Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
Más filtros

Intervalo de año de publicación
1.
Small ; 20(4): e2305462, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715105

RESUMEN

Substituting the low-value oxygen evolution reaction (OER) with thermodynamically more favored organic oxidation such as furfural oxidation reaction (FOR) is regarded as a perspective approach to decrease energy cost of hydrogen evolution from water splitting. However, the kinetic of FOR can be even more sluggish than OER under large current density. In this work, a strategy is proposed to accelerate FOR by enhancing the adsorption of oxygenates on active sites. Over the prepared NiMoP/NF anode, only 1.46 V versus RHE is required in furfural solution to achieve 500 mA cm-2 , significantly better than the OER activity over commercial RuO2 /NF under the same current density (1.57 V vs RHE).

2.
Small ; : e2402981, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838089

RESUMEN

To address the imperative challenge of producing hydrogen in a low-energy consumption electrocatalytic system, this study emphasizes the utilization of thermodynamically favorable biomass oxidation for achieving energy-efficient hydrogen generation. This research integrates ultralow PtO2-loaded flower-like nanosheets (denoted as PtO2@Cu2O/Cu FNs) with Cu0/Cu+ pairs and Pt─O bonds, thereby yielding substantial enhancement in both hydrogen evolution reaction (HER, -0.042 VRHE at 10 mA cm-2) and furfural oxidation reaction (FFOR, 0.09 VRHE at 10 mA cm-2). As validated by DFT calculations, the dual built-in electric field (BIEF) is elucidated as the driving force behind the enhanced activities, in which Pt─O bonds expedite the HER, while Cu+/Cu0 promotes low-potential FFOR. By coupling the FFOR and HER together, the resulting bipolar-hydrogen production system requires a low power input (0.5072 kWh per m3) for producing H2. The system can generate bipolar hydrogen and high value-added furoic acid, significantly enhancing hydrogen production efficiency and concurrently mitigating energy consumption.

3.
Fungal Genet Biol ; 174: 103914, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032808

RESUMEN

Lignocellulosic material is a leading carbon source for economically viable biotechnological processes; however, compounds such furfural and acetic acid exhibit toxicity to yeasts. Nonetheless, research about the molecular mechanism of furfural and acetic acid toxicity is still scarce in yeasts like Scheffersomyces stipitis. Thus, this study aims to elucidate the impact of furfural and acetic acid on S. stipitis regarding bioenergetic and fermentation parameters. Here, we provide evidence that furfural and acetic acid induce a delay in cell growth and extend the lag phase. The mitochondrial membrane potential decreased in all treatments with no significant differences between inhibitors or concentrations. Interestingly, reactive oxygen species increased when the inhibitor concentrations were from 0.1 to 0.3 % (v/v). The glycolytic flux was not significantly (p > 0.05) altered by acetic acid, but furfural caused different effects. Ethanol production decreased significantly (4.32 g·L-1 in furfural and 5.06 g·L-1 in acetic acid) compared to the control (26.3 g·L-1). In contrast, biomass levels were not significantly different in most treatments compared to the control. This study enhances our understanding of the effects of furfural and acetic acid at the mitochondrial level in a pentose-fermenting yeast like S. stipitis.

4.
Chembiochem ; : e202400278, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953596

RESUMEN

Bio-processes based on enzymatic catalysis play a major role in the development of green, sustainable processes, and the discovery of new enzymes is key to this approach. In this work, we analysed ten metagenomes and retrieved 48 genes coding for deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) using a sequence-based approach. These sequences were recombinantly expressed in Escherichia coli and screened for activity towards a range of aldol additions. Among these, one enzyme, DERA-61, proved to be particularly interesting and catalysed the aldol addition of furfural or benzaldehyde with acetone, butanone and cyclobutanone with unprecedented activity. The product of these reactions, aldols, can find applications as building blocks in the synthesis of biologically active compounds. Screening was carried out to identify optimized reaction conditions targeting temperature, pH, and salt concentrations. Lastly, the kinetics and the stereochemistry of the products were investigated, revealing that DERA-61 and other metagenomic DERAs have superior activity and stereoselectivity when they are provided with non-natural substrates, compared to well-known DERAs.

5.
Metab Eng ; 81: 262-272, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38154655

RESUMEN

Due to its tolerance properties, Pseudomonas has gained particular interest as host for oxidative upgrading of the toxic aldehyde 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA), a promising biobased alternative to terephthalate in polyesters. However, until now, the native enzymes responsible for aldehyde oxidation are unknown. Here, we report the identification of the primary HMF-converting enzymes of P. taiwanensis VLB120 and P. putida KT2440 by extended gene deletions. The key players in HMF oxidation are a molybdenum-dependent periplasmic oxidoreductase and a cytoplasmic dehydrogenase. Deletion of the corresponding genes almost completely abolished HMF oxidation, leading instead to aldehyde reduction. In this context, two HMF-reducing dehydrogenases were also revealed. These discoveries enabled enhancement of Pseudomonas' furanic aldehyde oxidation machinery by genomic overexpression of the respective genes. The resulting BOX strains (Boosted OXidation) represent superior hosts for biotechnological synthesis of FDCA from HMF. The increased oxidation rates provide greatly elevated HMF tolerance, thus tackling one of the major drawbacks of whole-cell catalysis with this aldehyde. Furthermore, the ROX (Reduced OXidation) and ROAR (Reduced Oxidation And Reduction) deletion mutants offer a solid foundation for future development of Pseudomonads as biotechnological chassis notably for scenarios where rapid HMF conversion is undesirable.


Asunto(s)
Ácidos Dicarboxílicos , Furaldehído , Pseudomonas , Pseudomonas/genética , Furanos
6.
Chemistry ; 30(34): e202400333, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38639068

RESUMEN

The selective hydrogenation of furfural (FFA) to furfuryl alcohol (FA) is regarded as attractive transformation to achieve the sustainable synthesis of value-added chemicals from biomass resources. However, the conventional supported catalysts are significantly restricted by their narrow pore size, ununiform dispersion and easy leaching or aggregation of catalytic sites. Herein, we designed hollow UiO-66-NH2 as the support to encapsulate Pd nanoparticles (Pd@H-UiO-66-NH2) to achieve the highly active and selective conversion of FFA to FA. Benefiting from the void-confinement effect and substrate enrichment of hollow structure, as well as the surface wrinkles, the as-prepared catalyst Pd@H-UiO-66-NH2 exhibited 96.8 % conversion of FFA with satisfactory selectivity reaching up to 92.4 % at 80 °C, 0.5 MPa H2 in isopropanol solvent within 6 h. More importantly, as-prepared Pd@H-UiO-66-NH2 catalyst exhibited excellent long-term stability, as well as good universality toward a series of hydrogenation of unsaturated hydrocarbons.

7.
Microb Cell Fact ; 23(1): 80, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481222

RESUMEN

BACKGROUND: Spathaspora passalidarum is a yeast with the highly effective capability of fermenting several monosaccharides in lignocellulosic hydrolysates, especially xylose. However, this yeast was shown to be sensitive to furfural released during pretreatment and hydrolysis processes of lignocellulose biomass. We aimed to improve furfural tolerance in a previously isolated S. passalidarum CMUWF1-2, which presented thermotolerance and no detectable glucose repression, via adaptive laboratory evolution (ALE). RESULTS: An adapted strain, AF2.5, was obtained from 17 sequential transfers of CMUWF1-2 in YPD broth with gradually increasing furfural concentration. Strain AF2.5 could tolerate higher concentrations of furfural, ethanol and 5-hydroxymethyl furfuraldehyde (HMF) compared with CMUWF1-2 while maintaining the ability to utilize glucose and other sugars simultaneously. Notably, the lag phase of AF2.5 was 2 times shorter than that of CMUWF1-2 in the presence of 2.0 g/l furfural, which allowed the highest ethanol titers to be reached in a shorter period. To investigate more in-depth effects of furfural, intracellular reactive oxygen species (ROS) accumulation was observed and, in the presence of 2.0 g/l furfural, AF2.5 exhibited 3.41 times less ROS accumulation than CMUWF1-2 consistent with the result from nuclear chromatins diffusion, which the cells number of AF2.5 with diffuse chromatins was also 1.41 and 1.24 times less than CMUWF1-2 at 24 and 36 h, respectively. CONCLUSIONS: An enhanced furfural tolerant strain of S. passalidarum was achieved via ALE techniques, which shows faster and higher ethanol productivity than that of the wild type. Not only furfural tolerance but also ethanol and HMF tolerances were improved.


Asunto(s)
Saccharomyces cerevisiae , Saccharomycetales , Xilosa , Furaldehído , Especies Reactivas de Oxígeno , Furilfuramida , Fermentación , Glucosa , Etanol , Cromatina
8.
Drug Chem Toxicol ; : 1-11, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072491

RESUMEN

5-hydroxymethyl-2-furfural (5-HMF) is a by-product of Maillard reaction and widely exists in food and environment, which may lead to lung cancer. However, the relevant mechanism is unknown. This study aims to predict the key targets of 5-HMF-induced lung cancer through network toxicology, analyze the relationship between the key targets and lung cancer through network informatics, and further validate them through in vitro experiments. By using ChEMBL, STITCH, GeneCards, and OMIM databases, 51 toxic targets were identified. GO and KEGG enrichment analyses indicated a strong correlation between toxic targets and lung cancer. Through protein-protein interaction (PPI) analysis, MAPK3, MAPK1, and SRC were identified as key targets implicated in 5-HMF-induced lung cancer. The HPA database showed high expression of these three key targets in lung cancer tissues. Kaplan-Meier database demonstrated that the higher expression of these key targets in lung cancer patients was associated with a poorer prognosis. The TIMER database revealed that the high expression of these key targets had a significant impact on the level of immune cell infiltration in lung cancer, particularly impacting CD4+ T cells and macrophages. Finaly, in In vitro experiments demonstrated that prolonged exposure to 5-HMF induced malignant transformation of BEAS-2B cells and the upregulation of key targets. The findings suggest that 5-HMF is a contributing factor in the development of lung cancer, with MAPK3, MAPK1, and SRC potentially playing crucial roles in this process.

9.
Chem Biodivers ; : e202400951, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034926

RESUMEN

Terminalia arjuna is an evergreen medicinal plant that belongs to the Combretaceae family of flowering plants. The bark of the plant exhibits antiviral, anticancer, hypocholesterolemic, antioxidant and antimicrobial properties. In this study, composition antibacterial activity, antioxidant activity and cytotoxicity of bark oil of Terminalia Arjuna (Roxb.) were reported. Oils were extracted by microwave assisted hydrodistillation where an oil yield of 0.18% was obtained followed by the identification of 35 compounds by gas chromatography mass spectrometry. The most abundant volatiles were furfural (11.11%), isoeugenol (9.99%), p-ethylguaiacol (9.97%), α-cadinol (9.57%), and estragole (9.47%). The oil was further evaluated against ten different drug resistant strains where oil showed significant activity against all pathogens and the highest activity was found against Acinetobacter baumannii (22mm), Klebsiella pneumoniae (22mm) and Staphylococcus aureus (22mm) in a concentration-dependent manner. Antioxidant activity evaluation demonstrated 68% radical scavenging activity by the volatile oil as compared to 81% of the standard, ascorbic acid at a concentration of 1000 µg. Cytotoxicity studies were conducted to see the effect of sample on the expression level of a housekeeping gene, Glyceraldehyde 3-phosphate dehydrogenase where it did not affect the normal transcription of the gene.

10.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928488

RESUMEN

The oxidative esterification of aldehydes under mild conditions remains a significant challenge. This study introduces a unique defective UiO-66 to achieve gold nanoclusters (AuNCs) for efficient aldehyde oxidation under mild conditions. The construction and characterization of these materials are thoroughly investigated by techniques of XRD, SEM and TEM images, FT-IR, Raman, and XPS spectrum, emphasizing the unique microporous in defective UiO-66 are conducive to the fabrication of AuNCs. The catalytic performance of the prepared materials in aldehyde oxidation reactions is systematically evaluated, demonstrating the remarkable efficiency of dispersed Au@UiO-66-25 with high-content (9.09 wt%) Au-loading and ultra-small size (~2.7 nm). Moreover, mechanistic insights into the catalytic process under mild conditions (70 °C for 1 h) are provided, elucidating the determination of defective UiO-66 in the confined fabrication of AuNCs and subsequent furfural adsorption, which underlie the principles governing the observed enhancements. This study establishes the groundwork for the synthesis of highly dispersed and catalytically active metal nanoparticles using defective MOFs as a platform, advancing the catalytic esterification reaction of furfural to the next level.


Asunto(s)
Aldehídos , Oro , Nanopartículas del Metal , Oxidación-Reducción , Oro/química , Nanopartículas del Metal/química , Aldehídos/química , Catálisis , Estructuras Metalorgánicas/química , Porosidad , Esterificación , Espectroscopía Infrarroja por Transformada de Fourier
11.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473867

RESUMEN

Nb-based catalysts supported on porous silica with different textural properties have been synthesized, characterized, and tested in the one-pot reaction of furfural to obtain valuable chemicals. The catalytic results reveal that the presence of fluoride in the synthesis, which limits the growing of the porous silica, limits diffusional problems of the porous silica, obtaining higher conversion values at shorter reaction times. On the other hand, the incorporation of NbOx species in the porous silica provides Lewis acid sites and a small proportion of Brönsted acid sites, in such a way that the main products are alkyl furfuryl ethers, which can be used as fuel additives.


Asunto(s)
Furaldehído , Niobio , Furaldehído/química , Hidrogenación , Dióxido de Silicio/química , Catálisis
12.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893516

RESUMEN

A series of bimetallic NixCuy catalysts with different metal molar ratios, supported on nitric acid modified rice husk-based porous carbon (RHPC), were prepared using a simple impregnation method for the liquid-phase hydrogenation of furfural (FFA) to tetrahydrofurfuryl alcohol (THFA). The Ni2Cu1/RHPC catalyst, with an average metal particle size of 9.3 nm, exhibits excellent catalytic performance for the selective hydrogenation of FFA to THFA. The 100% conversion of FFA and the 99% selectivity to THFA were obtained under mild reaction conditions (50 °C, 1 MPa, 1 h), using water as a green reaction solvent. The synergistic effect of NiCu alloy ensures the high catalytic activity. The acid sites and oxygen-containing functional groups on the surface of the modified RHPC can enhance the selectivity of THFA. The Ni2Cu1/RHPC catalyst offers good cyclability and regenerability. The current work proposes a simple method for preparing an NiCu bimetallic catalyst. The catalyst exhibits excellent performance in the catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol, which broadens the application of non-noble metal bimetallic nanocatalysts in the catalytic hydrogenation of furfural.

13.
Molecules ; 29(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675524

RESUMEN

In this study, we provide a theoretical explanation for the experimentally observed decrease in the organocatalytic activity of N-aryl imidazolylidenes methylated at the C4/5-H positions in the benzoin condensation of aromatic aldehydes. A comparative quantum chemical study of energy profiles for the NHC-mediated benzoin condensation of furfural has revealed a high energy barrier to the formation of the IPrMe-based furanic Breslow intermediate that can be attributed to the negative steric interactions between the imidazole backbone methyl groups and N-aryl substituents.

14.
Molecules ; 29(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38930819

RESUMEN

The selective hydrogenation of the biomass platform molecule furfural (FAL) to produce furfuryl alcohol (FA) is of great significance to alleviate the energy crisis. Cu-based catalysts are the most commonly used catalysts, and their catalytic performance can be optimized by changing the preparation method. This paper emphasized the effect of calcination atmosphere on the performance of a Cu/Al2O3 catalyst for the selective hydrogenation of FAL. The precursor of the Cu/Al2O3 catalyst prepared by the ammonia evaporation method was treated with different calcination atmospheres (N2 and air). On the basis of the combined results from the characterizations using in situ XRD, TEM, N2O titration, H2-TPR and XPS, the Cu/Al2O3 catalyst calcined in the N2 atmosphere was more favorable for the dispersion and reduction of Cu species and the reduction process could produce more Cu+ and Cu0 species, which facilitated the selective hydrogenation of FAL to FA. The experimental results showed that the N2 calcination atmosphere improved the FAL conversion and FA selectivity, and the FAL conversion was further increased after reduction. Cu/Al2O3-N2-R exhibited the outstanding performance, with a high yield of 99.9% of FA after 2 h at 120 °C and an H2 pressure of 1 MPa. This work provides a simple, efficient and economic method to improve the C=O hydrogenation performance of Cu-based catalysts.

15.
Curr Issues Mol Biol ; 45(8): 6503-6525, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37623229

RESUMEN

BACKGROUND: Carbonylated proteins (CPs) serve as specific indicators of increased reactive oxygen and nitrogen species (RONS) production in cancer cells, attributed to the dysregulated mitochondrial energy metabolism known as the Warburg effect. The aim of this study was to investigate the potential of alpha-ketoglutarate (aKG), 5-hydroxymethylfurfural (5-HMF), and their combination as mitochondrial-targeting antioxidants in MTC-SK or NCI-H23 cancer cells. METHODS: MTC-SK and NCI-H23 cells were cultured in the absence or presence of varying concentrations (0-500 µg/mL) of aKG, 5-HMF, and the combined aKG + 5-HMF solutions. After 0, 24, 48, and 72 h, mitochondrial activity, cancer cell membrane CP levels, cell growth, and caspase-3 activity were assessed in aliquots of MTC-SK and NCI-H23 cells. RESULTS: The mitochondrial activity of MTC-SK cells exhibited a concentration- and time-dependent reduction upon treatment with aKG, 5-HMF, or the combined aKG + 5-HMF. The half-maximal inhibitory concentration (IC50%) for mitochondrial activity was achieved at 500 µg/mL aKG, 200 µg/mL 5-HMF, and 200 µg/mL aKG + 66.7 µg/mL 5-HMF after 72 h. In contrast, NCI-H23 cells showed a minimal reduction (10%) in mitochondrial activity even at the highest combined concentration of aKG + 5-HMF. The CP levels in MTC-SK cells were measured at 8.7 nmol/mg protein, while NCI-H23 cells exhibited CP levels of 1.4 nmol/mg protein. The combination of aKG + 5-HMF led to a decrease in CP levels specifically in MTC-SK cells. The correlation between mitochondrial activity and CP levels in the presence of different concentrations of combined aKG + 5-HMF in MTC-SK cells demonstrated a linear and concentration-dependent decline in CP levels and mitochondrial activity. Conversely, the effect was less pronounced in NCI-H23 cells. Cell growth of MTC-CK cells was reduced to 60% after 48 h and maintained at 50% after 72 h incubation when treated with 500 µg/mL aKG (IC50%). Addition of 500 µg/mL 5-HMF inhibited cell growth completely regardless of the incubation time. The IC50% for 5-HMF on MTC-CK cell growth was calculated at 375 µg/mL after 24 h incubation and 200 µg/mL 5-HMF after 72 h. MTC-SK cells treated with 500 µg/mL aKG + 167 µg/mL 5-HMF showed no cell growth. The calculated IC50% for the combined substances was 250 µg/mL aKG + 83.3 µg/mL 5-HMF (48 h incubation) and 200 µg/mL aKG + 66.7 µg/mL 5-HMF (72 h incubation). None of the tested concentrations of aKG, 5-HMF, or the combined solution had any effect on NCI-H23 cell growth at any incubation time. Caspase-3 activity increased to 21% in MTC-CK cells in the presence of 500 µg/mL aKG, while an increase to 59.6% was observed using 500 µg/mL 5-HMF. The combination of 500 µg/mL aKG + 167.7 µg/mL 5-HMF resulted in a caspase-3 activity of 55.2%. No caspase-3 activation was observed in NCI-H23 cells when treated with aKG, 5-HMF, or the combined solutions. CONCLUSION: CPs may serve as potential markers for distinguishing between cancer cells regulated by RONS. The combination of aKG + 5-HMF showed induced cell death in high-RONS-generating cancer cells compared to low-RONS-generating cancer cells.

16.
Small ; 19(9): e2205876, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36494175

RESUMEN

Electrocatalytic biomass upgrading has proven to be an effective technique for generating value-added products. Herein, the design and development of furfural upgrading using transition-metal borides (MBenes) with simultaneous production of hydrogen are presented. Using density functional theory, the stabilities, selectivities, and activities of 13 MBene candidates are systematically evaluated for furfural upgrading. This research suggests that Fe2 B2 can serve as a promising electrocatalyst for the formation of furoic acid (FAC), with a limiting potential of -0.15 V, and 5-hydroxy-2(5H)-furanone (HFO), with a limiting potential of -0.93 V. Furthermore, Fe2 B2 and Mn2 Fe2 are shown to exhibit favorable limiting potentials of -1.35 and -1.36 V, respectively, for producing 6-hydroxy-2.3-dihydro-6H-pyrano-3-one (HDPO), indicating that they may also serve as electrocatalysts. Based on Sabatier's principle, a descriptor (φ) of material properties is developed for screening catalysts with high catalytic activity considering the electronegativities and d-electron number of metals. Additionally, surface redox potential, electronic properties, and charge-density differences are determined for Fe2 B2 , which is estimated to exhibit high catalytic activity for the oxidation of furfural to FAC and HFO.

17.
Small ; 19(42): e2302271, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37328440

RESUMEN

Amine-containing derivatives are important intermediates in drug manufacturing; sustainable synthesis of amine compounds from green carbon-based biomass derivatives has attracted increasing attention, especially the reductive amination of biomass molecules via electrochemical upgrading. To achieve efficient reductive amination of 5-(hydroxymethyl)furfural (HMF) via electrocatalytic biomass upgrading, this work proposes a new HMF biomass upgrading strategy based on metal supported on Mo2 B2 MBene nanosheets using a density functional theory comprehensive study. HMF and methylamine (CH3 CH2 ) can be reduced to 5-(hydroxymethyl) aldiminefurfural (HMMAMF) via electrocatalytic biomass upgrading, which is identified as a promising technology to produce pharmaceutical intermediates. Based on the proposed reaction mechanisms of HMF reductive amination, this work performs a systematic study of HMF amination to HMMAMF using an atomic model simulation method. This study aims to design a high-efficiency catalyst based on Mo2 B2 @TM nanosheets via the reductive amination of 5-HMF and provide insights into the intrinsic relation between thermochemical and material electronic properties and the role of dopant metals. This work establishes the Gibbs free energy profiles of each reaction HMF Biomass Upgrading on Mo2 B2 systems and obtained the limiting potentials of the rate-determining step, which included the kinetic stability of dopants, HMF adsorbability, and the catalytic activity and selectivity of the hydrogen evolution reaction or surface oxidation. Furthermore, charge transfer, d-band center (εd ), and material property (φ) descriptors are applied to establish a linear correlation to determine promising candidate catalysts for reductive amination of HMF. The candidates Mo2 B2 @Cr, Mo2 B2 @Zr, Mo2 B2 @Nb, Mo2 B2 @Ru, Mo2 B2 @Rh, and Mo2 B2 @Os are suitable high-efficiency catalysts for HMF amination. This work may contribute to the experimental application of biomass upgrading catalysts for biomass energy and guide the future development of biomass conversion strategies and utilization.

18.
Chembiochem ; 24(23): e202300514, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37737725

RESUMEN

Furan-based amines are highly valuable compounds which can be directly obtained via reductive amination from easily accessible furfural, 5-(hydroxymethyl)furfural (HMF) and 2,5-diformylfuran (DFF). Herein the biocatalytic amination of these carbonyl derivatives is disclosed using amine transaminases (ATAs) and isopropylamine (IPA) as amine donors. Among the different biocatalysts tested, the ones from Chromobacterium violaceum (Cv-TA), Arthrobacter citreus (ArS-TA), and variants from Arthrobacter sp. (ArRmut11-TA) and Vibrio fluvialis (Vf-mut-TA), afforded high levels of product formation (>80 %) at 100-200 mM aldehyde concentration. The transformations were studied in terms of enzyme and IPA loading. The pH influence was found as a key factor and attributed to the imine/aldehyde equilibrium that can arise from the high reactivity of the carbonyl substrates with a nucleophilic amine such as IPA.


Asunto(s)
Aldehídos , Aminas , Aminas/química , Furanos , Concentración de Iones de Hidrógeno
19.
Chemistry ; 29(52): e202300950, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392150

RESUMEN

γ-Valerolactone (GVL) is considered as a star biochemical which can be used as a green solvent, fuel additive and versatile organic intermediate. In this study, metal triflate (M(OTf)n ) was utilized as the catalyst for one-pot transformation of furfural (FF) to GVL in alcohol media under microwave irradiation. Alcohol plays multiple functions including solvent, hydrogen donor and alcoholysis reagent in this cascade reaction process. And process efficiency of GVL production from FF upgrading is strongly related to the effective charge density of selected catalyst and the reduction potential of selected alcohol. Complex (OTf)n -M-O(H)R, presenting both Brønsted acid and Lewis acid, is the real catalytic active species in this cascade reaction process. Among various catalysts, Sc(OTf)3 exhibited the best catalytic activity for GVL production. Various reaction parameters including the Sc(OTf)3 amount, reaction temperature and time were optimized by the response surface methodology with the central composite design (RSM-CCD). Up to 81.2 % GVL yield and 100 % FF conversion were achieved at 143.9 °C after 8.1 h in the presence of 0.16 mmol catalyst. This catalyst exhibits high reusability and can be regenerated by oxidative degradation of humins. In addition, a plausible cascade reaction network was proposed based on the distribution of product.

20.
Chemphyschem ; 24(5): e202200614, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342162

RESUMEN

Electrocatalytic hydrogenation of furfural on metal surfaces has become an important research subject due to the potential of the reaction product 2-methylfuran as a renewable energy resource. Identifying effective determinants in this reaction process requires a thorough investigation of the complex electrode-electrolyte interactions, which considers a variety of the influential components. In this work, in operando electrochemical Raman Spectroscopy and Molecular Dynamics simulations were utilized to investigate different characteristics of the interface layer in the electrocatalytic hydrogenation of furfural. Hereby, the influence of applied potentials, electrode material, and electrolyte composition were investigated in detail. The studied parameters give an insight into furfural's binding situation, molecular orientation, and reaction mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA