effect of heparan sulfate by removing the 6-O-sulfate groups. In the stromal construct model, alterations were seen in fibronectin, similar to those that occur in development and after injury. These changes in fibronectin after injury were accompanied by changes in proteoglycans. Together these findings indicate that acute hypoxic changes alter the physiology of the cornea, and these models will allow us to manipulate the conditions in the extracellular environment in order to study corneal development and trauma.


Asunto(s)
Queratocitos de la Córnea/fisiología , Sustancia Propia/citología , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Hipoxia/metabolismo , Cicatrización de Heridas/fisiología , Animales , Ácido Ascórbico/farmacología , Colágeno/genética , Colágeno/metabolismo , Sustancia Propia/ultraestructura , Proteínas de la Matriz Extracelular/genética , Técnica del Anticuerpo Fluorescente Indirecta , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Microscopía Confocal , Modelos Biológicos , Técnicas de Cultivo de Órganos , Proteoglicanos/genética , Proteoglicanos/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Chemphyschem ; 19(4): 367-372, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-28809081

RESUMEN

Large crystals of zeolite ferrierite (FER) are important model systems for spatially resolved catalysis and diffusion studies, though there is considerable variation in crystal habit depending on the chemical composition and employed synthesis conditions. A synergistic combination of techniques has been applied, including single crystal X-ray diffraction, high-temperature in situ confocal fluorescence microscopy, fluorescent probe molecules, wide-field microscopy and atomic force microscopy to unravel the internal architecture of three distinct FER zeolites. Pyrolyzed template species can be used as markers for the 8-membered ring direction as they are trapped in the terraced roof of the FER crystals. This happens as the materials grow in a layer-by-layer, defect-free manner normal to the large crystal surface, and leads to a facile method to diagnose the pore system orientation, which avoids tedious single crystal X-ray diffraction experiments.

13.
Adv Exp Med Biol ; 1057: 1-27, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28389992

RESUMEN

Chronic rhinosinusitis (CRS) is the most common illness among chronic disorders that remains poorly understood from a pathogenic standpoint and has a significant impact on patient quality of life, as well as healthcare costs. Despite being widespread, little is known about the etiology of the CRS. Recent evidence, showing the presence of biofilms within the paranasal sinuses, suggests a role for biofilm in the pathogenesis. To elucidate the role of biofilm in the pathogenesis of CRS, we assessed the presence of biofilm at the infection site and the ability of the aerobic flora isolated from CRS patients to form biofilm in vitro. For selected bacterial strains the susceptibility profiles to antibiotics in biofilm condition was also evaluated.Staphylococci represented the majority of the isolates obtained from the infection site, with S. epidermidis being the most frequently isolated species. Other isolates were represented by Enterobacteriaceae or by species present in the oral flora. Confocal laser scanning microscopy (CLSM) of the mucosal biopsies taken from patients with CRS revealed the presence of biofilm in the majority of the samples. Strains isolated from the specific infection site of the CRS patients were able to form biofilm in vitro at moderate or high levels, when tested in optimized conditions. No biofilm was observed by CLSM in the biopsies from control patients, although the same biopsies were positive for staphylococci in microbiological culture analysis. Drug-susceptibility tests demonstrated that the susceptibility profile of planktonic bacteria differs from that of sessile bacteria in biofilms.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Rinitis/microbiología , Sinusitis/microbiología , Biopsia , Enfermedad Crónica , Humanos , Pruebas de Sensibilidad Microbiana , Calidad de Vida , Staphylococcus epidermidis/aislamiento & purificación
14.
Lasers Med Sci ; 33(9): 1849-1858, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30311083

RESUMEN

A cancerous cell is characterized by morphological and metabolic changes which are the key features of carcinogenesis. Adenosine triphosphate (ATP) in cancer cells is primarily produced by aerobic glycolysis rather than oxidative phosphorylation. In normal cellular metabolism, nicotinamide adenine dinucleotide (NADH) is considered as a principle electron donor and flavin adenine dinucleotide (FAD) as an electron acceptor. During metabolism in a cancerous cell, a net increase in NADH is found as the pathway switched from oxidative phosphorylation to aerobic glycolysis. Often during initiation and progression of cancer, the developmental regulation of extracellular matrix (ECM) is restricted and becomes disorganized. Tumor cell behavior is regulated by the ECM in the tumor micro environment. Collagen, which forms the scaffold of tumor micro-environment also influences its behavior. Advanced optical microscopy techniques are useful for determining the metabolic characteristics of cancerous, normal cells and tissues. They can be used to identify the collagen microstructure and the function of NADH, FAD, and lipids in living system. In this review article, various optical microscopy techniques applied for breast cancer research are discussed including fluorescence, confocal, second harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and fluorescence lifetime imaging (FLIM).


Asunto(s)
Neoplasias de la Mama/patología , Microscopía/métodos , Femenino , Humanos , Microscopía Confocal , Microscopía Fluorescente
15.
BMC Biol ; 15(1): 65, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28738898

RESUMEN

BACKGROUND: Biological mineral formation (biomineralization) proceeds in specialized compartments often bounded by a lipid bilayer membrane. Currently, the role of membranes in biomineralization is hardly understood. RESULTS: Investigating biomineralization of SiO2 (silica) in diatoms we identified Silicanin-1 (Sin1) as a conserved diatom membrane protein present in silica deposition vesicles (SDVs) of Thalassiosira pseudonana. Fluorescence microscopy of GFP-tagged Sin1 enabled, for the first time, to follow the intracellular locations of a biomineralization protein during silica biogenesis in vivo. The analysis revealed incorporation of the N-terminal domain of Sin1 into the biosilica via association with the organic matrix inside the SDVs. In vitro experiments showed that the recombinant N-terminal domain of Sin1 undergoes pH-triggered assembly into large clusters, and promotes silica formation by synergistic interaction with long-chain polyamines. CONCLUSIONS: Sin1 is the first identified SDV transmembrane protein, and is highly conserved throughout the diatom realm, which suggests a fundamental role in the biomineralization of diatom silica. Through interaction with long-chain polyamines, Sin1 could serve as a molecular link by which the SDV membrane exerts control on the assembly of biosilica-forming organic matrices in the SDV lumen.


Asunto(s)
Diatomeas/genética , Diatomeas/metabolismo , Proteínas de la Membrana/genética , ARN de Algas/genética , Dióxido de Silicio/metabolismo , Proteínas de la Membrana/metabolismo , ARN de Algas/metabolismo
16.
Chem Biodivers ; 15(10): e1800302, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30074284

RESUMEN

A quantitative analysis by confocal fluorescence microscopy of the entry into HEK293 and MCF-7 cells by fluorescein-labeled octaarginine (1) and by three octa-Adp derivatives (2 - 4, octamers of the ß-Asp-Arg-dipeptide, derived from the biopolymer cyanophycin) is described, including the effects of the membrane dye R18 and of DMSO on cell penetration.


Asunto(s)
Proteínas Bacterianas/farmacocinética , Permeabilidad de la Membrana Celular/efectos de los fármacos , Colorantes/farmacología , Dimetilsulfóxido/farmacología , Guanidina/farmacocinética , Oligopéptidos/farmacocinética , Proteínas Bacterianas/química , Guanidina/química , Células HEK293 , Humanos , Células MCF-7 , Oligopéptidos/química
17.
Nano Lett ; 17(3): 1559-1563, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28151680

RESUMEN

The photoluminescence of individual CdSe/CdS/ZnS core/shell nanocrystals has been investigated under external forces. After mutual alignment of a correlative atomic force and confocal microscope, individual particles were colocalized and exposed to a series of force cycles by using the tip of the AFM cantilever as a nanoscale piston. Thus, force-dependent changes of photophysical properties could be tracked on a single particle level. Remarkably, individual nanocrystals either shifted to higher or to lower emission energies with no indications of multiple emission lines under applied force. The direction and magnitude of these reversible spectral shifts depend on the orientation of nanocrystal axes relative to the external anisotropic force. Maximum pressures derived from the applied forces within a simple contact-mechanical model lie in the GPa range, comparable to values typically emerging in diamond anvil cells. Average spectral shift parameters of -3.5 meV/GPa and 3.0 meV/GPa are found for red- and blue-shifting species, respectively. Our results clearly demonstrate that the emission energy of single nanocrystals can be reversibly tuned over an appreciable wavelength range without degradation of their performance which appears as a promising feature with respect to tunable single photon sources or the creation of coherently coupled particle dimers.

18.
Photosynth Res ; 134(2): 165-174, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28733863

RESUMEN

Cyanobacterial phycobilisome (PBS) pigment-protein complexes harvest light and transfer the energy to reaction centers. Previous ensemble studies have shown that cyanobacteria respond to changes in nutrient availability by modifying the structure of PBS complexes, but this process has not been visualized for individual pigments at the single-cell level due to spectral overlap. We characterized the response of four key photosynthetic pigments to nitrogen depletion and repletion at the subcellular level in individual, live Synechocystis sp. PCC 6803 cells using hyperspectral confocal fluorescence microscopy and multivariate image analysis. Our results revealed that PBS degradation and re-synthesis comprise a rapid response to nitrogen fluctuations, with coordinated populations of cells undergoing pigment modifications. Chlorophyll fluorescence originating from photosystem I and II decreased during nitrogen starvation, but no alteration in subcellular chlorophyll localization was found. We observed differential rod and core pigment responses to nitrogen deprivation, suggesting that PBS complexes undergo a stepwise degradation process.


Asunto(s)
Nitrógeno/metabolismo , Fotosíntesis/fisiología , Ficobilisomas/metabolismo , Synechocystis/metabolismo , Proteínas Bacterianas/metabolismo , Clorofila/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
19.
Chemistry ; 23(26): 6305-6314, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28217845

RESUMEN

A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction.

20.
Pharm Res ; 34(5): 941-956, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27633887

RESUMEN

PURPOSE: Investigate the extended release behaviour of compacts containing mixtures of hydrophilic HPMC and PEO in hydrating media of differing ionic strengths. METHODS: The extended release behaviour of various HPMC:PEO compacts was investigated using dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to polymer ratio and ionic strength of the hydrating media. RESULTS: Increasing HPMC content gave longer extended release times, but a greater sensitivity to high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high ionic environments. Confocal microscopy of early gel layer development showed the two polymers appeared to contribute independently to gel layer structure whilst together forming a coherent and effective diffusion barrier. There was some evidence that poorly swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength environments, resulting in prolonged extended release. MRI provides unique, non-invasive spatially resolved information from within the HPMC:PEO compacts that furthers our understanding of USP 1 and USP 4 dissolution data. CONCLUSIONS: Confocal microscopy and MRI data show that combinations of HPMC and PEO have advantageous extended release properties, in comparison with matrices containing a single polymer.


Asunto(s)
Preparaciones de Acción Retardada/química , Derivados de la Hipromelosa/química , Iones/química , Polietilenglicoles/química , Interacciones Hidrofóbicas e Hidrofílicas , Concentración Osmolar , Polímeros/química , Sensibilidad y Especificidad , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA