Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069387

RESUMEN

Serotonin (5-HT), an indoleamine compound, has been known to mediate many physiological responses of plants under environmental stress. The deep-seeding (≥20 cm) of maize seeds is an important cultivation strategy to ensure seedling emergence and survival under drought stress. However, the role of 5-HT in maize deep-seeding tolerance remains unexplored. Understanding the mechanisms and evaluating the optimal concentration of 5-HT in alleviating deep-seeding stress could benefit maize production. In this study, two maize inbred lines were treated with or without 5-HT at both sowing depths of 20 cm and 3 cm, respectively. The effects of different concentrations of 5-HT on the growth phenotypes, physiological metabolism, and gene expression of two maize inbred lines were examined at the sowing depths of 20 cm and 3 cm. Compared to the normal seedling depth of 3 cm, the elongation of the mesocotyl (average elongation 3.70 cm) and coleoptile (average elongation 0.58 cm), secretion of indole-3-acetic acid (IAA; average increased 3.73 and 0.63 ng g-1 FW), and hydrogen peroxide (H2O2; average increased 1.95 and 0.63 µM g-1 FW) in the mesocotyl and coleoptile were increased under 20 cm stress, with a concomitant decrease in lignin synthesis (average decreased 0.48 and 0.53 A280 g-1). Under 20 cm deep-seeding stress, the addition of 5-HT activated the expression of multiple genes of IAA biosynthesis and signal transduction, including Zm00001d049601, Zm00001d039346, Zm00001d026530, and Zm00001d049659, and it also stimulated IAA production in both the mesocotyl and coleoptile of maize seedlings. On the contrary, 5-HT suppressed the expression of genes for lignin biosynthesis (Zm00001d016471, Zm00001d005998, Zm00001d032152, and Zm00001d053554) and retarded the accumulation of H2O2 and lignin, resulting in the elongation of the mesocotyl and coleoptile of maize seedlings. A comprehensive evaluation analysis showed that the optimum concentration of 5-HT in relieving deep-seeding stress was 2.5 mg/L for both inbred lines, and 5-HT therefore could improve the seedling emergence rate and alleviate deep-seeding stress in maize seedlings. These findings could provide a novel strategy for improving maize deep-seeding tolerance, thus enhancing yield potential under drought and water stress.


Asunto(s)
Cotiledón , Plantones , Plantones/metabolismo , Cotiledón/metabolismo , Zea mays/metabolismo , Serotonina/metabolismo , Lignina/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo
2.
Plants (Basel) ; 11(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35448762

RESUMEN

Lignin is an important factor affecting agricultural traits. The mechanism of lignin metabolism in maize (Zea mays) mesocotyl elongation was investigated during seed germination. Maize seeds were treated with 24-epibrassinolide (EBR) and brassinazole stimulation under 3 and 20 cm deep-seeding stress. Mesocotyl transcriptome sequencing together with targeted metabolomics analysis and physiological measurements were employed in two contrasting genotypes. Our results revealed differentially expressed genes (DEGs) were significantly enriched in phenylpropanoid biosynthesis, plant hormone signal transduction, flavonoid biosynthesis, and alpha-linolenic acid metabolism. There were 153 DEGs for lignin biosynthesis pathway, 70 DEGs for peroxisome pathway, and 325 differentially expressed transcription factors (TFs) of MYB, NAC, WRKY, and LIM were identified in all comparisons, and highly interconnected network maps were generated among multiple TFs (MYB and WRKY) and DEGs for lignin biosynthesis and peroxisome biogenesis. This caused p-coumaraldehyde, p-coumaryl alcohol, and sinapaldehyde down-accumulation, however, caffeyl aldehyde and caffeyl alcohol up-accumulation. The sum/ratios of H-, S-, and G-lignin monomers was also altered, which decreased total lignin formation and accumulation, resulting in cell wall rigidity decreasing. As a result, a significant elongation of maize mesocotyl was detected under deep-seeding stress and EBR signaling. These findings provide information on the molecular mechanisms controlling maize seedling emergence under deep-seeding stress and will aid in the breeding of deep-seeding maize cultivars.

3.
Plant Signal Behav ; 16(11): 1963583, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34425064

RESUMEN

Coleoptile/mesocotyl elongation influence seedling emergence and establishment, is major causes of maize deep-seeding tolerance (DST). Detailed analyses on molecular basis underlying their elongation mediated by brassinosteroid under deep-seeding stress (DSS) could provide meaningful information for key factors controlling their elongation. Here we monitored transcriptome and phytohormones changes specifically in elongating coleoptile/mesocotyl in response to DSS and 24-epibrassinolide (EBR)-signaling. Phenotypically, contrasting maize evolved variant organs to positively respond to DST, longer coleoptile/mesocoty of K12/W64A was a desirable organ for seedling under DSS. Applied-EBR improved maize DST, and their coleoptiles/mesocotyls were further elongated. 15,607/20,491 differentially expressed genes (DEGs) were identified in W64A/K12 coleoptile, KEGG analysis showed plant hormone signal transduction, starch and sucrose metabolism, valine, leucine, and isoleucine degradation were critical processes of coleoptile elongation under DSS and EBR signaling, further highly interconnected network maps including 79/142 DEGs for phytohormones were generated. Consistent with these DEGs expression, interactions, and transport, IAA, GA3, ABA, and Cis-ZT were significantly reduced while EBR, Trans-ZT, JA, and SA were clearly increased in coleoptile under DSS and EBR-signaling. These results enrich our knowledge about the genes and phytohormones regulating coleoptile elongation in maize, and help improve future studies on corresponding genes and develop varieties with DST.


Asunto(s)
Brasinoesteroides/metabolismo , Cotiledón/crecimiento & desarrollo , Germinación/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Zea mays/genética , Zea mays/metabolismo , Adaptación Fisiológica/genética , Cotiledón/genética , Cotiledón/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genotipo , Germinación/genética , Variantes Farmacogenómicas , Reguladores del Crecimiento de las Plantas/genética , Transducción de Señal/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA