Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199496

RESUMEN

Nucleus pulposus (NP) cells are exposed to changes in hydrostatic pressure (HP) and osmotic pressure within the intervertebral disc. We focused on main disc matrix components, chondroitin sulfate proteoglycan (CSPG) and hyaluronan (HA) to elucidate the capability of augmented CSPG to enhance the anabolism of bovine NP (bNP) cells under repetitive changes in HP at high osmolality. Aggrecan expression with CSPG in the absence of HP was significantly upregulated compared to the no-material control (phosphate buffer saline) under no HP at 3 days, and aggrecan expression with CSPG under HP was significantly higher than the control with HA under HP at 12 days. Collagen type I expression under no HP was significantly lower with CSPG than in controls at 3 days. Although matrix metalloproteinase 13 expression under HP was downregulated compared to no HP, it was significantly greater with HA than the control and CSPG, even under HP. Immunohistology revealed the involvement of mechanoreceptor of transient receptor potential vanilloid-4 activation under HP, suggesting an HP transduction mechanism. Addition of CSPG had anabolic and anti-fibrotic effects on bNP cells during the early culture period under no HP; furthermore, it showed synergy with dynamic HP to increase bNP-cell anabolism at later time points.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/farmacología , Presión Hidrostática , Degeneración del Disco Intervertebral/terapia , Disco Intervertebral/efectos de los fármacos , Anabolizantes/farmacología , Animales , Bovinos , Células Cultivadas , Matriz Extracelular/efectos de los fármacos , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/patología
2.
JOR Spine ; 3(3): e1105, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33015578

RESUMEN

Intervertebral discs (IVDs) are exposed to changes in physicochemical stresses including hydrostatic and osmotic pressure via diurnal spinal motion. Homeostasis, degeneration, and regeneration in IVDs have been studied using in vitro, ex vivo, and animal models. However, incubation of nucleus pulposus (NP) cells in medium has limited capability to reproduce anabolic turnover and regeneration under physicochemical stresses. We developed a novel pressure/perfusion cell culture system and a semipermeable membrane pouch device for enclosing isolated NP cells for in vitro incubation under physicochemical stresses. We assessed the performance of this system to identify an appropriate stress loading regimen to promote gene expression and consistent accumulation of extracellular matrices by bovine caudal NP cells. Cyclic hydrostatic pressure (HP) for 4 days followed by constant HP for 3 days in high osmolality (HO; 450 mOsm/kg H2O) showed a trend towards upregulated aggrecan expression and dense accumulation of keratan sulfate without gaps by the NP cells. Furthermore, a repetitive regimen of cyclic HP for 2 days followed by constant HP for 1 day in HO (repeated twice) significantly upregulated gene expression of aggrecan (P < .05) compared to no pressure and suppressed matrix metalloproteinase-13 expression (P < .05) at 6 days. Our culture system and pouches will be useful to reproduce physicochemical stresses in NP cells for simulating anabolic, catabolic, and homeostatic turnover under diurnal spinal motion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA