Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 41: 127-151, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36630598

RESUMEN

The presence of granulated lymphocytes in the human uterine mucosa, known as decidua during pregnancy, or endometrium otherwise, was first noted in the nineteenth century, but it was not until 1990 that these cells were identified as a type of natural killer (NK) cell. From the outset, uterine NK (uNK) cells were found to be less cytotoxic than their circulating counterparts, peripheral NK (pNK) cells. Recently, unbiased approaches have defined three subpopulations of uNK cells, all of which cluster separately from pNK cells. Here, we review the history of research into uNK cells, including their ability to interact with placental extravillous trophoblast cells and their potential role in regulating placental implantation. We go on to review more recent advances that focus on uNK cell development and heterogeneity and their potential to defend against infection and to mediate memory effects. Finally, we consider how a better understanding of these cells could be leveraged in the future to improve outcomes of pregnancy for mothers and babies.


Asunto(s)
Placenta , Útero , Humanos , Embarazo , Femenino , Animales , Células Asesinas Naturales/metabolismo , Membrana Mucosa , Decidua
2.
Physiol Rev ; 103(3): 1965-2038, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796099

RESUMEN

Pregnancy is established during the periconceptional period as a continuum beginning with blastocyst attachment to the endometrial epithelial surface followed by embryo invasion and placenta formation. This period sets the foundation for the child and mother's health during pregnancy. Emerging evidence indicates that prevention of downstream pathologies in both the embryo/newborn and pregnant mother may be possible at this stage. In this review, we discuss current advances in the periconceptional space, including the preimplantation human embryo and maternal endometrium. We also discuss the role of the maternal decidua, the periconceptional maternal-embryonic interface, the dialogue between these elements, and the importance of the endometrial microbiome in the implantation process and pregnancy. Finally, we discuss the myometrium in the periconceptional space and review its role in determining pregnancy health.


Asunto(s)
Implantación del Embrión , Endometrio , Embarazo , Femenino , Niño , Recién Nacido , Humanos , Blastocisto , Placenta
3.
Immunity ; 48(5): 951-962.e5, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29768178

RESUMEN

Natural killer cells (NKs) are abundant in the human decidua, regulating trophoblast invasion and angiogenesis. Several diseases of poor placental development are associated with first pregnancies, so we thus looked to characterize differences in decidual NKs (dNKs) in first versus repeated pregnancies. We discovered a population found in repeated pregnancies, which has a unique transcriptome and epigenetic signature, and is characterized by high expression of the receptors NKG2C and LILRB1. We named these cells Pregnancy Trained decidual NK cells (PTdNKs). PTdNKs have open chromatin around the enhancers of IFNG and VEGFA. Activation of PTdNKs led to increased production and secretion of IFN-γ and VEGFα, with the latter supporting vascular sprouting and tumor growth. The precursors of PTdNKs seem to be found in the endometrium. Because repeated pregnancies are associated with improved placentation, we propose that PTdNKs, which are present primarily in repeated pregnancies, might be involved in proper placentation.


Asunto(s)
Memoria Inmunológica/inmunología , Células Asesinas Naturales/inmunología , Transcriptoma/inmunología , Útero/inmunología , Animales , Línea Celular Tumoral , Decidua/inmunología , Decidua/metabolismo , Femenino , Humanos , Interferón gamma/inmunología , Interferón gamma/metabolismo , Células Asesinas Naturales/metabolismo , Ratones Endogámicos C57BL , Ratones SCID , Ratones Transgénicos , Embarazo , Útero/citología , Factor A de Crecimiento Endotelial Vascular/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Cell Mol Life Sci ; 81(1): 329, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090270

RESUMEN

Decidualisation of the endometrium is a key event in early pregnancy, which enables embryo implantation. Importantly, the molecular processes impairing decidualisation in obese mothers are yet to be characterised. We hypothesise that impaired decidualisation in obese mice is mediated by the upregulation of leptin modulators, the suppressor of cytokine signalling 3 (SOCS3) and the protein tyrosine phosphatase non-receptor type 2 (PTPN2), together with the disruption of progesterone (P4)-signal transducer and activator of transcription (STAT3) signalling. After feeding mice with chow diet (CD) or high-fat diet (HFD) for 16 weeks, we confirmed the downregulation of P4 and oestradiol (E2) steroid receptors in decidua from embryonic day (E) 6.5 and decreased proliferation of stromal cells from HFD. In vitro decidualised mouse endometrial stromal cells (MESCs) and E6.5 deciduas from the HFD showed decreased expression of decidualisation markers, followed by the upregulation of SOCS3 and PTPN2 and decreased phosphorylation of STAT3. In vivo and in vitro leptin treatment of mice and MESCs mimicked the results observed in the obese model. The downregulation of Socs3 and Ptpn2 after siRNA transfection of MESCs from HFD mice restored the expression level of decidualisation markers. Finally, DIO mice placentas from E18.5 showed decreased labyrinth development and vascularisation and fetal growth restricted embryos. The present study revealed major defects in decidualisation in obese mice, characterised by altered uterine response to E2 and P4 steroid signalling. Importantly, altered hormonal response was associated with increased expression of leptin signalling modulators SOCS3 and PTPN2. Elevated levels of SOCS3 and PTPN2 were shown to molecularly affect decidualisation in obese mice, potentially disrupting the STAT3-PR regulatory molecular hub.


Asunto(s)
Decidua , Retardo del Crecimiento Fetal , Leptina , Placenta , Transducción de Señal , Animales , Femenino , Ratones , Embarazo , Decidua/metabolismo , Decidua/patología , Dieta Alta en Grasa/efectos adversos , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Leptina/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Obesidad/patología , Placenta/metabolismo , Progesterona/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , Factor de Transcripción STAT3/metabolismo , Células del Estroma/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética
5.
J Lipid Res ; 65(10): 100636, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218218

RESUMEN

To investigate the yet-unknown roles of prostaglandins (PGs) in the uterus, we analyzed the expression of various PG receptors in the uterus. We found that three types of Gs-coupled PG receptors, DP, EP2, and EP4, were expressed in luminal epithelial cells from the peri-implantation period to late pregnancy. DP expression was also induced in stromal cells within the mesometrial region, whereas EP4 was expressed in stromal cells within the anti-mesometrial region during the peri-implantation period. The timing of DP induction after embryo attachment correlated well with that of cyclooxygenase-2 (COX-2); however, COX-2-expressing stromal cells were located in the vicinity of the embryo, whereas DP-expressing stromal cells surrounded these cells on the mesometrial side. Specific [3H]PGD2-binding activity was detected in the decidua of uteri, with PGD2 synthesis comparable to that of PGE2 detected in the uteri during the peri-implantation period. Administration of the COX-2-specific inhibitor celecoxib caused adverse effects on decidualization, as demonstrated by the attenuated weight of the implantation sites, which was recovered by the simultaneous administration of a DP agonist. Such a rescuing effect of the DP agonist was mimicked by an EP4 agonist, but not an EP2 agonist. While the importance of DP signaling was shown pharmacologically, DP/EP2 double deficiency did not affect implantation and decidualization, suggesting the contribution of EP4 to these processes. Indeed, administration of an EP4 antagonist substantially affected decidualization in DP/EP2-deficient mice. These results suggest that COX-2-derived PGD2 and PGE2 contribute to decidualization via a coordinated pathway of DP and EP4 receptors.

6.
Curr Issues Mol Biol ; 46(6): 5161-5177, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38920982

RESUMEN

The expression and function of podoplanin (PDPN) in the normal human placenta has been debated in placental evaluation. This study emphasizes the importance of a multimodal approach of PDPN expression in normal human placentas. A complete examination is performed using immunohistochemistry, RNAscope and automated Digital Image examination (DIA) interpretation. QuPath DIA-based analysis automatically generated the stromal and histological scores of PDPN expression for immunohistochemistry and RNAscope stains. The umbilical cord's isolated fibroblasts and luminal structures expressed PDPN protein and PDPN_mRNA. RNAscope detected PDPN_mRNA upregulation in syncytial placental knots trophoblastic cells, but immunohistochemistry did not certify this at the protein level. The study found a significant correlation between the IHC and RNAscope H-Score (p = 0.033) and Allred Score (p = 0.05). A successful multimodal strategy for PDPN assessment in human placentas confirmed PDPN expression heterogeneity in the full-term human normal placenta and umbilical cord at the protein and mRNA level. In placental syncytial knots trophoblastic cells, PDPN showed mRNA overexpression, suggesting a potential role in placenta maturation.

7.
Am J Obstet Gynecol ; 230(4): 443.e1-443.e18, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38296740

RESUMEN

BACKGROUND: Placenta accreta spectrum disorders are associated with severe maternal morbidity and mortality. Placenta accreta spectrum disorders involve excessive adherence of the placenta preventing separation at birth. Traditionally, this condition has been attributed to excessive trophoblast invasion; however, an alternative view is a fundamental defect in decidual biology. OBJECTIVE: This study aimed to gain insights into the understanding of placenta accreta spectrum disorder by using single-cell and spatially resolved transcriptomics to characterize cellular heterogeneity at the maternal-fetal interface in placenta accreta spectrum disorders. STUDY DESIGN: To assess cellular heterogeneity and the function of cell types, single-cell RNA sequencing and spatially resolved transcriptomics were used. A total of 12 placentas were included, 6 placentas with placenta accreta spectrum disorder and 6 controls. For each placenta with placenta accreta spectrum disorder, multiple biopsies were taken at the following sites: placenta accreta spectrum adherent and nonadherent sites in the same placenta. Of note, 2 platforms were used to generate libraries: the 10× Chromium and NanoString GeoMX Digital Spatial Profiler for single-cell and spatially resolved transcriptomes, respectively. Differential gene expression analysis was performed using a suite of bioinformatic tools (Seurat and GeoMxTools R packages). Correction for multiple testing was performed using Clipper. In situ hybridization was performed with RNAscope, and immunohistochemistry was used to assess protein expression. RESULTS: In creating a placenta accreta cell atlas, there were dramatic difference in the transcriptional profile by site of biopsy between placenta accreta spectrum and controls. Most of the differences were noted at the site of adherence; however, differences existed within the placenta between the adherent and nonadherent site of the same placenta in placenta accreta. Among all cell types, the endothelial-stromal populations exhibited the greatest difference in gene expression, driven by changes in collagen genes, namely collagen type III alpha 1 chain (COL3A1), growth factors, epidermal growth factor-like protein 6 (EGFL6), and hepatocyte growth factor (HGF), and angiogenesis-related genes, namely delta-like noncanonical Notch ligand 1 (DLK1) and platelet endothelial cell adhesion molecule-1 (PECAM1). Intraplacental tropism (adherent versus non-adherent sites in the same placenta) was driven by differences in endothelial-stromal cells with notable differences in bone morphogenic protein 5 (BMP5) and osteopontin (SPP1) in the adherent vs nonadherent site of placenta accreta spectrum. CONCLUSION: Placenta accreta spectrum disorders were characterized at single-cell resolution to gain insight into the pathophysiology of the disease. An atlas of the placenta at single cell resolution in accreta allows for understanding in the biology of the intimate maternal and fetal interaction. The contributions of stromal and endothelial cells were demonstrated through alterations in the extracellular matrix, growth factors, and angiogenesis. Transcriptional and protein changes in the stroma of placenta accreta spectrum shift the etiologic explanation away from "invasive trophoblast" to "loss of boundary limits" in the decidua. Gene targets identified in this study may be used to refine diagnostic assays in early pregnancy, track disease progression over time, and inform therapeutic discoveries.


Asunto(s)
Desprendimiento Prematuro de la Placenta , Placenta Accreta , Enfermedades Placentarias , Embarazo , Femenino , Recién Nacido , Humanos , Placenta Accreta/terapia , Células Endoteliales , Placenta/patología , Enfermedades Placentarias/patología , Péptidos y Proteínas de Señalización Intercelular , Decidua/patología , Endotelio/patología
8.
Pediatr Dev Pathol ; 27(2): 132-138, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38098247

RESUMEN

Bacteria derived from the maternal circulation have been suggested to seed the human placenta during pregnancy leading to development of an intrinsic placental microbiome; however, other data indicates these bacteria are artifactual contaminants. Limited research on the localization of bacteria in human placental tissue is available, which may help differentiate resident placental bacteria from contaminants. This study spatially localizes bacteria in situ in normal late first to early second trimester human placenta by 16S rRNA chromogenic in situ hybridization and demonstrates patterns consistent with both contaminants and intraparenchymal signals. These results suggest that placental microbiome studies may benefit from spatial strategies that can exclude surface contamination.


Asunto(s)
Bacterias , Placenta , Embarazo , Femenino , Humanos , Placenta/microbiología , ARN Ribosómico 16S/genética , Primer Trimestre del Embarazo , Decidua
9.
J Obstet Gynaecol Res ; 50(6): 929-940, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544343

RESUMEN

AIM: The refinement of assisted reproductive technology, including the development of cryopreservation techniques (vitrification) and ovarian stimulation protocols, makes frozen embryo transfer (FET) an alternative to fresh ET and has contributed to the success of assisted reproductive technology. Compared with fresh ET cycles, FET cycles were associated with better in vitro fertilization outcomes; however, the occurrence of pregnancy-induced hypertension, preeclampsia, and placenta accreta spectrum (PAS) was higher in FET cycles. PAS has been increasing steadily in incidence as a life-threatening condition along with cesarean rates worldwide. In this review, we summarize the current understanding of the pathogenesis of PAS and discuss future research directions. METHODS: A literature search was performed in the PubMed and Google Scholar databases. RESULTS: Risk factors associated with PAS incidence include a primary defect of the decidua basalis or scar dehiscence, aberrant vascular remodeling, and abnormally invasive trophoblasts, or a combination thereof. Freezing, thawing, and hormone replacement manipulations have been shown to affect multiple cellular pathways, including cell proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and mitochondrial function. Molecules involved in abnormal migration and EMT of extravillous trophoblast cells are beginning to be identified in PAS placentas. Many of these molecules were also found to be involved in mitochondrial biogenesis and dynamics. CONCLUSION: The etiology of PAS may be a multifactorial genesis with intrinsic predisposition (e.g., placental abnormalities) and certain environmental factors (e.g., defective decidua) as triggers for its development. A distinctive feature of this review is its focus on the potential factors linking mitochondrial function to PAS development.


Asunto(s)
Mitocondrias , Placenta Accreta , Humanos , Placenta Accreta/etiología , Femenino , Embarazo , Mitocondrias/metabolismo
10.
Curr Issues Mol Biol ; 45(11): 8767-8779, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37998728

RESUMEN

N6-methyladenosine (m6A) modification is a prevalent modification of messenger ribonucleic acid (mRNA) in eukaryote cells and is closely associated with recurrent pregnancy loss (RPL). Circular RNAs (circRNAs) play critical roles in embryo implantation, trophoblast invasion and immune balance, which are important events during pregnancy. However, how m6A modification is regulated by circRNAs and the potential regulatory mechanism of circRNAs on RPL occurrence remain largely unclassified. We displayed the expression profiles of circRNAs and mRNAs in the decidua of normal pregnancies and RPL patients based on circRNA sequencing and the Gene Expression Omnibus database. A total of 936 differentially expressed circRNAs were identified, including 509 upregulated and 427 downregulated circRNAs. Differentially expressed circRNAs were enriched in immune, metabolism, signaling and other related pathways via the analysis of Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The competitive endogenous RNA (ceRNA) network was predicted to supply the possible role of circRNAs in RPL occurrence, and we further analyzed the profiles of nine m6A regulators (seven readers, one writer and one eraser) managed by circRNAs in this network. We also showed the expression profiles of circRNAs in the serum, trying to seek a potential biomarker to help in the diagnosis of RPL. These data imply that circRNAs are involved in pathogenesis of RPL by changing immune activities, metabolism and m6A modification in the ceRNA network. Our study might provide assistance in exploring the pathogenesis and diagnosis of RPL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA