Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.613
Filtrar
Más filtros

Intervalo de año de publicación
1.
Immunity ; 57(5): 941-956, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38749397

RESUMEN

Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.


Asunto(s)
Ferroptosis , Hierro , Ferroptosis/inmunología , Humanos , Animales , Hierro/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Peroxidación de Lípido/inmunología , Enfermedades Autoinmunes/inmunología , Inmunidad , Estrés Oxidativo/inmunología , Mitocondrias/metabolismo , Mitocondrias/inmunología
2.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220459

RESUMEN

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Asunto(s)
Glioma/metabolismo , Ácido Glutámico/biosíntesis , Transaminasas/fisiología , Línea Celular Tumoral , Glioma/fisiopatología , Ácido Glutámico/efectos de los fármacos , Glutaratos/metabolismo , Glutaratos/farmacología , Homeostasis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/fisiología , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/fisiología , Mutación , Oxidación-Reducción/efectos de los fármacos , Proteínas Gestacionales/genética , Proteínas Gestacionales/fisiología , Transaminasas/antagonistas & inhibidores , Transaminasas/genética
3.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29290465

RESUMEN

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Asunto(s)
Apoptosis , Glutatión Peroxidasa/metabolismo , Convulsiones/metabolismo , Selenio/metabolismo , Animales , Supervivencia Celular , Células Cultivadas , Femenino , Glutatión Peroxidasa/genética , Células HEK293 , Humanos , Peróxido de Hidrógeno/toxicidad , Interneuronas/metabolismo , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Convulsiones/etiología
4.
Annu Rev Biochem ; 86: 777-797, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28654321

RESUMEN

Severe changes in the environmental redox potential, and resulting alterations in the oxidation states of intracellular metabolites and enzymes, have historically been considered negative stressors, requiring responses that are strictly defensive. However, recent work in diverse organisms has revealed that more subtle changes in the intracellular redox state can act as signals, eliciting responses with benefits beyond defense and detoxification. Changes in redox state have been shown to influence or trigger chromosome segregation, sporulation, aerotaxis, and social behaviors, including luminescence as well as biofilm establishment and dispersal. Connections between redox state and complex behavior allow bacteria to link developmental choices with metabolic state and coordinate appropriate responses. Promising future directions for this area of study include metabolomic analysis of species- and condition-dependent changes in metabolite oxidation states and elucidation of the mechanisms whereby the redox state influences circadian regulation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esporas Bacterianas/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/crecimiento & desarrollo , Aliivibrio fischeri/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , Caulobacter crescentus/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Glutatión/metabolismo , Proteínas de la Membrana/genética , Oxidación-Reducción , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces/metabolismo
5.
Cell ; 171(2): 273-285, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28985560

RESUMEN

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Asunto(s)
Muerte Celular , Animales , Apoptosis , Humanos , Hierro/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
6.
Mol Cell ; 84(1): 23-33, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38029751

RESUMEN

Scientists in this field often joke, "If you don't have a mechanism, say it's ROS." Seemingly connected to every biological process ever described, reactive oxygen species (ROS) have numerous pleiotropic roles in physiology and disease. In some contexts, ROS act as secondary messengers, controlling a variety of signaling cascades. In other scenarios, they initiate damage to macromolecules. Finally, in their worst form, ROS are deadly to cells and surrounding tissues. A set of molecules with detoxifying abilities, termed antioxidants, is the direct counterpart to ROS. Notably, antioxidants exist in the public domain, touted as a "cure-all" for diseases. Research has disproved many of these claims and, in some cases, shown the opposite. Of all the diseases, cancer stands out in its paradoxical relationship with antioxidants. Although the field has made numerous strides in understanding the roles of antioxidants in cancer, many questions remain.


Asunto(s)
Antioxidantes , Neoplasias , Humanos , Especies Reactivas de Oxígeno , Estrés Oxidativo , Neoplasias/genética , Transducción de Señal
7.
Mol Cell ; 84(4): 802-810.e6, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157846

RESUMEN

Organelle transporters define metabolic compartmentalization, and how this metabolite transport process can be modulated is poorly explored. Here, we discovered that human SLC25A39, a mitochondrial transporter critical for mitochondrial glutathione uptake, is a short-lived protein under dual regulation at the protein level. Co-immunoprecipitation mass spectrometry and CRISPR knockout (KO) in mammalian cells identified that mitochondrial m-AAA protease AFG3L2 is responsible for degrading SLC25A39 through the matrix loop 1. SLC25A39 senses mitochondrial iron-sulfur cluster using four matrix cysteine residues and inhibits its degradation. SLC25A39 protein regulation is robust in developing and mature neurons. This dual transporter regulation, by protein quality control and metabolic sensing, allows modulating mitochondrial glutathione level in response to iron homeostasis, opening avenues for exploring regulation of metabolic compartmentalization. Neuronal SLC25A39 regulation connects mitochondrial protein quality control, glutathione, and iron homeostasis, which were previously unrelated biochemical features in neurodegeneration.


Asunto(s)
Hierro , Mitocondrias , Animales , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteasas ATP-Dependientes/metabolismo , Hierro/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Homeostasis , Glutatión/metabolismo , Mamíferos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
8.
Immunity ; 53(6): 1168-1181.e7, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326766

RESUMEN

Viruses have evolved multiple strategies to evade elimination by the immune system. Here we examined the contribution of host long noncoding RNAs (lncRNAs) in viral immune evasion. By functional screening of lncRNAs whose expression decreased upon viral infection of macrophages, we identified a lncRNA (lncRNA-GM, Gene Symbol: AK189470.1) that promoted type I interferon (IFN-I) production and inhibited viral replication. Deficiency of lncRNA-GM in mice increased susceptibility to viral infection and impaired IFN-I production. Mechanistically, lncRNA-GM bound to glutathione S-transferase M1 (GSTM1) and blocked GSTM1 interaction with the kinase TBK1, reducing GSTM1-mediated S-glutathionylation of TBK1. Decreased S-glutathionylation enhanced TBK1 activity and downstream production of antiviral mediators. Viral infection reprogrammed intracellular glutathione metabolism and furthermore, an oxidized glutathione mimetic could inhibit TBK1 activity and promote viral replication. Our findings reveal regulation of TBK1 by S-glutathionylation and provide insight into the viral mediated metabolic changes that impact innate immunity and viral evasion.


Asunto(s)
Glutatión/metabolismo , Evasión Inmune , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Glutatión Transferasa/metabolismo , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , ARN Largo no Codificante/genética , Transducción de Señal , Virosis/genética , Virosis/inmunología , Virosis/metabolismo , Replicación Viral
9.
Mol Cell ; 81(15): 3216-3226.e8, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34161757

RESUMEN

Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Animales , Proteínas de Arabidopsis/genética , Sitios de Unión , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Microscopía por Crioelectrón , Cristalografía por Rayos X , Cisteína/metabolismo , Glutatión/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Plantas Modificadas Genéticamente , Dominios Proteicos , Receptores de Glutamato/genética
10.
Genes Dev ; 34(7-8): 544-559, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32079653

RESUMEN

Excessive reactive oxygen species (ROS) can cause oxidative stress and consequently cell injury contributing to a wide range of diseases. Addressing the critical gaps in our understanding of the adaptive molecular events downstream ROS provocation holds promise for the identification of druggable metabolic vulnerabilities. Here, we unveil a direct molecular link between the activity of two estrogen-related receptor (ERR) isoforms and the control of glutamine utilization and glutathione antioxidant production. ERRα down-regulation restricts glutamine entry into the TCA cycle, while ERRγ up-regulation promotes glutamine-driven glutathione production. Notably, we identify increased ERRγ expression/activation as a hallmark of oxidative stress triggered by mitochondrial disruption or chemotherapy. Enhanced tumor antioxidant capacity is an underlying feature of human breast cancer (BCa) patients that respond poorly to treatment. We demonstrate that pharmacological inhibition of ERRγ with the selective inverse agonist GSK5182 increases antitumor efficacy of the chemotherapeutic paclitaxel on poor outcome BCa tumor organoids. Our findings thus underscore the ERRs as novel redox sensors and effectors of a ROS defense program and highlight the potential therapeutic advantage of exploiting ERRγ inhibitors for the treatment of BCa and other diseases where oxidative stress plays a central role.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Resistencia a Antineoplásicos/efectos de los fármacos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Estrógenos/metabolismo , Transducción de Señal/fisiología , Animales , Antineoplásicos/farmacología , Técnicas Biosensibles , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutamina/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Paclitaxel/farmacología , Receptores de Estrógenos/genética , Rotenona/farmacología , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacología , Receptor Relacionado con Estrógeno ERRalfa
11.
Proc Natl Acad Sci U S A ; 121(21): e2400740121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743629

RESUMEN

The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.


Asunto(s)
Citosol , Glutarredoxinas , Glutatión , Proteínas Hierro-Azufre , Mitocondrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Citosol/metabolismo , Proteínas Hierro-Azufre/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Glutatión/metabolismo , Mitocondrias/metabolismo , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Mitocondriales/metabolismo
12.
Trends Biochem Sci ; 47(7): 558-560, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35292185

RESUMEN

Tricarboxylic acid (TCA) cycle is a major hub for catabolic and anabolic reactions, yet cellular metabolic adaptations following its inhibition are largely unknown. Using multi-tiered omics approaches, Ryan et al. have shown convergent activation of the integrated stress response (ISR) through ATF4-mediated rewiring of cellular amino acid and redox metabolic pathways.


Asunto(s)
Aminoácidos , Ciclo del Ácido Cítrico , Homeostasis , Redes y Vías Metabólicas , Oxidación-Reducción
13.
Immunity ; 46(4): 675-689, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423341

RESUMEN

Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.


Asunto(s)
Glutamato-Cisteína Ligasa/deficiencia , Glutatión/metabolismo , Inflamación/metabolismo , Linfocitos T/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Metabolismo Energético/genética , Glutamato-Cisteína Ligasa/genética , Glutamina/metabolismo , Glucólisis , Immunoblotting , Inflamación/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(39): e2306288120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729198

RESUMEN

Nonsmall cell lung cancer (NSCLC) is highly malignant with limited treatment options, platinum-based chemotherapy is a standard treatment for NSCLC with resistance commonly seen. NSCLC cells exploit enhanced antioxidant defense system to counteract excessive reactive oxygen species (ROS), which contributes largely to tumor progression and resistance to chemotherapy, yet the mechanisms are not fully understood. Recent studies have suggested the involvement of histones in tumor progression and cellular antioxidant response; however, whether a major histone variant H1.2 (H1C) plays roles in the development of NSCLC remains unclear. Herein, we demonstrated that H1.2 was increasingly expressed in NSCLC tumors, and its expression was correlated with worse survival. When crossing the H1c knockout allele with a mouse NSCLC model (KrasLSL-G12D/+), H1.2 deletion suppressed NSCLC progression and enhanced oxidative stress and significantly decreased the levels of key antioxidant glutathione (GSH) and GCLC, the catalytic subunit of rate-limiting enzyme for GSH synthesis. Moreover, high H1.2 was correlated with the IC50 of multiple chemotherapeutic drugs and with worse prognosis in NSCLC patients receiving chemotherapy; H1.2-deficient NSCLC cells presented reduced survival and increased ROS levels upon cisplatin treatment, while ROS scavenger eliminated the survival inhibition. Mechanistically, H1.2 interacted with NRF2, a master regulator of antioxidative response; H1.2 enhanced the nuclear level and stability of NRF2 and, thus, promoted NRF2 binding to GCLC promoter and the consequent transcription; while NRF2 also transcriptionally up-regulated H1.2. Collectively, these results uncovered a tumor-driving role of H1.2 in NSCLC and indicate an "H1.2-NRF2" antioxidant feedforward cycle that promotes tumor progression and chemoresistance.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Humanos , Histonas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Antioxidantes , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Glutatión , Modelos Animales de Enfermedad
15.
J Biol Chem ; 300(5): 107289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636663

RESUMEN

Vitamin B12 (cobalamin or Cbl) functions as a cofactor in two important enzymatic processes in human cells, and life is not sustainable without it. B12 is obtained from food and travels from the stomach, through the intestine, and into the bloodstream by three B12-transporting proteins: salivary haptocorrin (HC), gastric intrinsic factor, and transcobalamin (TC), which all bind B12 with high affinity and require proteolytic degradation to liberate Cbl. After intracellular delivery of dietary B12, Cbl in the aquo/hydroxocobalamin form can coordinate various nucleophiles, for example, GSH, giving rise to glutathionylcobalamin (GSCbl), a naturally occurring form of vitamin B12. Currently, there is no data showing whether GSCbl is recognized and transported in the human body. Our crystallographic data shows for the first time the complex between a vitamin B12 transporter and GSCbl, which compared to aquo/hydroxocobalamin, binds TC equally well. Furthermore, sequence analysis and structural comparisons show that TC recognizes and transports GSCbl and that the residues involved are conserved among TCs from different organisms. Interestingly, haptocorrin and intrinsic factor are not structurally tailored to bind GSCbl. This study provides new insights into the interactions between TC and Cbl.


Asunto(s)
Glutatión , Ratas , Transcobalaminas , Vitamina B 12 , Animales , Cristalografía por Rayos X , Glutatión/metabolismo , Glutatión/análogos & derivados , Glutatión/química , Unión Proteica , Transcobalaminas/metabolismo , Transcobalaminas/química , Vitamina B 12/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/química
16.
J Biol Chem ; 300(3): 105746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38354787

RESUMEN

In the methylotrophic yeast Komagataella phaffii, we identified an endoplasmic reticulum-resident protein disulfide isomerase (PDI) family member, Erp41, with a peculiar combination of active site motifs. Like fungal ERp38, it has two thioredoxin-like domains which contain active site motifs (a and a'), followed by an alpha-helical ERp29c C-terminal domain (c domain). However, while the a domain has a typical PDI-like active site motif (CGHC), the a' domain instead has CGYC, a glutaredoxin-like motif which confers to the protein an exceptional affinity for GSH/GSSG. This combination of active site motifs has so far been unreported in PDI-family members. Homology searches revealed ERp41 is present in the genome of some plants, fungal parasites, and a few nonconventional yeasts, among which are Komagataella spp. and Yarrowia lipolytica. These yeasts are both used for the production of secreted recombinant proteins. Here, we analyzed the activity of K. phaffii Erp41. We report that it is nonessential in K. phaffii, and that it can catalyze disulfide bond formation in partnership with the sulfhydryl oxidase Ero1 in vitro with higher turnover rates than the canonical PDI from K. phaffii, Pdi1, but slower activation times. We show how Erp41 has unusually fast glutathione-coupled oxidation activity and relate it to its unusual combination of active sites in its thioredoxin-like domains. We further describe how this determines its unusually efficient catalysis of dithiol oxidation in peptide and protein substrates.


Asunto(s)
Proteína Disulfuro Isomerasas , Pliegue de Proteína , Saccharomycetales , Disulfuros/química , Glutatión/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Estructura Terciaria de Proteína , Saccharomycetales/enzimología , Tiorredoxinas/metabolismo
17.
J Biol Chem ; 300(2): 105645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218225

RESUMEN

Glutathione (GSH) is a highly abundant tripeptide thiol that performs diverse protective and biosynthetic functions in cells. While changes in GSH availability are associated with inborn errors of metabolism, cancer, and neurodegenerative disorders, studying the limiting role of GSH in physiology and disease has been challenging due to its tight regulation. To address this, we generated cell and mouse models that express a bifunctional glutathione-synthesizing enzyme from Streptococcus thermophilus (GshF), which possesses both glutamate-cysteine ligase and glutathione synthase activities. GshF expression allows efficient production of GSH in the cytosol and mitochondria and prevents cell death in response to GSH depletion, but not ferroptosis induction, indicating that GSH is not a limiting factor under lipid peroxidation. CRISPR screens using engineered enzymes further revealed genes required for cell proliferation under cellular and mitochondrial GSH depletion. Among these, we identified the glutamate-cysteine ligase modifier subunit, GCLM, as a requirement for cellular sensitivity to buthionine sulfoximine, a glutathione synthesis inhibitor. Finally, GshF expression in mice is embryonically lethal but sustains postnatal viability when restricted to adulthood. Overall, our work identifies a conditional mouse model to investigate the limiting role of GSH in physiology and disease.


Asunto(s)
Glutamato-Cisteína Ligasa , Glutatión , Animales , Ratones , Butionina Sulfoximina/farmacología , Modelos Animales de Enfermedad , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Glutatión/metabolismo , Línea Celular Tumoral , Humanos
18.
J Biol Chem ; 300(4): 107151, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462161

RESUMEN

The integrated stress response (ISR) refers to signaling pathways initiated by stress-activated eIF2α kinases. Distinct eIF2α kinases respond to different stress signals, including amino acid deprivation and mitochondrial stress. Such stress-induced eIF2α phosphorylation attenuates general mRNA translation and, at the same time, stimulates the preferential translation of specific downstream factors to orchestrate an adaptive gene expression program. In recent years, there have been significant new advances in our understanding of ISR during metabolic stress adaptation. Here, I discuss those advances, reviewing among others the ISR activation mechanisms in response to amino acid deprivation and mitochondrial stress. In addition, I review how ISR regulates the amino acid metabolic pathways and how changes in the ISR impact the physiology and pathology of various disease models.


Asunto(s)
Adaptación Fisiológica , Aminoácidos , Factor 2 Eucariótico de Iniciación , Estrés Fisiológico , Animales , Humanos , Aminoácidos/deficiencia , eIF-2 Quinasa/metabolismo , eIF-2 Quinasa/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Mitocondrias/metabolismo , Fosforilación , Biosíntesis de Proteínas , Transducción de Señal
19.
J Biol Chem ; 300(4): 107123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417796

RESUMEN

Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.


Asunto(s)
Carica , Glutatión Transferasa , Tiram , Carica/enzimología , Carica/genética , Fungicidas Industriales/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/química , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiram/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Plant J ; 118(5): 1603-1618, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38441834

RESUMEN

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2-acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citosol , Dipeptidasas , Glutatión , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Glutatión/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dipeptidasas/metabolismo , Dipeptidasas/genética , Citosol/metabolismo , Dipéptidos/metabolismo , Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA