Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.803
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(13): 2911-2928.e20, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37269832

RESUMEN

Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.


Asunto(s)
Caenorhabditis elegans , Odorantes , Animales , Caenorhabditis elegans/fisiología , Olfato , Sueño/fisiología , Sinapsis/fisiología
2.
Cell ; 186(7): 1369-1381.e17, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001501

RESUMEN

Memories initially formed in hippocampus gradually stabilize to cortex over weeks-to-months for long-term storage. The mechanistic details of this brain re-organization remain poorly understood. We recorded bulk neural activity in circuits that link hippocampus and cortex as mice performed a memory-guided virtual-reality task over weeks. We identified a prominent and sustained neural correlate of memory in anterior thalamus, whose inhibition substantially disrupted memory consolidation. More strikingly, gain amplification enhanced consolidation of otherwise unconsolidated memories. To gain mechanistic insights, we developed a technology for simultaneous cellular-resolution imaging of hippocampus, thalamus, and cortex throughout consolidation. We found that whereas hippocampus equally encodes multiple memories, the anteromedial thalamus preferentially encodes salient memories, and gradually increases correlations with cortex to facilitate tuning and synchronization of cortical ensembles. We thus identify a thalamo-cortical circuit that gates memory consolidation and propose a mechanism suitable for the selection and stabilization of hippocampal memories into longer-term cortical storage.


Asunto(s)
Consolidación de la Memoria , Memoria a Largo Plazo , Ratones , Animales , Memoria a Largo Plazo/fisiología , Tálamo/fisiología , Hipocampo/fisiología , Consolidación de la Memoria/fisiología , Encéfalo
3.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944511

RESUMEN

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Secuencia de Bases , Cromosomas/genética , Saccharomyces cerevisiae/genética , Biología Sintética
4.
Cell ; 179(2): 514-526.e13, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585085

RESUMEN

Sleep has been implicated in both memory consolidation and forgetting of experiences. However, it is unclear what governs the balance between consolidation and forgetting. Here, we tested how activity-dependent processing during sleep might differentially regulate these two processes. We specifically examined how neural reactivations during non-rapid eye movement (NREM) sleep were causally linked to consolidation versus weakening of the neural correlates of neuroprosthetic skill. Strikingly, we found that slow oscillations (SOs) and delta (δ) waves have dissociable and competing roles in consolidation versus forgetting. By modulating cortical spiking linked to SOs or δ waves using closed-loop optogenetic methods, we could, respectively, weaken or strengthen consolidation and thereby bidirectionally modulate sleep-dependent performance gains. We further found that changes in the temporal coupling of spindles to SOs relative to δ waves could account for such effects. Thus, our results indicate that neural activity driven by SOs and δ waves have competing roles in sleep-dependent memory consolidation.


Asunto(s)
Encéfalo/fisiología , Ritmo Delta , Consolidación de la Memoria/fisiología , Sueño/fisiología , Animales , Masculino , Ratas , Ratas Long-Evans
5.
Annu Rev Neurosci ; 43: 297-314, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32097575

RESUMEN

An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.


Asunto(s)
Amnesia/fisiopatología , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Memoria a Largo Plazo/fisiología , Animales , Humanos , Mantenimiento , Memoria a Corto Plazo/fisiología
6.
Proc Natl Acad Sci U S A ; 121(10): e2313604121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408248

RESUMEN

Consolidating memories for long-term storage depends on reactivation. Reactivation occurs both consciously, during wakefulness, and unconsciously, during wakefulness and sleep. While considerable work has examined conscious awake and unconscious sleep reactivation, in this study, we directly compare the consequences of conscious and unconscious reactivation during wakefulness. Forty-one participants learned associations consisting of adjective-object-position triads. Objects were clustered into distinct semantic groups (e.g., fruits, vehicles) such that we could examine consequences of reactivation on semantically related memories. After an intensive learning protocol, we systematically reactivated some of the triads by presenting the adjective as a cue. Reactivation was done so that it was consciously experienced for some triads, and only unconsciously processed for others. Memory for spatial positions, the most distal part of the association, was affected by reactivation in a consciousness-dependent and memory-strength-dependent manner. Conscious reactivation resulted in weakening of semantically related memories that were strong initially, resonating with prior findings of retrieval-induced forgetting. Unconscious reactivation, on the other hand, selectively benefited weak reactivated memories, as previously shown for reactivation during sleep. Semantically linked memories were not impaired, but rather were integrated with the reactivated memory. These results taken together demonstrate that conscious and unconscious reactivation have qualitatively different consequences. Results support a consciousness-dependent inhibition account, whereby unconscious reactivation entails less inhibition than conscious reactivation, thus allowing more liberal spread of activation. Findings set the stage for additional exploration into the role of conscious experience in memory storage and structuring.


Asunto(s)
Aprendizaje , Consolidación de la Memoria , Humanos , Estado de Conciencia , Vigilia/fisiología , Sueño/fisiología , Inhibición Psicológica , Consolidación de la Memoria/fisiología
7.
Proc Natl Acad Sci U S A ; 121(9): e2314423121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377208

RESUMEN

Sleep supports the consolidation of episodic memory. It is, however, a matter of ongoing debate how this effect is established, because, so far, it has been demonstrated almost exclusively for simple associations, which lack the complex associative structure of real-life events, typically comprising multiple elements with different association strengths. Because of this associative structure interlinking the individual elements, a partial cue (e.g., a single element) can recover an entire multielement event. This process, referred to as pattern completion, is a fundamental property of episodic memory. Yet, it is currently unknown how sleep affects the associative structure within multielement events and subsequent processes of pattern completion. Here, we investigated the effects of post-encoding sleep, compared with a period of nocturnal wakefulness (followed by a recovery night), on multielement associative structures in healthy humans using a verbal associative learning task including strongly, weakly, and not directly encoded associations. We demonstrate that sleep selectively benefits memory for weakly associated elements as well as for associations that were not directly encoded but not for strongly associated elements within a multielement event structure. Crucially, these effects were accompanied by a beneficial effect of sleep on the ability to recall multiple elements of an event based on a single common cue. In addition, retrieval performance was predicted by sleep spindle activity during post-encoding sleep. Together, these results indicate that sleep plays a fundamental role in shaping associative structures, thereby supporting pattern completion in complex multielement events.


Asunto(s)
Consolidación de la Memoria , Memoria Episódica , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Sueño , Recuerdo Mental , Vigilia
8.
Annu Rev Neurosci ; 41: 233-253, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29986160

RESUMEN

Supervised learning plays a key role in the operation of many biological and artificial neural networks. Analysis of the computations underlying supervised learning is facilitated by the relatively simple and uniform architecture of the cerebellum, a brain area that supports numerous motor, sensory, and cognitive functions. We highlight recent discoveries indicating that the cerebellum implements supervised learning using the following organizational principles: ( a) extensive preprocessing of input representations (i.e., feature engineering), ( b) massively recurrent circuit architecture, ( c) linear input-output computations, ( d) sophisticated instructive signals that can be regulated and are predictive, ( e) adaptive mechanisms of plasticity with multiple timescales, and ( f) task-specific hardware specializations. The principles emerging from studies of the cerebellum have striking parallels with those in other brain areas and in artificial neural networks, as well as some notable differences, which can inform future research on supervised learning and inspire next-generation machine-based algorithms.


Asunto(s)
Cerebelo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Aprendizaje Automático Supervisado , Algoritmos , Animales , Cerebelo/citología , Humanos , Plasticidad Neuronal/fisiología , Factores de Tiempo
9.
Annu Rev Neurosci ; 41: 277-297, 2018 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-29986165

RESUMEN

A major mystery of many types of neurological and psychiatric disorders, such as Alzheimer's disease (AD), remains the underlying, disease-specific neuronal damage. Because of the strong interconnectivity of neurons in the brain, neuronal dysfunction necessarily disrupts neuronal circuits. In this article, we review evidence for the disruption of large-scale networks from imaging studies of humans and relate it to studies of cellular dysfunction in mouse models of AD. The emerging picture is that some forms of early network dysfunctions can be explained by excessively increased levels of neuronal activity. The notion of such neuronal hyperactivity receives strong support from in vivo and in vitro cellular imaging and electrophysiological recordings in the mouse, which provide mechanistic insights underlying the change in neuronal excitability. Overall, some key aspects of AD-related neuronal dysfunctions in humans and mice are strikingly similar and support the continuation of such a translational strategy.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Red Nerviosa/fisiopatología , Vías Nerviosas/fisiopatología , Animales , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Ratones , Red Nerviosa/patología , Vías Nerviosas/patología
10.
Proc Natl Acad Sci U S A ; 120(7): e2207909120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749719

RESUMEN

Reactivation of long-term memories enables experience-dependent strengthening, weakening, or updating of memory traces. Although coupling of hippocampal and cortical activity patterns facilitates initial memory consolidation, whether and how these patterns are involved in postreactivation memory processes are not known. Here, we monitored the hippocampal-cortical network as rats repetitively learned and retrieved spatial and nonspatial memories. We show that interactions between hippocampal sharp wave-ripples (SPW-R), cortical spindles (SPI), and cortical ripples (CXR) are jointly modulated in the absence of memory demand but independently recruited depending on the stage of memory and task type. Reconsolidation of memory after retrieval is associated with an increased and extended window of coupling between hippocampal SPW-Rs and CXRs compared to the initial consolidation. Hippocampal SPW-R and cortical spindle interactions are preferentially engaged during memory consolidation. These findings suggest that specific, time-limited patterns of oscillatory coupling can support the distinct memory processes required to flexibly manage long-term memories in a dynamic environment.


Asunto(s)
Hipocampo , Consolidación de la Memoria , Ratas , Animales , Hipocampo/fisiología , Memoria a Largo Plazo , Memoria , Aprendizaje , Consolidación de la Memoria/fisiología
11.
J Neurosci ; 44(18)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38527810

RESUMEN

Episodic memory retrieval is associated with the holistic neocortical reinstatement of all event information, an effect driven by hippocampal pattern completion. However, whether holistic reinstatement occurs, and whether hippocampal pattern completion continues to drive reinstatement, after a period of consolidation is unclear. Theories of systems consolidation predict either a time-variant or time-invariant role of the hippocampus in the holistic retrieval of episodic events. Here, we assessed whether episodic events continue to be reinstated holistically and whether hippocampal pattern completion continues to facilitate holistic reinstatement following a period of consolidation. Female and male human participants learned "events" that comprised multiple overlapping pairs of event elements (e.g., person-location, object-location, location-person). Importantly, encoding occurred either immediately before or 24 h before retrieval. Using fMRI during the retrieval of events, we show evidence for holistic reinstatement, as well as a correlation between reinstatement and hippocampal pattern completion, regardless of whether retrieval occurred immediately or 24 h after encoding. Thus, hippocampal pattern completion continues to contribute to holistic reinstatement after a delay. However, our results also revealed that some holistic reinstatement can occur without evidence for a corresponding signature of hippocampal pattern completion after a delay (but not immediately after encoding). We therefore show that hippocampal pattern completion, in addition to a nonhippocampal process, has a role in holistic reinstatement following a period of consolidation. Our results point to a consolidation process where the hippocampus and neocortex may work in an additive, rather than compensatory, manner to support episodic memory retrieval.


Asunto(s)
Hipocampo , Imagen por Resonancia Magnética , Memoria Episódica , Recuerdo Mental , Humanos , Masculino , Femenino , Hipocampo/fisiología , Hipocampo/diagnóstico por imagen , Adulto Joven , Recuerdo Mental/fisiología , Adulto , Factores de Tiempo , Adolescente , Consolidación de la Memoria/fisiología
12.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38604779

RESUMEN

Memory reactivation during sleep is thought to facilitate memory consolidation. Most sleep reactivation research has examined how reactivation of specific facts, objects, and associations benefits their overall retention. However, our memories are not unitary, and not all features of a memory persist in tandem over time. Instead, our memories are transformed, with some features strengthened and others weakened. Does sleep reactivation drive memory transformation? We leveraged the Targeted Memory Reactivation technique in an object category learning paradigm to examine this question. Participants (20 female, 14 male) learned three categories of novel objects, where each object had unique, distinguishing features as well as features shared with other members of its category. We used a real-time EEG protocol to cue the reactivation of these objects during sleep at moments optimized to generate reactivation events. We found that reactivation improved memory for distinguishing features while worsening memory for shared features, suggesting a differentiation process. The results indicate that sleep reactivation does not act holistically on object memories, instead supporting a transformation where some features are enhanced over others.


Asunto(s)
Electroencefalografía , Consolidación de la Memoria , Sueño , Humanos , Femenino , Masculino , Sueño/fisiología , Adulto Joven , Adulto , Consolidación de la Memoria/fisiología , Electroencefalografía/métodos , Memoria/fisiología , Adolescente
13.
J Neurosci ; 44(9)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38286626

RESUMEN

It is widely accepted that fear memories are consolidated through protein synthesis-dependent changes in the basolateral amygdala complex (BLA). However, recent studies show that protein synthesis is not required to consolidate the memory of a new dangerous experience when it is similar to a prior experience. Here, we examined whether the protein synthesis requirement for consolidating the new experience varies with its spatial and temporal distance from the prior experience. Female and male rats were conditioned to fear a stimulus (S1, e.g., light) paired with shock in stage 1 and a second stimulus (S2, e.g., tone) that preceded additional S1-shock pairings (S2-S1-shock) in stage 2. The latter stage was followed by a BLA infusion of a protein synthesis inhibitor, cycloheximide, or vehicle. Subsequent testing with S2 revealed that protein synthesis in the BLA was not required to consolidate fear to S2 when the training stages occurred 48 h apart in the same context; was required when they were separated by 14 d or occurred in different contexts; but was again not required if S1 was re-presented after the delay or in the different context. Similarly, protein synthesis in the BLA was not required to reconsolidate fear to S2 when the training stages occurred 48 h apart but was required when they occurred 14 d apart. Thus, the protein synthesis requirement for consolidating/reconsolidating fear memories in the BLA is determined by similarity between present and past experiences, the time and place in which they occur, and reminders of the past experiences.


Asunto(s)
Complejo Nuclear Basolateral , Consolidación de la Memoria , Ratas , Masculino , Femenino , Animales , Complejo Nuclear Basolateral/fisiología , Consolidación de la Memoria/fisiología , Inhibidores de la Síntesis de la Proteína/farmacología , Cicloheximida/farmacología , Miedo/fisiología
14.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37963767

RESUMEN

Activity in the basolateral amygdala complex (BLA) is needed to encode fears acquired through contact with both innate sources of danger (i.e., things that are painful) and learned sources of danger (e.g., being threatened with a gun). However, within the BLA, the molecular processes required to consolidate the two types of fear are not the same: protein synthesis is needed to consolidate the first type of fear (so-called first-order fear) but not the latter (so-called second-order fear). The present study examined why first- and second-order fears differ in this respect. Specifically, it used a range of conditioning protocols in male and female rats, and assessed the effects of a BLA infusion of the protein synthesis inhibitor, cycloheximide, on first- and second-order conditioned fear. The results revealed that the differential protein synthesis requirements for consolidation of first- and second-order fears reflect differences in what is learned in each case. Protein synthesis in the BLA is needed to consolidate fears that result from encoding of relations between stimuli in the environment (stimulus-stimulus associations, typical for first-order fear) but is not needed to consolidate fears that form when environmental stimuli associate directly with fear responses emitted by the animal (stimulus-response associations, typical for second-order fear). Thus, the substrates of Pavlovian fear conditioning in the BLA depend on the way that the environment impinges upon the animal. This is discussed with respect to theories of amygdala function in Pavlovian fear conditioning, and ways in which stimulus-response associations might be consolidated in the brain.


Asunto(s)
Complejo Nuclear Basolateral , Aprendizaje , Femenino , Ratas , Masculino , Animales , Amígdala del Cerebelo/fisiología , Complejo Nuclear Basolateral/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología
15.
Brain ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650060

RESUMEN

In severe epileptic encephalopathies, epileptic activity contributes to progressive cognitive dysfunction. Epileptic encephalopathies share the trait of spike-wave activation during non-rapid eye movement sleep (EE-SWAS), a sleep stage dominated by sleep spindles, brain oscillations known to coordinate offline memory consolidation. Epileptic activity has been proposed to hijack the circuits driving these thalamocortical oscillations, thereby contributing to cognitive impairment. Using a unique dataset of simultaneous human thalamic and cortical recordings in subjects with and without EE-SWAS, we provide evidence for epileptic spike interference of thalamic sleep spindle production in patients with EE-SWAS. First, we show that epileptic spikes and sleep spindles are both predicted by slow oscillations during stage two sleep (N2), but at different phases of the slow oscillation. Next, we demonstrate that sleep activated cortical epileptic spikes propagate to the thalamus (thalamic spike rate increases after a cortical spike, p≈0). We then show that epileptic spikes in the thalamus increase the thalamic spindle refractory period (p≈0). Finally, we show that in three patients with EE-SWAS, there is a downregulation of sleep spindles for 30 seconds after each thalamic spike (p<0.01). These direct human thalamocortical observations support a proposed mechanism for epileptiform activity to impact cognitive function, wherein epileptic spikes inhibit thalamic sleep spindles in epileptic encephalopathy with spike and wave activation during sleep.

16.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743818

RESUMEN

Despite advances in understanding the cellular and molecular processes underlying memory and cognition, and recent successful modulation of cognitive performance in brain disorders, the neurophysiological mechanisms remain underexplored. High frequency oscillations beyond the classic electroencephalogram spectrum have emerged as a potential neural correlate of fundamental cognitive processes. High frequency oscillations are detected in the human mesial temporal lobe and neocortical intracranial recordings spanning gamma/epsilon (60-150 Hz), ripple (80-250 Hz) and higher frequency ranges. Separate from other non-oscillatory activities, these brief electrophysiological oscillations of distinct duration, frequency and amplitude are thought to be generated by coordinated spiking of neuronal ensembles within volumes as small as a single cortical column. Although the exact origins, mechanisms, and physiological roles in health and disease remain elusive, they have been associated with human memory consolidation and cognitive processing. Recent studies suggest their involvement in encoding and recall of episodic memory with a possible role in the formation and reactivation of memory traces. High frequency oscillations are detected during encoding, throughout maintenance, and right before recall of remembered items, meeting a basic definition for an engram activity. The temporal coordination of high frequency oscillations reactivated across cortical and subcortical neural networks is ideally suited for integrating multimodal memory representations, which can be replayed and consolidated during states of wakefulness and sleep. High frequency oscillations have been shown to reflect coordinated bursts of neuronal assembly firing and offer a promising substrate for tracking and modulation of the hypothetical electrophysiological engram.

17.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38937077

RESUMEN

Even partly consolidated memories can be forgotten given sufficient time, but the brain activity associated with durability of episodic memory at different time scales remains unclear. Here, we aimed to identify brain activity associated with retrieval of partly consolidated episodic memories that continued to be remembered in the future. Forty-nine younger (20 to 38 years; 25 females) and 43 older adults (60 to 80 years, 25 females) were scanned with functional magnetic resonance imaging during associative memory retrieval 12 h post-encoding. Twelve hours is sufficient to allow short-term synaptic consolidation as well as early post-encoding replay to initiate memory consolidation. Successful memory trials were classified into durable and transient source memories based on responses from a memory test ~6 d post-encoding. Results demonstrated that successful retrieval of future durable vs. transient memories was supported by increased activity in a medial prefrontal and ventral parietal area. Individual differences in activation as well as the subjective vividness of memories during encoding were positively related to individual differences in memory performance after 6 d. The results point to a unique and novel aspect of brain activity supporting long-term memory, in that activity during retrieval of memories even after 12 h of consolidation contains information about potential for long-term durability.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Consolidación de la Memoria , Memoria Episódica , Recuerdo Mental , Humanos , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Recuerdo Mental/fisiología , Anciano , Consolidación de la Memoria/fisiología , Anciano de 80 o más Años , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Factores de Tiempo
18.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38185987

RESUMEN

Motor learning involves acquiring new movement sequences and adapting motor commands to novel conditions. Labile motor memories, acquired through sequence learning and dynamic adaptation, undergo a consolidation process during wakefulness after initial training. This process stabilizes the new memories, leading to long-term memory formation. However, it remains unclear if the consolidation processes underlying sequence learning and dynamic adaptation are independent and if distinct neural regions underpin memory consolidation associated with sequence learning and dynamic adaptation. Here, we first demonstrated that the initially labile memories formed during sequence learning and dynamic adaptation were stabilized against interference through time-dependent consolidation processes occurring during wakefulness. Furthermore, we found that sequence learning memory was not disrupted when immediately followed by dynamic adaptation and vice versa, indicating distinct mechanisms for sequence learning and dynamic adaptation consolidation. Finally, by applying patterned transcranial magnetic stimulation to selectively disrupt the activity in the primary motor (M1) or sensory (S1) cortices immediately after sequence learning or dynamic adaptation, we found that sequence learning consolidation depended on M1 but not S1, while dynamic adaptation consolidation relied on S1 but not M1. For the first time in a single experimental framework, this study revealed distinct neural underpinnings for sequence learning and dynamic adaptation consolidation during wakefulness, with significant implications for motor skill enhancement and rehabilitation.


Asunto(s)
Consolidación de la Memoria , Corteza Motora , Consolidación de la Memoria/fisiología , Vigilia , Aprendizaje/fisiología , Memoria a Largo Plazo , Destreza Motora/fisiología , Corteza Motora/fisiología
19.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38300213

RESUMEN

Humans continuously alternate between online attention to the current environment and offline attention to internally generated thought and imagery. This may be a fundamental feature of the waking brain, but remains poorly understood. Here, we took a data-driven approach to defining online and offline states of wakefulness, using machine learning methods applied to measures of sensory responsiveness, subjective report, electroencephalogram (EEG), and pupil diameter. We tested the effect of cognitive load on the structure and prevalence of online and offline states, hypothesizing that time spent offline would increase as cognitive load of an ongoing task decreased. We also expected that alternation between online and offline states would persist even in the absence of a cognitive task. As in prior studies, we arrived at a three-state model comprised of one online state and two offline states. As predicted, when cognitive load was high, more time was spent online. Also as predicted, the same three states were present even when participants were not performing a task. These observations confirm our method is successful at isolating seconds-long periods of offline time. Varying cognitive load may be a useful way to manipulate time spent in at least one of these offline states in future experimental studies.


Asunto(s)
Encéfalo , Vigilia , Humanos , Pensamiento , Electroencefalografía , Cognición
20.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38745557

RESUMEN

Sleep supports memory consolidation via the reactivation of newly formed memory traces. One way to investigate memory reactivation in sleep is by exposing the sleeping brain to auditory retrieval cues; a paradigm known as targeted memory reactivation. To what extent the acoustic properties of memory cues influence the effectiveness of targeted memory reactivation, however, has received limited attention. We addressed this question by exploring how verbal and non-verbal memory cues affect oscillatory activity linked to memory reactivation in sleep. Fifty-one healthy male adults learned to associate visual stimuli with spoken words (verbal cues) and environmental sounds (non-verbal cues). Subsets of the verbal and non-verbal memory cues were then replayed during sleep. The voice of the verbal cues was either matched or mismatched to learning. Memory cues (relative to unheard control cues) prompted an increase in theta/alpha and spindle power, which have been heavily implicated in sleep-associated memory processing. Moreover, verbal memory cues were associated with a stronger increase in spindle power than non-verbal memory cues. There were no significant differences between the matched and mismatched verbal cues. Our findings suggest that verbal memory cues may be most effective for triggering memory reactivation in sleep, as indicated by an amplified spindle response.


Asunto(s)
Señales (Psicología) , Electroencefalografía , Recuerdo Mental , Sueño , Humanos , Masculino , Adulto Joven , Sueño/fisiología , Adulto , Recuerdo Mental/fisiología , Consolidación de la Memoria/fisiología , Estimulación Acústica , Encéfalo/fisiología , Estimulación Luminosa/métodos , Ondas Encefálicas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA