Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.071
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 171(7): 1625-1637.e13, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29198525

RESUMEN

When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded protein response (UPR) increases ER-protein-folding capacity to restore protein-folding homeostasis. Unfolded proteins activate UPR signaling across the ER membrane to the nucleus by promoting oligomerization of IRE1, a conserved transmembrane ER stress receptor. However, the coupling of ER stress to IRE1 oligomerization and activation has remained obscure. Here, we report that the ER luminal co-chaperone ERdj4/DNAJB9 is a selective IRE1 repressor that promotes a complex between the luminal Hsp70 BiP and the luminal stress-sensing domain of IRE1α (IRE1LD). In vitro, ERdj4 is required for complex formation between BiP and IRE1LD. ERdj4 associates with IRE1LD and recruits BiP through the stimulation of ATP hydrolysis, forcibly disrupting IRE1 dimers. Unfolded proteins compete for BiP and restore IRE1LD to its default, dimeric, and active state. These observations establish BiP and its J domain co-chaperones as key regulators of the UPR.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada , Animales , Cricetinae , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Humanos , Pliegue de Proteína
2.
Mol Cell ; 84(4): 687-701.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266641

RESUMEN

Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Neoplasias , Humanos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , ARN , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , ARN de Transferencia/genética , ARN no Traducido/genética
3.
Annu Rev Biochem ; 85: 715-42, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27050154

RESUMEN

Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.


Asunto(s)
Chaperonina 60/química , Proteínas del Choque Térmico HSP110/química , Proteínas HSP70 de Choque Térmico/química , Proteínas de Choque Térmico Pequeñas/química , Proteínas Mitocondriales/química , Desplegamiento Proteico , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Expresión Génica , Proteínas del Choque Térmico HSP110/genética , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Agregado de Proteínas , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Rhodospirillum rubrum/química , Rhodospirillum rubrum/metabolismo
4.
Mol Cell ; 81(17): 3496-3508.e5, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380015

RESUMEN

The Hsp90 chaperone promotes folding and activation of hundreds of client proteins in the cell through an ATP-dependent conformational cycle guided by distinct cochaperone regulators. The FKBP51 immunophilin binds Hsp90 with its tetratricopeptide repeat (TPR) domain and catalyzes peptidyl-prolyl isomerase (PPIase) activity during folding of kinases, nuclear receptors, and tau. Here we determined the cryoelectron microscopy (cryo-EM) structure of the human Hsp90:FKBP51:p23 complex to 3.3 Å, which, together with mutagenesis and crosslinking analyses, reveals the basis for cochaperone binding to Hsp90 during client maturation. A helix extension in the TPR functions as a key recognition element, interacting across the Hsp90 C-terminal dimer interface presented in the closed, ATP conformation. The PPIase domain is positioned along the middle domain, adjacent to Hsp90 client binding sites, whereas a single p23 makes stabilizing interactions with the N-terminal dimer. With this architecture, FKBP51 is positioned to act on specific client residues presented during Hsp90-catalyzed remodeling.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas de Unión a Tacrolimus/química , Secuencia de Aminoácidos , Sitios de Unión , Biomarcadores de Tumor/química , Biomarcadores de Tumor/metabolismo , Microscopía por Crioelectrón/métodos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformación Molecular , Unión Proteica , Proteínas de Unión a Tacrolimus/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1
5.
Trends Biochem Sci ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39271417

RESUMEN

Small heat shock proteins (sHsps) are an important part of the cellular system maintaining protein homeostasis under physiological and stress conditions. As molecular chaperones, they form complexes with different non-native proteins in an ATP-independent manner. Many sHsps populate ensembles of energetically similar but different-sized oligomers. Regulation of chaperone activity occurs by changing the equilibrium of these ensembles. This makes sHsps a versatile and adaptive system for trapping non-native proteins in complexes, allowing recycling with the help of ATP-dependent chaperones. In this review, we discuss progress in our understanding of the structural principles of sHsp oligomers and their functional principles, as well as their roles in aging and eye lens transparency.

6.
Proc Natl Acad Sci U S A ; 120(6): e2213765120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719917

RESUMEN

Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.


Asunto(s)
Proteínas de Choque Térmico Pequeñas , Cristalino , alfa-Cristalinas , Humanos , alfa-Cristalinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico Pequeñas/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Cristalino/metabolismo
7.
Plant J ; 119(1): 218-236, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38565312

RESUMEN

The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplásmico , Proteínas HSP90 de Choque Térmico , Homeostasis , Ácidos Indolacéticos , Plantones , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética
8.
Trends Immunol ; 43(5): 404-413, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35382994

RESUMEN

Tumor immunosurveillance requires tumor cell-derived molecules to initiate responses through corresponding receptors on antigen presenting cells (APCs) and a specific effector response designed to eliminate the emerging tumor cells. This is supported by evidence from immunodeficient individuals and experimental animals. Recent discoveries suggest that adjuvanticity of tumor-derived heat shock proteins (HSPs) and double-stranded DNA (dsDNA) are necessary for tumor-specific immunity. There is also the obligatory early transfer of tumor antigens to APCs. We argue that tumor-derived HSPs deliver sufficient chaperoned antigen for cross-priming within the quantitative limits set by nascent tumors. In contrast to late-stage tumors, we are only just beginning to understand the unique interactions of the immune system with precancerous/nascent neoplastic cells, which is important for improved cancer prevention measures.


Asunto(s)
Proteínas de Choque Térmico , Neoplasias , Animales , Antígenos de Neoplasias , ADN , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Monitorización Inmunológica
9.
Mol Ther ; 32(9): 3177-3193, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38910328

RESUMEN

Transforming growth factor (TGF)-ß signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-ß signaling regulators can substantially influence TGF-ß's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-ß-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-ß-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-ß signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-ß signaling to attenuate DKD.


Asunto(s)
Nefropatías Diabéticas , Células Endoteliales , Glicoproteínas , Glomérulos Renales , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células Endoteliales/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Diabetes Mellitus Experimental/metabolismo , Humanos , Podocitos/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica
10.
Genes Dev ; 31(22): 2282-2295, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29269486

RESUMEN

Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor-heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes-is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants.


Asunto(s)
Ácido Abscísico/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Meristema/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Sequías , Farnesiltransferasa/genética , Proteínas HSP90 de Choque Térmico/genética , Meristema/anatomía & histología , MicroARNs/metabolismo , Mutación , Prenilación , Transducción de Señal , Factores de Transcripción/metabolismo
11.
J Proteome Res ; 23(8): 3560-3570, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38968604

RESUMEN

In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification. In this study, we incorporate benzoylphenylalanine (BPA), a photoreactive amino acid, at selected sites in an intrinsically disordered region of the human protein HSPB5. We report and characterize a workflow for identifying and visualizing residue-level interactions originating from BPA. We routinely identify 30 to 300 crosslinked peptide spectral matches with this workflow, which is up to ten times more than existing tools for residue-level BPA crosslink identification. Most identified crosslinks are assigned to a precision of one or two residues, which is supported by a high degree of overlap between replicate analyses. Based on these results, we anticipate that this workflow will support the more general use of genetically incorporated, photoreactive amino acids for characterizing the structures of proteins that have resisted high-resolution characterization.


Asunto(s)
Reactivos de Enlaces Cruzados , Fenilalanina , Flujo de Trabajo , Fenilalanina/química , Fenilalanina/análogos & derivados , Reactivos de Enlaces Cruzados/química , Humanos , Aminoácidos/química , Aminoácidos/genética , Proteómica/métodos , Espectrometría de Masas/métodos
12.
Physiol Genomics ; 56(8): 567-575, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881428

RESUMEN

The functions of the heat shock protein 70 (Hsp70) genes were studied using a line of Drosophila melanogaster with a knockout of 6 of these genes out of 13. Namely, the effect of knockout of Hsp70 genes on negative geotaxis climbing (locomotor) speed and the ability to adapt to climbing training (0.5-1.5 h/day, 7 days/wk, 19 days) were examined. Seven- and 23-day-old Hsp70- flies demonstrated a comparable reduction (twofold) in locomotor speed and widespread changes in leg skeletal muscle transcriptome (RNA sequencing) compared with w1118 flies. To identify the functions of genes related to decreased locomotor speed, the overlapped differentially expressed genes at both time points were analyzed: the upregulated genes encoded extracellular proteins, regulators of drug metabolism, and the antioxidant response, whereas downregulated genes encoded regulators of carbohydrate metabolism and transmembrane proteins. In addition, in Hsp70- flies, activation of transcription factors related to disruption of the fibril structure and heat shock response (Hsf) was predicted, using the position weight matrix approach. In control flies, adaptation to chronic exercise training was associated mainly with gene response to a single exercise bout, whereas the predicted transcription factors were related to stress/immune (Hsf, NF-κB, etc.) and early gene response. In contrast, Hsp70- flies demonstrated no adaptation to training as well as a significantly impaired gene response to a single exercise bout. In conclusion, the knockout of Hsp70 genes not only reduced physical performance but also disrupted adaptation to chronic physical training, which is associated with changes in the leg skeletal muscle transcriptome and impaired gene response to a single exercise bout.NEW & NOTEWORTHY Knockout of six heat shock protein 70 (Hsp70) genes in Drosophila melanogaster reduced locomotion (climbing) speed that is associated with genotype-specific differences in leg skeletal muscle gene expression. Disrupted adaptation of Hsp70- flies to chronic exercise training is associated with impaired gene response to a single exercise bout.


Asunto(s)
Drosophila melanogaster , Proteínas HSP70 de Choque Térmico , Locomoción , Músculo Esquelético , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Locomoción/genética , Locomoción/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Técnicas de Inactivación de Genes , Transcriptoma/genética , Condicionamiento Físico Animal/fisiología , Regulación de la Expresión Génica , Masculino
13.
Circulation ; 147(22): 1684-1704, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37066795

RESUMEN

BACKGROUND: A large portion of idiopathic and familial dilated cardiomyopathy (DCM) cases have no obvious causal genetic variant. Although altered response to metabolic stress has been implicated, the molecular mechanisms underlying the pathogenesis of DCM remain elusive. The JMJD family proteins, initially identified as histone deacetylases, have been shown to be involved in many cardiovascular diseases. Despite their increasingly diverse functions, whether JMJD family members play a role in DCM remains unclear. METHODS: We examined Jmjd4 expression in patients with DCM, and conditionally deleted and overexpressed Jmjd4 in cardiomyocytes in vivo to investigate its role in DCM. RNA sequencing, metabolites profiling, and mass spectrometry were used to dissect the molecular mechanism of Jmjd4-regulating cardiac metabolism and hypertrophy. RESULTS: We found that expression of Jmjd4 is significantly decreased in hearts of patients with DCM. Induced cardiomyocyte-specific deletion of Jmjd4 led to spontaneous DCM with severely impaired mitochondrial respiration. Pkm2, the less active pyruvate kinase compared with Pkm1, which is normally absent in healthy adult cardiomyocytes but elevated in cardiomyopathy, was found to be drastically accumulated in hearts with Jmjd4 deleted. Jmjd4 was found mechanistically to interact with Hsp70 to mediate degradation of Pkm2 through chaperone-mediated autophagy, which is dependent on hydroxylation of K66 of Pkm2 by Jmjd4. By enhancing the enzymatic activity of the abundant but less active Pkm2, TEPP-46, a Pkm2 agonist, showed a significant therapeutic effect on DCM induced by Jmjd4 deficiency, and heart failure induced by pressure overload, as well. CONCLUSIONS: Our results identified a novel role of Jmjd4 in maintaining metabolic homeostasis in adult cardiomyocytes by degrading Pkm2 and suggest that Jmjd4 and Pkm2 may be therapeutically targeted to treat DCM, and other cardiac diseases with metabolic dysfunction, as well.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Humanos , Miocitos Cardíacos/metabolismo , Cardiomiopatía Dilatada/patología , Insuficiencia Cardíaca/patología
14.
BMC Genomics ; 25(1): 509, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783170

RESUMEN

BACKGROUND: The increase in temperatures due to the current climate change dramatically affects crop cultivation, resulting in yield losses and altered fruit quality. Tomato is one of the most extensively grown and consumed horticultural products, and although it can withstand a wide range of climatic conditions, heat stress can affect plant growth and development specially on the reproductive stage, severely influencing the final yield. In the present work, the heat stress response mechanisms of one thermotolerant genotype (E42) were investigated by exploring its regulatory gene network. This was achieved through a promoter analysis based on the identification of the heat stress elements (HSEs) mapping in the promoters, combined with a gene co-expression network analysis aimed at identifying interactions among heat-related genes. RESULTS: Results highlighted 82 genes presenting HSEs in the promoter and belonging to one of the 52 gene networks obtained by the GCN analysis; 61 of these also interact with heat shock factors (Hsfs). Finally, a list of 13 candidate genes including two Hsfs, nine heat shock proteins (Hsps) and two GDSL esterase/lipase (GELPs) were retrieved by focusing on those E42 genes exhibiting HSEs in the promoters, interacting with Hsfs and showing variants, compared to Heinz reference genome, with HIGH and/or MODERATE impact on the translated protein. Among these, the Gene Ontology annotation analysis evidenced that only LeHsp100 (Solyc02g088610) belongs to a network specifically involved in the response to heat stress. CONCLUSIONS: As a whole, the combination of bioinformatic analyses carried out on genomic and trascriptomic data available for tomato, together with polymorphisms detected in HS-related genes of the thermotolerant E42 allowed to determine a subset of candidate genes involved in the HS response in tomato. This study provides a novel approach in the investigation of abiotic stress response mechanisms and further studies will be conducted to validate the role of the highlighted genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genotipo , Respuesta al Choque Térmico , Regiones Promotoras Genéticas , Solanum lycopersicum , Termotolerancia , Solanum lycopersicum/genética , Respuesta al Choque Térmico/genética , Termotolerancia/genética , Proteínas de Plantas/genética , Proteínas de Choque Térmico/genética , Perfilación de la Expresión Génica
15.
Neurobiol Dis ; : 106696, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389154

RESUMEN

There is now compelling evidence for the presence of pathological forms of Tau in tissues of both patients and animal models of Huntington's disease (HD). While the root cause of this illness is a mutation within the huntingtin gene, a number of studies now suggest that HD could also be considered a secondary tauopathy. However, the contributory role of Tau in the pathogenesis and pathophysiology of this condition, as well as its implications in cellular toxicity and consequent behavioral impairments are largely unknown. We therefore performed intracerebral stereotaxic injections of recombinant human Tau monomers and fibrils into the knock-in zQ175 mouse model of HD. Tau fibrils induced cognitive and anxiety-like phenotypes predominantly in zQ175 mice and increased the number and size of insoluble mutant huntingtin (mHTT) aggregates in the brains of treated animals. To better understand the putative mechanisms through which Tau could initiate and/or contribute to pathology, we incubated StHdh striatal cells, a cellular model of HD, with the different Tau forms and evaluated the effects on cell functionality and heat shock proteins Hsp70 and Hsp90. Calcium imaging experiments showed functional impairments of HD StHdh cells following treatment with Tau fibrils, as well as significant changes to the levels of both heat shock proteins which were found trapped within mHTT aggregates. The accumulation of Hsp70 and 90 within aggregates was also present in mouse tissue which suggests that alteration of molecular chaperone-dependent protein quality control may influence aggregation, implicating proteostasis in the mHTT-Tau interplay.

16.
BMC Plant Biol ; 24(1): 878, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358741

RESUMEN

BACKGROUND: Phytophthora palmivora is a devastating oomycete pathogen in durian, one of the most economically important crops in Southeast Asia. The use of fungicides in Phytophthora management may not be a long-term solution because of emerging chemical resistance issues. It is crucial to develop Phytophthora-resistant durian cultivars, and information regarding the underlying resistance mechanisms is valuable for smart breeding programs. RESULTS: In this study, we conducted RNA sequencing (RNA-seq) to investigate early gene expression responses (at 8, 24, and 48 h) after the P. palmivora infection in three durian cultivars, which included one resistant cultivar (Puangmanee; PM) and two susceptible cultivars (Monthong; MT and Kradumthong; KD). We performed co-expression and differential gene expression analyses to capture gene expression patterns and identify the differentially expressed genes. The results showed that genes encoding heat shock proteins (HSPs) were upregulated in all infected durians. The expression levels of genes encoding HSPs, such as ERdj3B, were high only in infected PM. A higher level of P. palmivora resistance in PM appeared to be associated with higher expression levels of various genes encoding defense and chitin response proteins, such as lysM domain receptor-like kinases. MT had a lower resistance level than PM, although it possessed more upregulated genes during P. palmivora infection. Many photosynthetic and defense genes were upregulated in the infected MT, although their expression levels were lower than those in the infected PM. KD, the least resistant cultivar, showed downregulation of genes involved in cell wall organization or biogenesis during P. palmivora infection. CONCLUSIONS: Our results showed that the three durian cultivars exhibited significantly different gene expression patterns in response to P. palmivora infection. The upregulation of genes encoding HSPs was common in all studied durians. The high expression of genes encoding chitin response proteins likely contributed to P. palmivora resistance in durians. Durian susceptibility was associated with low basal expression of defense genes and downregulation of several cell wall-related genes. These findings enhance our understanding of durian resistance to Phytophthora infection and could be useful for the development of elite durian cultivars.


Asunto(s)
Resistencia a la Enfermedad , Phytophthora , Enfermedades de las Plantas , Transcriptoma , Phytophthora/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Persea/genética , Persea/microbiología
17.
J Exp Bot ; 75(8): 2246-2255, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38236036

RESUMEN

Plants can be primed to withstand otherwise lethal heat stress (HS) through exposure to a preceding temporary and mild HS, commonly known as the 'thermopriming stimulus'. Plants have also evolved mechanisms to establish 'memories' of a previous stress encounter, or to reset their physiology to the original cellular state once the stress has ended. The priming stimulus triggers a widespread change of transcripts, proteins, and metabolites, which is crucial for maintaining the memory state but may not be required for growth and development under optimal conditions or may even be harmful. In such a scenario, recycling mechanisms such as autophagy are crucial for re-establishing cellular homeostasis and optimizing resource use for post-stress growth. While pivotal for eliminating heat-induced protein aggregates and protecting plants from the harmful impact of HS, recent evidence implies that autophagy also breaks down heat-induced protective macromolecules, including heat shock proteins, functioning as a resetting mechanism during the recovery from mild HS. This review provides an overview of the latest advances in understanding the multifaceted functions of autophagy in HS responses, with a specific emphasis on its roles in recovery from mild HS, and the modulation of HS memory.


Asunto(s)
Proteínas de Choque Térmico , Respuesta al Choque Térmico , Respuesta al Choque Térmico/fisiología , Autofagia , Homeostasis
18.
J Recept Signal Transduct Res ; : 1-13, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189140

RESUMEN

Hsp27 is a member of the small heat-shock proteins (sHSPs) - the known cellular line of defence against abnormal protein folding behaviors. Nevertheless, its upregulation is linked to a variety of pathological disorders, including several types of cancers. The ceramide synthases (CerS) mediate the synthesis of ceramide, a critical structural and signaling lipid. Functionally, downstream ceramide metabolites are implicated in the apoptosis process and their abnormal functionality has been linked to anticancer resistance. Studies showed that CerS1 are possibly inhibited by Hsp27 leading to biochemical anticancer effects in vitro. Nevertheless, the nature of such protein-protein interaction (PPI) has not been considerably investigated in molecular terms, hence, we present the first description of the dynamics CerS1-Hsp27 interaction landscapes using molecular dynamics simulations. Time-scale molecular dynamics simulation analysis indicated a system-wide conformational events of decreased stability, increased flexibility, reduced compactness, and decreased folding of CerS1. Analysis of binding energy showed a favorable interaction entailing 56 residues at the interface and a total stabilizing energy of -158 KJ/mol. The CerS1 catalytic domain experienced an opposite trend compared to the protein backbone. Yet, these residues adopted a highly compact conformation as per DCCM and DSSP analysis. Furthermore, conserved residues (SER 212, ASP 213, ALA 240, GLY 243, ASP 319) comprising the substrate shuttling machinery showed notable rigidity implying a restrained ceramide precursor access and assembly; hence, a possible inhibitory mechanism. Findings from this report would streamline a better molecular understanding of CerS1-Hsp27 interactions and decipher its potential avenue toward unexplored anti-cancer mechanisms and therapy.

19.
Exp Eye Res ; 240: 109790, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224848

RESUMEN

Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.


Asunto(s)
Enfermedades de la Córnea , Diabetes Mellitus , Humanos , Sustancia Propia/metabolismo , Córnea/metabolismo , Enfermedades de la Córnea/etiología , Enfermedades de la Córnea/metabolismo , Hipoxia/metabolismo
20.
Mol Pharm ; 21(4): 1563-1590, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466810

RESUMEN

Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.


Asunto(s)
Inteligencia Artificial , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Diseño de Fármacos , Aprendizaje Automático , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA