Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.151
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(14): 3794-3811.e19, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166614

RESUMEN

The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.


Asunto(s)
Retrovirus Endógenos/fisiología , Homeostasis , Inflamación/microbiología , Inflamación/patología , Microbiota , Animales , Bacterias/metabolismo , Cromosomas Bacterianos/genética , Dieta Alta en Grasa , Inflamación/inmunología , Inflamación/virología , Interferón Tipo I/metabolismo , Queratinocitos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Nucleotidiltransferasas/metabolismo , Retroelementos/genética , Transducción de Señal , Piel/inmunología , Piel/microbiología , Linfocitos T/inmunología , Transcripción Genética
2.
Cell ; 180(3): 454-470.e18, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32004459

RESUMEN

Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.


Asunto(s)
Evolución Molecular , Transferencia de Gen Horizontal , Interacciones Microbiota-Huesped/genética , Microbiota/genética , Polimorfismo de Nucleótido Simple , Piel/microbiología , Staphylococcus epidermidis/genética , Adulto , ADN Bacteriano/genética , Farmacorresistencia Bacteriana/genética , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Staphylococcus epidermidis/aislamiento & purificación , Staphylococcus epidermidis/patogenicidad , Virulencia/genética , Adulto Joven
3.
Cell ; 172(4): 784-796.e18, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29358051

RESUMEN

Mammalian barrier surfaces are constitutively colonized by numerous microorganisms. We explored how the microbiota was sensed by the immune system and the defining properties of such responses. Here, we show that a skin commensal can induce T cell responses in a manner that is restricted to non-classical MHC class I molecules. These responses are uncoupled from inflammation and highly distinct from pathogen-induced cells. Commensal-specific T cells express a defined gene signature that is characterized by expression of effector genes together with immunoregulatory and tissue-repair signatures. As such, non-classical MHCI-restricted commensal-specific immune responses not only promoted protection to pathogens, but also accelerated skin wound closure. Thus, the microbiota can induce a highly physiological and pleiotropic form of adaptive immunity that couples antimicrobial function with tissue repair. Our work also reveals that non-classical MHC class I molecules, an evolutionarily ancient arm of the immune system, can promote homeostatic immunity to the microbiota.


Asunto(s)
Inmunidad Adaptativa , Bacterias/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Microbiota/inmunología , Piel/inmunología , Linfocitos T/inmunología , Animales , Regulación de la Expresión Génica/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Ratones , Ratones Transgénicos
4.
Immunity ; 56(6): 1239-1254.e7, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37028427

RESUMEN

Early-life establishment of tolerance to commensal bacteria at barrier surfaces carries enduring implications for immune health but remains poorly understood. Here, we showed that tolerance in skin was controlled by microbial interaction with a specialized subset of antigen-presenting cells. More particularly, CD301b+ type 2 conventional dendritic cells (DCs) in neonatal skin were specifically capable of uptake and presentation of commensal antigens for the generation of regulatory T (Treg) cells. CD301b+ DC2 were enriched for phagocytosis and maturation programs, while also expressing tolerogenic markers. In both human and murine skin, these signatures were reinforced by microbial uptake. In contrast to their adult counterparts or other early-life DC subsets, neonatal CD301b+ DC2 highly expressed the retinoic-acid-producing enzyme, RALDH2, the deletion of which limited commensal-specific Treg cell generation. Thus, synergistic interactions between bacteria and a specialized DC subset critically support early-life tolerance at the cutaneous interface.


Asunto(s)
Células Dendríticas , Piel , Animales , Ratones , Humanos , Linfocitos T Reguladores , Tolerancia Inmunológica , Aldehído Oxidorreductasas/metabolismo
5.
J Allergy Clin Immunol ; 153(3): 860-867.e1, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38048884

RESUMEN

BACKGROUND: Maternal overweight and obesity have been associated with an increased risk of atopic dermatitis (AD) in the offspring, but the underlying mechanisms are unclear. Vernix caseosa (VC) is a proteolipid material covering the fetus produced during skin development. However, whether maternal prepregnancy weight excess influences fetal skin development is unknown. Characterizing the VC of newborns from mothers with prepregnancy overweight and obesity might reveal AD-prone alterations during fetal skin development. OBJECTIVE: We sought to explore AD biomarkers and staphylococcal loads in VC from the offspring of mothers who were overweight/obese (O/O) before pregnancy versus in those from offspring of normal weight mothers. METHODS: The VC of newborns of 14 O/O and 12 normal weight mothers were collected immediately after birth. Biomarkers were determined by ELISA and staphylococcal species by quantitative PCR. RESULTS: The VC from the O/O group showed decreased expression of skin barrier proteins (filaggrin and loricrin) and increased levels of proinflammatory biomarkers (IgA, thymic stromal lymphopoietin [TSLP], S100A8, IL-25, and IL-33). No differences in concentrations of antimicrobial peptides and enzymes were detected. The VC from the O/O group had a lower Staphylococcus epidermidis and Staphylococcus hominis commensal bacterial load, whereas Staphylococcus aureus bacterial load was not significantly different between the 2 groups. Maternal body mass index was negatively correlated with VC filaggrin expression and S epidermidis load and was positively associated with TSLP concentration. One-year follow-up established that the offspring of O/O mothers had a higher incidence of AD that was specifically linked with decreased VC filaggrin expression and lower S epidermidis load. CONCLUSIONS: VC from neonates of mothers with prepregnancy overweight and obesity exhibit skin barrier molecular alterations and staphylococcal dysbiosis that suggest early mechanistic clues to this population's increased risk of AD.


Asunto(s)
Dermatitis Atópica , Obesidad Materna , Vernix Caseosa , Humanos , Recién Nacido , Femenino , Embarazo , Dermatitis Atópica/patología , Proteínas Filagrina , Obesidad Materna/metabolismo , Obesidad Materna/patología , Vernix Caseosa/metabolismo , Sobrepeso , Piel/patología , Citocinas/metabolismo , Linfopoyetina del Estroma Tímico , Obesidad/patología , Biomarcadores/metabolismo
6.
Biochem Biophys Res Commun ; 691: 149277, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38029543

RESUMEN

The human skin microbiome consists of many species of bacteria, including Staphylococcus aureus and S. epidermidis. Individuals with atopic dermatitis (AD) have an increased relative abundance of S. aureus, which exacerbates the inflammation of AD. Although S. epidermidis, a main component of healthy skin microbiota, inhibits the growth of S. aureus, the balance between S. epidermidis and S. aureus is disrupted in the skin of individuals with AD. In this study, we found that Citrobacter koseri isolated from patients with AD produces substances that inhibit the growth of S. epidermidis. Heat-treated culture supernatant (CS) of C. koseri inhibited the growth of S. epidermidis but not S. aureus. The genome of C. koseri has gene clusters related to siderophores and the heat-treated CS of C. koseri contained a high concentration of siderophores compared with the control medium. The inhibitory activity of C. koseri CS against the growth of S. epidermidis was decreased by the addition of iron, but not copper or zinc. Deferoxamine, an iron-chelating agent, also inhibited the growth of S. epidermidis, but not that of S. aureus. These findings suggest that C. koseri inhibits the growth of S. epidermidis by interfering with its iron utilization.


Asunto(s)
Citrobacter koseri , Dermatitis Atópica , Humanos , Staphylococcus epidermidis , Staphylococcus aureus , Hierro , Sideróforos/farmacología
7.
Int J Med Microbiol ; 315: 151620, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579524

RESUMEN

Staphylococcus epidermidis is part of the commensal microbiota of the skin and mucous membranes, though it can also act as a pathogen in certain scenarios, causing a range of infections, including periprosthetic joint infection (PJI). Transcriptomic profiling may provide insights into mechanisms by which S. epidermidis adapts while in a pathogenic compared to a commensal state. Here, a total RNA-sequencing approach was used to profile and compare the transcriptomes of 19 paired PJI-associated S. epidermidis samples from an in vivo clinical source and grown in in vitro laboratory culture. Genomic comparison of PJI-associated and publicly available commensal-state isolates were also compared. Of the 1919 total transcripts found, 145 were from differentially expressed genes (DEGs) when comparing in vivo or in vitro samples. Forty-two transcripts were upregulated and 103 downregulated in in vivo samples. Of note, metal sequestration-associated genes, specifically those related to staphylopine activity (cntA, cntK, cntL, and cntM), were upregulated in a subset of clinical in vivo compared to laboratory grown in vitro samples. About 70% of the total transcripts and almost 50% of the DEGs identified have not yet been annotated. There were no significant genomic differences between known commensal and PJI-associated S. epidermidis isolates, suggesting that differential genomics may not play a role in S. epidermidis pathogenicity. In conclusion, this study provides insights into phenotypic alterations employed by S epidermidis to adapt to infective and non-infected microenvironments, potentially informing future therapeutic targets for related infections.


Asunto(s)
Perfilación de la Expresión Génica , Infecciones Relacionadas con Prótesis , Infecciones Estafilocócicas , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/patogenicidad , Staphylococcus epidermidis/aislamiento & purificación , Infecciones Relacionadas con Prótesis/microbiología , Humanos , Infecciones Estafilocócicas/microbiología , Femenino , Masculino , Anciano , Transcriptoma , Regulación Bacteriana de la Expresión Génica , Persona de Mediana Edad , Anciano de 80 o más Años
8.
BMC Microbiol ; 24(1): 215, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38890594

RESUMEN

BACKGROUND: A multidrug-resistant lineage of Staphylococcus epidermidis named ST215 is a common cause of prosthetic joint infections and other deep surgical site infections in Northern Europe, but is not present elsewhere. The increasing resistance among S. epidermidis strains is a global concern. We used whole-genome sequencing to characterize ST215 from healthcare settings. RESULTS: We completed the genome of a ST215 isolate from a Swedish hospital using short and long reads, resulting in a circular 2,676,787 bp chromosome and a 2,326 bp plasmid. The new ST215 genome was placed in phylogenetic context using 1,361 finished public S. epidermidis reference genomes. We generated 10 additional short-read ST215 genomes and 11 short-read genomes of ST2, which is another common multidrug-resistant lineage at the same hospital. We studied recombination's role in the evolution of ST2 and ST215, and found multiple recombination events averaging 30-50 kb. By comparing the results of antimicrobial susceptibility testing for 31 antimicrobial drugs with the genome content encoding antimicrobial resistance in the ST215 and ST2 isolates, we found highly similar resistance traits between the isolates, with 22 resistance genes being shared between all the ST215 and ST2 genomes. The ST215 genome contained 29 genes that were historically identified as virulence genes of S. epidermidis ST2. We established that in the nucleotide sequence stretches identified as recombination events, virulence genes were overrepresented in ST215, while antibiotic resistance genes were overrepresented in ST2. CONCLUSIONS: This study features the extensive antibiotic resistance and virulence gene content in ST215 genomes. ST215 and ST2 lineages have similarly evolved, acquiring resistance and virulence through genomic recombination. The results highlight the threat of new multidrug-resistant S. epidermidis lineages emerging in healthcare settings.


Asunto(s)
Antibacterianos , Infección Hospitalaria , Farmacorresistencia Bacteriana Múltiple , Genoma Bacteriano , Filogenia , Infecciones Estafilocócicas , Staphylococcus epidermidis , Secuenciación Completa del Genoma , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/aislamiento & purificación , Staphylococcus epidermidis/patogenicidad , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano/genética , Humanos , Infecciones Estafilocócicas/microbiología , Infección Hospitalaria/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Suecia , Plásmidos/genética , Recombinación Genética
9.
Arch Microbiol ; 206(7): 289, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847838

RESUMEN

Staphylococcus epidermidis is an opportunistic pathogen commonly implicated in medical device-related infections. Its propensity to form biofilms not only leads to chronic infections but also exacerbates the issue of antibiotic resistance, necessitating high-dose antimicrobial treatments. In this study, we explored the use of diclofenac sodium, a non-steroidal anti-inflammatory drug, as an anti-biofilm agent against S. epidermidis. In this study, crystal violet staining and confocal laser scanning microscope analysis showed that diclofenac sodium, at subinhibitory concentration (0.4 mM), significantly inhibited biofilm formation in both methicillin-susceptible and methicillin-resistant S. epidermidis isolates. MTT assays demonstrated that 0.4 mM diclofenac sodium reduced the metabolic activity of biofilms by 25.21-49.01% compared to untreated controls. Additionally, the treatment of diclofenac sodium resulted in a significant decrease (56.01-65.67%) in initial bacterial adhesion, a crucial early phase of biofilm development. Notably, diclofenac sodium decreased the production of polysaccharide intercellular adhesin (PIA), a key component of the S. epidermidis biofilm matrix, in a dose-dependent manner. Real-time quantitative PCR analysis revealed that diclofenac sodium treatment downregulated biofilm-associated genes icaA, fnbA, and sigB and upregulated negative regulatory genes icaR and luxS, providing potential mechanistic insights. These findings indicate that diclofenac sodium inhibits S. epidermidis biofilm formation by affecting initial bacterial adhesion and the PIA synthesis. This underscores the potential of diclofenac sodium as a supplementary antimicrobial agent in combating staphylococcal biofilm-associated infections.


Asunto(s)
Antibacterianos , Biopelículas , Diclofenaco , Staphylococcus epidermidis , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Diclofenaco/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Antiinflamatorios no Esteroideos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Humanos , Polisacáridos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
10.
Arch Microbiol ; 206(8): 347, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985339

RESUMEN

Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.


Asunto(s)
Aceites Volátiles , Aceites Volátiles/farmacología , Humanos , Piel/microbiología , Piel/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Antibacterianos/farmacología
11.
Ann Clin Microbiol Antimicrob ; 23(1): 44, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755634

RESUMEN

BACKGROUND: Due to their resistance and difficulty in treatment, biofilm-associated infections are problematic among hospitalized patients globally and account for 60% of all bacterial infections in humans. Antibiofilm peptides have recently emerged as an alternative treatment since they can be effectively designed and exert a different mode of biofilm inhibition and eradication. METHODS: A novel antibiofilm peptide, BiF, was designed from the conserved sequence of 18 α-helical antibiofilm peptides by template-assisted technique and its activity was improved by hybridization with a lipid binding motif (KILRR). Novel antibiofilm peptide derivatives were modified by substituting hydrophobic amino acids at positions 5 or 7, and both, with positively charged lysines (L5K, L7K). These peptide derivatives were tested for antibiofilm and antimicrobial activities against biofilm-forming Staphylococcus epidermidis and multiple other microbes using crystal violet and broth microdilution assays, respectively. To assess their impact on mammalian cells, the toxicity of peptides was determined through hemolysis and cytotoxicity assays. The stability of candidate peptide, BiF2_5K7K, was assessed in human serum and its secondary structure in bacterial membrane-like environments was analyzed using circular dichroism. The action of BiF2_5K7K on planktonic S. epidermidis and its effect on biofilm cell viability were assessed via viable counting assays. Its biofilm inhibition mechanism was investigated through confocal laser scanning microscopy and transcription analysis. Additionally, its ability to eradicate mature biofilms was examined using colony counting. Finally, a preliminary evaluation involved coating a catheter with BiF2_5K7K to assess its preventive efficacy against S. epidermidis biofilm formation on the catheter and its surrounding area. RESULTS: BiF2_5K7K, the modified antibiofilm peptide, exhibited dose-dependent antibiofilm activity against S. epidermidis. It inhibited biofilm formation at subinhibitory concentrations by altering S. epidermidis extracellular polysaccharide production and quorum-sensing gene expression. Additionally, it exhibited broad-spectrum antimicrobial activity and no significant hemolysis or toxicity against mammalian cell lines was observed. Its activity is retained when exposed to human serum. In bacterial membrane-like environments, this peptide formed an α-helix amphipathic structure. Within 4 h, a reduction in the number of S. epidermidis colonies was observed, demonstrating the fast action of this peptide. As a preliminary test, a BiF2_5K7K-coated catheter was able to prevent the development of S. epidermidis biofilm both on the catheter surface and in its surrounding area. CONCLUSIONS: Due to the safety and effectiveness of BiF2_5K7K, we suggest that this peptide be further developed to combat biofilm infections, particularly those of biofilm-forming S. epidermidis.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Staphylococcus epidermidis , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Hemólisis/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
12.
Skin Res Technol ; 30(9): e70052, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39256189

RESUMEN

BACKGROUND: Recent advances have increased the importance of the human microbiome, including the skin microbiome. Despite the hand microbiome research, the factors affecting the composition of the hand microbiome and their personal characteristics are incompletely known. OBJECTIVES: Despite changing environmental factors and personal variation, we aimed to indicate the interpersonal distinction between skin microbiota using simple and rapid molecular methods. METHODS: Over a non-consecutive 10-day period, samples were taken from 10 adult individuals, and ribotyping analysis of the 16S and 23S genes of S. epidermidis was performed on each skin sample. Additionally, EcoRI and HindIII enzyme reactions and variable number tandem repeat (VNTR) reactions of S. epidermidis obtained from DNA samples were performed. The skin microbiomes of individuals were evaluated along with the microbiome profiles left on the surfaces they touched. RESULTS: In the environmental samples taken, it has been observed that people preserve their core skin microbiota characters and carry them to their environment. It was determined that the highest similarity rate was 77.14%, and the lowest similarity rate was 31.74%. CONCLUSION: Our study showed that the core skin microbiota retains its characteristics and leaves traces in environments. The fact that the personal microbiome remains unchanged despite environmental differences and has characteristic features has shown that it can be used in forensic sciences to distinguish individuals from each other. These results with simple and rapid methods further increased the importance and significance of the study. The findings indicate that personal skin microbiota can provide a significant contribution to criminal investigations by increasing accuracy and reliability, especially in forensic analyses.


Asunto(s)
Microbiota , Piel , Humanos , Microbiota/genética , Piel/microbiología , Adulto , Masculino , Femenino , Staphylococcus epidermidis/aislamiento & purificación , Staphylococcus epidermidis/genética , Ribotipificación/métodos , Dermatoglifia , ARN Ribosómico 16S/genética , Adulto Joven , Repeticiones de Minisatélite
13.
Mar Drugs ; 22(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38393032

RESUMEN

Biofilm is accountable for nosocomial infections and chronic illness, making it a serious economic and public health problem. Staphylococcus epidermidis, thanks to its ability to form biofilm and colonize biomaterials, represents the most frequent causative agent involved in biofilm-associated infections of medical devices. Therefore, the research of new molecules able to interfere with S. epidermidis biofilm formation has a remarkable interest. In the present work, the attention was focused on Pseudomonas sp. TAE6080, an Antarctic marine bacterium able to produce and secrete an effective antibiofilm compound. The molecule responsible for this activity was purified by an activity-guided approach and identified by LC-MS/MS. Results indicated the active protein was a periplasmic protein similar to the Pseudomonas aeruginosa PAO1 azurin, named cold-azurin. The cold-azurin was recombinantly produced in E. coli and purified. The recombinant protein was able to impair S. epidermidis attachment to the polystyrene surface and effectively prevent biofilm formation.


Asunto(s)
Azurina , Pseudomonas , Azurina/metabolismo , Antibacterianos/metabolismo , Regiones Antárticas , Escherichia coli , Cromatografía Liquida , Espectrometría de Masas en Tándem , Biopelículas , Pseudomonas aeruginosa , Staphylococcus epidermidis
14.
Mar Drugs ; 22(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39330261

RESUMEN

Antimicrobial resistance is a critical global health issue, with rising resistance among bacteria and fungi. Marine organisms have emerged as promising, but underexplored, sources of new antimicrobial agents. Among them, marine polychaetes, such as Halla parthenopeia, which possess chemical defenses, could attract significant research interest. This study explores the antimicrobial properties of hallachrome, a unique anthraquinone found in the purple mucus of H. parthenopeia, against Gram-negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 9027), Gram-positive bacteria (Enterococcus faecalis ATCC 29212, Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228), and the most common human fungal pathogen Candida albicans ATCC 10231. Antibacterial susceptibility testing revealed that Gram-negative bacteria were not inhibited by hallachrome at concentrations ≤2 mM. However, Gram-positive bacteria showed significant growth inhibition at 0.12-0.25 mM, while C. albicans was inhibited at 0.06 mM. Time-kill studies demonstrated dose-dependent growth inhibition of susceptible strains by hallachrome, which exerted its effect by altering the membrane permeability of C. albicans, E. faecalis, and S. epidermidis after 6 h and S. aureus after 24 h. Additionally, hallachrome significantly reduced biofilm formation and mature biofilm in S. aureus, E. faecalis, and C. albicans. Additionally, it inhibited hyphal growth in C. albicans. These findings highlight hallachrome's potential as a novel antimicrobial agent, deserving further exploration for clinical experimentation.


Asunto(s)
Antraquinonas , Candida albicans , Pruebas de Sensibilidad Microbiana , Poliquetos , Candida albicans/efectos de los fármacos , Animales , Antraquinonas/farmacología , Antraquinonas/química , Antraquinonas/aislamiento & purificación , Bacterias Grampositivas/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Bacterias Gramnegativas/efectos de los fármacos , Organismos Acuáticos , Biopelículas/efectos de los fármacos
15.
Int J Biometeorol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083119

RESUMEN

Phleum pratense is an allergenic grass that pollinates in spring in Pakistan. Databases Allergenonline.org and Allergen.org record ten P. pratense allergens and their isoforms. Phl P 1, Phlp 5, and Phl p 11 are major P. pratense-pollen allergens with demonstrated basophil activity and skin test reactivity. Little is known about P. pratense pollen adaptive variations in different climatic regions and pollen-associated microbial diversity. In this study, we collected P. pratense-pollen and soils in the spring season 2022. Samples were collected from three climatic regions in Pakistan (R1, R2 and R3) with differences in mean monthly air temperature, mean monthly precipitation and elevation. The morphology of pollen was observed by light microscopy, scanning electron microscopy (SEM), biochemical fingerprint analysis, and composition of pollen were investigated by fourier-transform infrared spectroscopy (FTIR). The pollen-associated bacterial populations were identified through a Biolog GEN III microplate system. The pollen water-soluble proteins were isolated and stabilized in phosphate buffer saline (PBS) and tested for allergenicity responses through dot blots and western blots analysis. The morphology study found difference in pollen biochemical composition. Biolog identified Brevibacterium epidermidis and Pantoea agglomerans from P. pratense pollen. Protein extract quantification and sodium dodecyl sulfate-poly acrylamide gel electrophoresis (SDS-PAGE) gel found decreased protein expression in R1 region pollen compared to R2 and R3 region pollen. Allergenicity studies found differential expression of beta-expansin and profilin allergens in pollen obtained from the three regions. Beta-expansin and profilin were suppressed in R1 pollen and expressed in compared to R2 and R3 pollen. This is the first study to identify B. epidermidis and P. agglomerans growth on P. pratense pollen. Variable allergen expression in P. pratense pollen has also been observed in different regions. Soil pH, an increase in mean monthly temperature and a decrease in mean monthly precipitation correlated with pollen biochemical composition, and reduced beta-expansin and profilin expression involved in pollen growth and development. The findings of this research are unique, which enhances basic knowledge and understanding of P. pratense-pollen associated microbiota and climate change impacts on the pollen allergen expression.

16.
J Arthroplasty ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823523

RESUMEN

BACKGROUND: In this study, we aimed to analyze the temporal distribution of polymicrobial periprosthetic joint infections (PJIs), while also evaluating the patient risk factors associated with these infections following total joint arthroplasty at our institution across 2 distinct periods. METHOD: This retrospective cross-sectional study evaluated 259 patients who had knee or hip PJI from 2001 to 2006 and 2018 to 2022. A PJI was diagnosed using the 2018 International Consensus Meeting criteria. We utilized the Polymicrobial Pathogens' Co-occurrence Network Analysis, a novel approach that leverages network theory to map and quantify the complex interplay of organisms in PJIs. RESULTS: Of the 259 patients who had polymicrobial PJI, 58.7% were men, with mean age 67 years (range, 24 to 90). Of the 579 identified pathogens, Staphylococcus epidermidis was the most common (22.1%), followed by Staphylococcus aureus (9.0%) and Cutibacterium acnes (7.8%). The co-occurrence analysis indicated that Staphylococcus epidermidis frequently coexisted with Cutibacterium acnes (26 cultures) and Staphylococcus capitis (22 cultures). A notable increase in body mass index from 27.7 ± 4.4 in 2001 to 2006 to 29.7 ± 6.2 in 2018 to 2022 was observed (P = .001). Moreover, infections from Staphylococcus epidermidis, Cutibacterium acnes, and Staphylococcus capitis saw a significant uptick (P < .001). CONCLUSIONS: The study shows that from 2001 to 2022, there was a significant change in the pathogens responsible for polymicrobial PJIs, particularly an increase in Staphylococcus epidermidis, Cutibacterium acnes, and Staphylococcus capitis. Alongside these microbial changes, there was a rise in body mass index and shifts in comorbid conditions, such as more renal disease and fewer cases of congestive heart failure. These changes highlight the dynamic interplay between host and microbial factors in the pathogenesis of polymicrobial PJIs, necessitating adaptive strategies in both surgical and postoperative care to mitigate the rising tide of these complex infections.

17.
Int J Mol Sci ; 25(19)2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39409056

RESUMEN

Microbial biofilm formation on medical devices paves the way for device-associated infections. Staphylococcus epidermidis is one of the most common strains involved in such infections as it is able to colonize numerous devices, such as intravenous catheters, prosthetic joints, and heart valves. We previously reported the antibiofilm activity against S. epidermidis of pentadecanoic acid (PDA) deposited by drop-casting on the silicon-based polymer poly(dimethyl)siloxane (PDMS). This material exerted an antibiofilm activity by releasing PDA; however, a toxic effect on bacterial cells was observed, which could potentially favor the emergence of resistant strains. To develop a PDA-functionalized material for medical use and overcome the problem of toxicity, we produced PDA-doped PDMS by either spray-coating or PDA incorporation during PDMS polymerization. Furthermore, we created a strategy to assess the kinetics of PDA release using ADIFAB, a very sensitive free fatty acids fluorescent probe. Spray-coating resulted in the most promising strategy as the concentration of released PDA was in the range 0.8-1.5 µM over 21 days, ensuring long-term effectiveness of the antibiofilm molecule. Moreover, the new coated material resulted biocompatible when tested on immortalized human keratinocytes. Our results indicate that PDA spray-coated PDMS is a promising material for the production of medical devices endowed with antibiofilm activity.


Asunto(s)
Biopelículas , Dimetilpolisiloxanos , Ácidos Grasos , Staphylococcus epidermidis , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Humanos , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacología , Ácidos Grasos/química , Ácidos Grasos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Queratinocitos/efectos de los fármacos
18.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473902

RESUMEN

The increase in bacterial resistance to antibiotics in recent years demands innovative strategies for the detection and combating of biofilms, which are notoriously resilient. Biofilms, particularly those on contact lenses, can lead to biofilm-related infections (e.g., conjunctivitis and keratitis), posing a significant risk to patients. Non-destructive and non-contact sensing techniques are essential in addressing this threat. Digital holographic tomography emerges as a promising solution. This allows for the 3D reconstruction of the refractive index distribution in biological samples, enabling label-free visualization and the quantitative analysis of biofilms. This tool provides insight into the dynamics of biofilm formation and maturation on the surface of transparent materials. Applying digital holographic tomography for biofilm examination has the potential to advance our ability to combat the antibiotic bacterial resistance crisis. A recent study focused on characterizing biofilm formation and maturation on six soft contact lens materials (three silicone hydrogels, three hydrogels), with a particular emphasis on Staphylococcus epidermis and Pseudomonas aeruginosa, both common culprits in ocular infections. The results revealed species- and time-dependent variations in the refractive indexes and volumes of biofilms, shedding light on cell dynamics, cell death, and contact lens material-related factors. The use of digital holographic tomography enables the quantitative analysis of biofilm dynamics, providing us with a better understanding and characterization of bacterial biofilms.


Asunto(s)
Biopelículas , Lentes de Contacto Hidrofílicos , Humanos , Bacterias , Antibacterianos , Hidrogeles , Lentes de Contacto Hidrofílicos/microbiología , Pseudomonas aeruginosa/fisiología
19.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474462

RESUMEN

Both geraniol and the products of its transformation, thanks to their beneficial properties, find a variety of applications in cosmetics. Due to their antioxidant and moisturizing properties, these compounds can be added to skin care products such as face creams, lotions, oils, and masks. In addition, these compounds show some antibacterial and antifungal properties, making them suitable for application in skin care products to help fight against bacteria or fungi. This study determined the antimicrobial activity of geraniol and the compounds which were formed during its transformation in relation to selected Gram-positive bacteria, and the preliminary assessment was made whether these compounds can act as ingredients of preparations with potential antimicrobial activity in the treatment of various human diseases (for example diseases of the skin, digestive system, or urinary tract). In addition, this work presents studies on the microbiological purity of cream samples obtained with different contents of geraniol and its transformation products (contents of the tested compounds: 0.5%, 1.5%, 2.5%, 4%, 8%, and 12%). Antibacterial activity tests were performed using the disc diffusion method against Gram-positive cocci, including the reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212, and against the clinical strains Staphylococcus aureus MRSA, Staphylococcus epidermidis, Enterococcus faecalis VRE VanB, Enterococcus faecium VRE VanA, and Enterococcus faecium VRE VanB. The most active ingredient against bacteria of the Staphylococcus genus was citral, followed by linalool and then geraniol. During our tests, in the case of bacteria of the Enterococcus genus, citral also showed the highest activity, but linalool, ocimenes, and geraniol showed a slightly lower activity. Moreover, this study examined the microbiological purity of cream samples obtained with various contents of geraniol and its transformation products. In the tests of the microbiological purity of cream samples, no growth of aerobic bacteria and fungi was found, which proves the lack of microbiological contamination of the obtained cosmetic preparations. On this basis, it was assessed that these compounds have preservative properties in the prepared creams. The addition of the analyzed compounds also had influence on the durability of the creams and had no effect on the change in their consistency, did not negatively affect the separation of phases during storage, and even had a positive effect on organoleptic sensations by enriching the smell of the tested samples.


Asunto(s)
Monoterpenos Acíclicos , Antibacterianos , Enterococcus faecium , Humanos , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana
20.
Molecules ; 29(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398524

RESUMEN

6-Iodo-substituted carboxy-quinolines were obtained using a one-pot, three-component method with trifluoroacetic acid as a catalyst under acidic conditions. Iodo-aniline, pyruvic acid and 22 phenyl-substituted aldehydes (we varied the type and number of radicals) or O-heterocycles, resulting in different electronic effects, were the starting components. This approach offers advantages such as rapid response times, cost-effective catalysts, high product yields and efficient purification procedures. A comprehensive investigation was conducted to examine the impact of aldehyde structure on the synthesis pathway. A library of compounds was obtained and characterized by FT-IR, MS, 1H NMR and 13C NMR spectroscopy and single-ray crystal diffractometry. Their antimicrobial activity against S. epidermidis, K. pneumonie and C. parapsilosis was tested in vitro. The effect of iodo-quinoline derivatives on microbial adhesion, the initial stage of microbial biofilm development, was also investigated. This study suggests that carboxy-quinoline derivatives bearing an iodine atom are interesting scaffolds for the development of novel antimicrobial agents.


Asunto(s)
Antiinfecciosos , Yodo , Quinolinas , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/química , Quinolinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA