Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
Más filtros

Intervalo de año de publicación
1.
Trends Biochem Sci ; 45(3): 228-243, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31473074

RESUMEN

Hundreds of metabolic enzymes work together smoothly in a cell. These enzymes are highly specific. Nevertheless, under physiological conditions, many perform side-reactions at low rates, producing potentially toxic side-products. An increasing number of metabolite repair enzymes are being discovered that serve to eliminate these noncanonical metabolites. Some of these enzymes are extraordinarily conserved, and their deficiency can lead to diseases in humans or embryonic lethality in mice, indicating their central role in cellular metabolism. We discuss how metabolite repair enzymes eliminate glycolytic side-products and prevent negative interference within and beyond this core metabolic pathway. Extrapolating from the number of metabolite repair enzymes involved in glycolysis, hundreds more likely remain to be discovered that protect a wide range of metabolic pathways.


Asunto(s)
Enzimas/metabolismo , Animales , Glucólisis , Humanos , Ratones
2.
Crit Rev Biochem Mol Biol ; 57(2): 133-155, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608838

RESUMEN

Methyl-Cobalamin (Cbl) derives from dietary vitamin B12 and acts as a cofactor of methionine synthase (MS) in mammals. MS encoded by MTR catalyzes the remethylation of homocysteine to generate methionine and tetrahydrofolate, which fuel methionine and cytoplasmic folate cycles, respectively. Methionine is the precursor of S-adenosyl methionine (SAM), the universal methyl donor of transmethylation reactions. Impaired MS activity results from inadequate dietary intake or malabsorption of B12 and inborn errors of Cbl metabolism (IECM). The mechanisms at the origin of the high variability of clinical presentation of impaired MS activity are classically considered as the consequence of the disruption of the folate cycle and related synthesis of purines and pyrimidines and the decreased synthesis of endogenous methionine and SAM. For one decade, data on cellular and animal models of B12 deficiency and IECM have highlighted other key pathomechanisms, including altered interactome of MS with methionine synthase reductase, MMACHC, and MMADHC, endoplasmic reticulum stress, altered cell signaling, and genomic/epigenomic dysregulations. Decreased MS activity increases catalytic protein phosphatase 2A (PP2A) and produces imbalanced phosphorylation/methylation of nucleocytoplasmic RNA binding proteins, including ELAVL1/HuR protein, with subsequent nuclear sequestration of mRNAs and dramatic alteration of gene expression, including SIRT1. Decreased SAM and SIRT1 activity induce ER stress through impaired SIRT1-deacetylation of HSF1 and hypomethylation/hyperacetylation of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), which deactivate nuclear receptors and lead to impaired energy metabolism and neuroplasticity. The reversibility of these pathomechanisms by SIRT1 agonists opens promising perspectives in the treatment of IECM outcomes resistant to conventional supplementation therapies.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa , Sirtuina 1 , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Animales , Ácido Fólico , Mamíferos/metabolismo , Metionina , Sirtuina 1/genética , Sirtuina 1/metabolismo , Vitamina B 12/genética , Vitamina B 12/metabolismo , Vitaminas
3.
Mol Genet Metab ; 141(1): 108115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38181458

RESUMEN

Inborn errors of metabolism (IEMs) encompass a diverse group of disorders that can be difficult to classify due to heterogenous clinical, molecular, and biochemical manifestations. Untargeted metabolomics platforms have become a popular approach to analyze IEM patient samples because of their ability to detect many metabolites at once, accelerating discovery of novel biomarkers, and metabolic mechanisms of disease. However, there are concerns about the reproducibility of untargeted metabolomics research due to the absence of uniform reporting practices, data analyses, and experimental design guidelines. Therefore, we critically evaluated published untargeted metabolomic platforms used to characterize IEMs to summarize the strengths and areas for improvement of this technology as it progresses towards the clinical laboratory. A total of 96 distinct IEMs were collectively evaluated by the included studies. However, most of these IEMs were evaluated by a single untargeted metabolomic method, in a single study, with a limited cohort size (55/96, 57%). The goals of the included studies generally fell into two, often overlapping, categories: detecting known biomarkers from many biochemically distinct IEMs using a single platform, and detecting novel metabolites or metabolic pathways. There was notable diversity in the design of the untargeted metabolomic platforms. Importantly, the majority of studies reported adherence to quality metrics, including the use of quality control samples and internal standards in their experiments, as well as confirmation of at least some of their feature annotations with commercial reference standards. Future applications of untargeted metabolomics platforms to the study of IEMs should move beyond single-subject analyses, and evaluate reproducibility using a prospective, or validation cohort.


Asunto(s)
Errores Innatos del Metabolismo , Humanos , Reproducibilidad de los Resultados , Estudios Prospectivos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/metabolismo , Metabolómica/métodos , Biomarcadores/metabolismo
4.
Mol Genet Metab ; 143(1-2): 108579, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39305737

RESUMEN

OBJECTIVES: Patients with inherited metabolic disorders (IMDs) may require emergency hospital care to prevent life-threatening situations such as metabolic decompensation. To date, over one thousand different rare IMDs have been identified, which means that healthcare professionals (HCPs) initiating emergency treatment may not be familiar with these conditions. The objective of this initiative was to provide HCPs with practical guidance for the acute management of children and adults with IMDs who need emergency care, regardless of the underlying reason. METHODS: We outline how a multidisciplinary working group from the French IMDs Healthcare Network for Rare Diseases, known as G2M, has created concise and standardized protocols _each consisting of a single double-sided A4 sheet _ focused on a specific disease, a group of diseases, or a particular symptom. Prior to validation, these protocols were reviewed by all French reference and competence centres for IMDs, as well as by medical experts from other specialities when necessary, physicians from emergency and intensive care units, and representatives from patient associations. RESULTS AND CONCLUSION: In total, 51 emergency protocols containing essential information have been developed and provided to affected patients. All the emergency protocols are freely available in both French and English at https://www.filiere-g2m.fr/urgences. These standardized protocols aim to enhance the emergency care of patients without delay, while also assisting HCPs by increasing their confidence and efficiency, minimizing the risk of dosage errors when administering specialized treatments, saving time, and reducing the number of phone calls to metabolic medicine specialists on night duty. The protocols are scheduled for annual review to facilitate further improvements based on feedback from HCPs and patients, as well as to accommodate any changes in management practices as they evolve.

5.
Mol Genet Metab ; 142(1): 108351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430613

RESUMEN

Fatty acid oxidation disorders (FAODs) are a family of rare, genetic disorders that affect any part of the fatty acid oxidation pathway. Patients present with severe phenotypes, such as hypoketotic hypoglycemia, cardiomyopathy, and rhabdomyolysis, and currently manage these symptoms by the avoidance of fasting and maintaining a low-fat, high-carbohydrate diet. Because knowledge about FAODs is limited due to the small number of patients, rodent models have been crucial in learning more about these disorders, particularly in studying the molecular mechanisms involved in different phenotypes and in evaluating treatments for patients. The purpose of this review is to present the different FAOD mouse models and highlight the benefits and limitations of using these models. Specifically, we discuss the phenotypes of the available FAOD mouse models, the potential molecular causes of prominent FAOD phenotypes that have been studied using FAOD mouse models, and how FAOD mouse models have been used to evaluate treatments for patients.


Asunto(s)
Modelos Animales de Enfermedad , Ácidos Grasos , Errores Innatos del Metabolismo Lipídico , Oxidación-Reducción , Animales , Ratones , Ácidos Grasos/metabolismo , Humanos , Errores Innatos del Metabolismo Lipídico/genética , Errores Innatos del Metabolismo Lipídico/metabolismo , Errores Innatos del Metabolismo Lipídico/patología , Fenotipo , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/etiología
6.
Mol Genet Metab ; 141(1): 108098, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061323

RESUMEN

BACKGROUND: Inborn errors of metabolism (IEMs) frequently result in progressive and irreversible clinical consequences if not be diagnosed or treated timely. The tandem mass spectrometry (MS/MS)-based newborn screening (NBS) facilitates early diagnosis and treatment of IEMs. The aim of this study was to determine the characteristics of IEMs and the successful deployment and application of MS/MS screening over a 19-year time period in Shanghai, China, to inform national NBS policy. METHODS: The amino acids and acylcarnitines in dried blood spots from 1,176,073 newborns were assessed for IEMs by MS/MS. The diagnosis of IEMs was made through a comprehensive consideration of clinical features, biochemical performance and genetic testing results. The levels of MS/MS testing parameters were compared between various IEM subtypes and genotypes. RESULTS: A total of 392 newborns were diagnosed with IEMs from January 2003 to June 2022. There were 196 newborns with amino acid disorders (50.00%, 1: 5910), 115 newborns with organic acid disorders (29.59%, 1: 10,139), and 81 newborns with fatty acid oxidation disorders (20.41%; 1:14,701). Phenylalanine hydroxylase deficiency, methylmalonic acidemia and primary carnitine deficiency were the three most common disorders. Some hotspot variations in eight IEM genes (PAH, SLC22A5, MMACHC, MMUT, MAT1A, MCCC2, ACADM, ACAD8), 35 novel variants and some genotype-biochemical phenotype associations were identified. CONCLUSIONS: A total of 28 types of IEMs were identified, with an overall incidence of 1: 3000 in Shanghai, China. Our study offered clinical guidance for the implementation of MS/MS-based NBS and genetic counseling for IEMs in this city.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Errores Innatos del Metabolismo , Humanos , Recién Nacido , Espectrometría de Masas en Tándem/métodos , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Errores Innatos del Metabolismo/genética , China/epidemiología , Tamizaje Neonatal/métodos , Miembro 5 de la Familia 22 de Transportadores de Solutos , Oxidorreductasas/metabolismo
7.
Clin Genet ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099467

RESUMEN

There are few cerebrotendineous xanthomatosis (CTX) case series and observational studies including a significant number of Latin American patients. We describe a multicenter Brazilian cohort of patients with CTX highlighting their clinical phenotype, recurrent variants and assessing possible genotype-phenotype correlations. We analyzed data from all patients with clinical and molecular or biochemical diagnosis of CTX regularly followed at six genetics reference centers in Brazil between March 2020 and August 2023. We evaluated 38 CTX patients from 26 families, originating from 4 different geographical regions in Brazil. Genetic analysis identified 13 variants in the CYP27A1 gene within our population, including 3 variants that had not been previously described. The most frequent initial symptom of CTX in Brazil was cataract (27%), followed by xanthomas (24%), chronic diarrhea (13.5%), and developmental delay (13.5%). We observed that the median age at loss of ambulation correlates with the age of onset of neurological symptoms, with an average interval of 10 years (interquartile range 6.9 to 11 years). This study represents the largest CTX case series ever reported in South America. We describe phenotypic characteristics and report three new pathogenic or likely pathogenic variants.

8.
Mov Disord ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119747

RESUMEN

Acute presentation of severe motor disorders is a diagnostic and management challenge. We define severe acute motor exacerbations (SAME) as acute/subacute motor symptoms that persist for hours-to-days with a severity that compromise vital signs (temperature, breath, and heart rate) and bulbar function (swallowing/dysphagia). Phenomenology includes dystonia, choreoathetosis, combined movement disorders, weakness, and hemiplegic attacks. SAME can develop in diverse diseases and can be preceded by triggers or catabolic states. Recent descriptions of SAME in complex neurodevelopmental and epileptic encephalopathies have broadened appreciation of this presentation beyond inborn errors of metabolism. A high degree of clinical suspicion is required to identify appropriately targeted investigations and management. We conducted a comprehensive literature analysis of etiologies. Reported triggers are described and classified as per pathophysiological mechanism. A video of six cases displaying multiple SAME with diverse outcomes is provided. We identified 50 different conditions that manifest SAME, some associated with developmental regression. Etiologies include disorders of metabolism: energy substrate, amino acids, complex molecules, vitamins/cofactors, minerals, and neurotransmitters/synaptic vesicle cycling. Non-metabolic neurodegenerative and genetic disorders that present with movement disorders and epilepsy can additionally manifest SAME. A limited number of triggers are grouped here, together with an approach to investigations and general management strategies. Several neurogenetic and neurometabolic disorders manifest SAME. Identifying triggers can help in certain cases narrow the differential diagnosis and guide the expeditious application of targeted therapies to minimize adverse developmental and neurological consequences. This process may inform pathogenesis and eventually improve our understanding of the mechanisms that lead to the development of SAME. © 2024 International Parkinson and Movement Disorder Society.

9.
Cerebellum ; 23(4): 1626-1641, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38123901

RESUMEN

Cells configure their metabolism in a synchronized and timely manner to meet their energy demands throughout development and adulthood. Transitions of developmental stages are coupled to metabolic shifts, such that glycolysis is highly active during cell proliferation, whereas oxidative phosphorylation prevails in postmitotic states. In the cerebellum, metabolic transitions are remarkable given its protracted developmental timelines. Such distinctive feature, along with its high neuronal density and metabolic demands, make the cerebellum highly vulnerable to metabolic insults. Despite the expansion of metabolomic approaches to uncover biological mechanisms, little is known about the role of metabolism on cerebellar development and maintenance. To illuminate the intricate connections between metabolism, physiology, and cerebellar disorders, we examined here the impact of metabolism on cerebellar growth, maturation, and adulthood through the lens of inborn errors of metabolism.


Asunto(s)
Cerebelo , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Animales , Humanos
10.
Am J Med Genet A ; 194(8): e63609, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38532509

RESUMEN

Mental illnesses are one of the biggest contributors to the global disease burden. Despite the increased recognition, diagnosis and ongoing research of mental health disorders, the etiology and underlying molecular mechanisms of these disorders are yet to be fully elucidated. Moreover, despite many treatment options available, a large subset of the psychiatric patient population is nonresponsive to standard medications and therapies. There has not been a comprehensive study to date examining the burden and impact of treatable genetic disorders (TGDs) that can present with neuropsychiatric features in psychiatric patient populations. In this study, we test the hypothesis that TGDs that present with psychiatric symptoms are more prevalent within psychiatric patient populations compared to the general population by performing targeted next-generation sequencing of 129 genes associated with 108 TGDs in a cohort of 2301 psychiatric patients. In total, 48 putative affected and 180 putative carriers for TGDs were identified, with known or likely pathogenic variants in 79 genes. Despite screening for only 108 genetic disorders, this study showed a two-fold (2.09%) enrichment for genetic disorders within the psychiatric population relative to the estimated 1% cumulative prevalence of all single gene disorders globally. This strongly suggests that the prevalence of these, and most likely all, genetic diseases is greatly underestimated in psychiatric populations. Increasing awareness and ensuring accurate diagnosis of TGDs will open new avenues to targeted treatment for a subset of psychiatric patients.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Trastornos Mentales , Humanos , Trastornos Mentales/genética , Trastornos Mentales/epidemiología , Trastornos Mentales/terapia , Femenino , Masculino , Adulto , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/terapia , Prevalencia , Pruebas Genéticas
11.
J Inherit Metab Dis ; 47(2): 374-386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37870986

RESUMEN

Sulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging. Each sulfatase may differ in their degree of post-translational modification by FGE, which may influence the phenotypic spectrum of MSD. Here, we evaluate if residual sulfatase activity and accumulating GAG patterns distinguish cases from controls and stratify clinical severity groups in MSD. We quantify sulfatase activities and GAG accumulation using three complementary methods in MSD participants. Sulfatases differed greatly in their tolerance of reduction in FGE-mediated activation. Enzymes that degrade heparan sulfate (HS) demonstrated lower residual activities than those that act on other GAGs. Similarly, HS-derived urinary GAG subspecies preferentially accumulated, distinguished cases from controls, and correlated with disease severity. Accumulation patterns of specific sulfatase substrates in MSD provide fundamental insights into sulfatase regulation and will serve as much-needed biomakers for upcoming clinical trials. This work highlights that biomarker investigation of an ultra-rare disease can simultaneously inform our understanding of fundamental biology and advance clinical trial readiness efforts.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Enfermedad por Deficiencia de Múltiples Sulfatasas , Humanos , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Sulfatasas , Glicosaminoglicanos , Heparitina Sulfato , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Gravedad del Paciente
12.
Clin Chem Lab Med ; 62(10): 1991-2000, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-38456798

RESUMEN

OBJECTIVES: Early diagnosis of inborn errors of metabolism (IEM) is crucial to ensure early detection of conditions which are treatable. This study reports on targeted metabolomic procedures for the diagnosis of IEM of amino acids, acylcarnitines, creatine/guanidinoacetate, purines/pyrimidines and oligosaccharides, and describes its validation through external quality assessment schemes (EQA). METHODS: Analysis was performed on a Waters ACQUITY UPLC H-class system coupled to a Waters Xevo triple-quadrupole (TQD) mass spectrometer, operating in both positive and negative electrospray ionization mode. Chromatographic separation was performed on a CORTECS C18 column (2.1 × 150, 1.6 µm). Data were collected by multiple reaction monitoring. RESULTS: The internal and EQA results were generally adequate, with a few exceptions. We calculated the relative measurement error (RME) and only a few metabolites displayed a RME higher than 30 % (asparagine and some acylcarnitine species). For oligosaccharides, semi-quantitative analysis of an educational panel clearly identified the 8 different diseases included. CONCLUSIONS: Overall, we have validated our analytical system through an external quality control assessment. This validation will contribute to harmonization between laboratories, thus improving identification and management of patients with IEM.


Asunto(s)
Errores Innatos del Metabolismo , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/normas , Errores Innatos del Metabolismo/diagnóstico , Cromatografía Líquida de Alta Presión/normas , Cromatografía Líquida de Alta Presión/métodos , Control de Calidad , Carnitina/análogos & derivados , Carnitina/análisis , Metabolómica/métodos
13.
Pediatr Transplant ; 28(1): e14625, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37859572

RESUMEN

Orthotopic liver transplantation (OLT) in the care of children with inborn errors of metabolism (IEM) is well established and represent the second most common indication for pediatric liver transplantation in most centers worldwide, behind biliary atresia. OLT offers cure of disease when a metabolic defect is confined to the liver, but may still be transformative on a patient's quality of life reducing the chance of metabolic crises causing neurological damage in children be with extrahepatic involvement and no "functional cure." Outcomes post-OLT for inborn errors of metabolism are generally excellent. However, this benefit must be balanced with consideration of a composite risk of morbidity, and commitment to a lifetime of post-transplant chronic disease management. An increasing number of transplant referrals for children with IEM has contributed to strain on graft access in many parts of the world. Pragmatic evaluation of IEM referrals is essential, particularly pertinent in cases where progression of extra-hepatic disease is anticipated, with long-term outcome expected to be poor. Decision to proceed with liver transplantation is highly individualized based on the child's dynamic risk-benefit profile, their family unit, and their treating multidisciplinary team. Also to be considered is the chance of future treatments, such as gene therapies, emerging in the medium term.


Asunto(s)
Hepatopatías , Trasplante de Hígado , Enfermedades Metabólicas , Errores Innatos del Metabolismo , Niño , Humanos , Calidad de Vida , Hepatopatías/cirugía
14.
BMC Nephrol ; 25(1): 217, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977946

RESUMEN

BACKGROUND: The etiology of nephrotic syndrome can vary, with underlying metabolic diseases being a potential factor. Cobalamin C (cblC) defect is an autosomal recessive inborn error of metabolism caused by mutations in the MMACHC gene, resulting in impaired vitamin B12 processing. While cblC defect typically manifests with hematological and neurological symptoms, renal involvement is increasingly recognized but remains rare. CASE PRESENTATION: We describe a 7-month-old male patient presenting with fatigue and edema. His first laboratory findings showed anemia, thrombocytopenia, hypoalbuminemia and proteinuria and further examinations reveals hemolysis in peripheric blood smear. During his follow up respiratory distress due to pleural effusion in the right hemithorax was noticed. And fluid leakage to the third spaces supported nephrotic syndrome diagnosis. The patient's condition deteriorated, leading to intensive care admission due to, hypertensive crisis, and respiratory distress. High total plasma homocysteine and low methionine levels raised suspicion of cobalamin metabolism disorders. Genetic testing confirmed biallelic MMACHC gene mutations, establishing the diagnosis of cblC defect. Treatment with hydroxycobalamin, folic acid, and betaine led to remarkable clinical improvement. DISCUSSION/CONCLUSION: This case underscores the significance of recognizing metabolic disorders like cblC defect in atypical presentations of nephrotic syndrome. Early diagnosis and comprehensive management are vital to prevent irreversible renal damage. While cblC defects are more commonly associated with atypical hemolytic uremic syndrome, this case highlights the importance of considering cobalamin defects in the differential diagnosis of nephrotic syndrome, especially when associated with accompanying findings such as hemolysis. Our case, which has one of the highest homocysteine levels reported in the literature, emphasizes this situation again.


Asunto(s)
Hipertensión Maligna , Síndrome Nefrótico , Deficiencia de Vitamina B 12 , Humanos , Masculino , Síndrome Nefrótico/complicaciones , Síndrome Nefrótico/etiología , Síndrome Nefrótico/diagnóstico , Deficiencia de Vitamina B 12/complicaciones , Deficiencia de Vitamina B 12/diagnóstico , Deficiencia de Vitamina B 12/genética , Lactante , Hipertensión Maligna/complicaciones , Hipertensión Maligna/diagnóstico , Hipertensión Maligna/etiología , Oxidorreductasas/deficiencia , Vitamina B 12/uso terapéutico , Proteínas Portadoras/genética
15.
BMC Pediatr ; 24(1): 424, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956494

RESUMEN

OBJECTIVES: Although recent discoveries regarding the biomarkers of newborn screening (NBS) programs by tandem mass spectrometry (MS/MS) highlight the critical need to establish reference intervals (RIs) specifically for preterm infants, no such RIs has been formally published yet. This study addressed the gap by offering a comprehensive set of reference intervals (RIs) for preterm neonates, and illustrating the dynamic changes of each biomarker with age. DESIGN AND METHODS: The NBS data of 199,693 preterm newborns (< 37 weeks of gestation) who met the inclusion and exclusion criteria from the NNSCP database were included in study analysis. The birth weight stratified dynamic trend of each biomarker were captured by their concentrations over age. Reference partitions were determined by the method of Harris and Boyd. RIs, corresponding to the 2.5th and 97.5th percentiles, as well as the 0.5th, 25th, 50th, 75th and 99.5th percentiles were calculated using a non-parametric rank approach. RESULTS: Increasing birth weight is associated with an elevation in the levels of arginine, citrulline, glycine, leucine and isobarics, methionine, ornithine, phenylalanine, and valine, whereas the levels of alanine, proline and tyrosine decrease. Additionally, two short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and isovalerylcarnitine + methylbutyrylcarnitine) and a median-chain acylcarnitine (octenoylcarnitine) decrease, while four long-chain acylcarnitines (tetradecanoylcarnitine, palmitoylcarnitine, palmitoleylcarnitine and oleoylcarnitine) increase with increasing birth weight. Age impacts the levels of all MS/MS NBS biomarkers, while sex only affects the level of malonylcarnitine + 3-hydroxybutyrylcarnitine (C3-DC + C4-OH) in very low birth weight preterm neonates. CONCLUSION: The current study developed reference intervals (RIs) specific to birth weight, age, and/or sex for 35 MS/MS biomarkers, which can help in the timely evaluation of the health and disease of preterm neonates.


Asunto(s)
Biomarcadores , Pruebas con Sangre Seca , Recien Nacido Prematuro , Tamizaje Neonatal , Espectrometría de Masas en Tándem , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Valores de Referencia , Masculino , Femenino , Biomarcadores/sangre , Recien Nacido Prematuro/sangre , Estudios Retrospectivos , Pruebas con Sangre Seca/métodos , China , Carnitina/sangre , Carnitina/análogos & derivados , Peso al Nacer , Pueblos del Este de Asia
16.
Neurocrit Care ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138714

RESUMEN

BACKGROUND: Acute metabolic crises in inborn errors of metabolism (such as urea cycle disorders, organic acidemia, maple syrup urine disease, and mitochondrial disorders) are neurological emergencies requiring management in the pediatric intensive care unit (PICU). There is a paucity of data pertaining to electroencephalograms (EEG) characteristics in this cohort. We hypothesized that the incidence of background abnormalities and seizures in this cohort would be high. Neuromonitoring data from our center's PICU over 10 years are presented in this article. METHODS: Data were collected by retrospective chart review for patients with the aforementioned disorders who were admitted to the PICU at our institution because of metabolic/neurologic symptoms from 2008 to 2018. Descriptive statistics (χ2 test or Fisher's exact test) were used to study the association between EEG parameters and outcomes. RESULTS: Our cohort included 40 unique patients (8 with urea cycle disorder, 7 with organic acidemia, 3 with maple syrup urine disease, and 22 with mitochondrial disease) with 153 admissions. Presenting symptoms included altered mentation (36%), seizures (41%), focal weakness (5%), and emesis (28%). Continuous EEG was ordered in 34% (n = 52) of admissions. Twenty-three admissions were complicated by seizures, including eight manifesting as status epilepticus (seven nonconvulsive and one convulsive). Asymmetry and focal slowing on EEG were associated with seizures. Moderate background slowing or worse was noted in 75% of EEGs. Among those patients monitored on EEG, 4 (8%) died, 3 (6%) experienced a worsening of their Pediatric Cerebral Performance Category (PCPC) score as compared to admission, and 44 (86%) had no change (or improvement) in their PCPC score during admission. CONCLUSIONS: This study shows a high incidence of clinical and subclinical seizures during metabolic crisis in patients with inborn errors of metabolism. EEG background features were associated with risk of seizures as well as discharge outcomes. This is the largest study to date to investigate EEG features and risk of seizures in patients with neurometabolic disorders admitted to the PICU. These data may be used to inform neuromonitoring protocols to improve mortality and morbidity in inborn errors of metabolism.

17.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891907

RESUMEN

Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.


Asunto(s)
Biomarcadores , Pruebas con Sangre Seca , Enfermedad de la Orina de Jarabe de Arce , Metabolómica , Tamizaje Neonatal , Humanos , Enfermedad de la Orina de Jarabe de Arce/sangre , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Recién Nacido , Pruebas con Sangre Seca/métodos , Biomarcadores/sangre , Metabolómica/métodos , Masculino , Femenino , Tamizaje Neonatal/métodos , Metaboloma , Espectrometría de Masas en Tándem
18.
Immunol Rev ; 295(1): 82-100, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32236968

RESUMEN

Metabolically quiescent T cells circulate throughout the body in search of antigen. Following engagement of their cognate receptors, T cells undergo metabolic reprogramming to support their activation, differentiation, and ultimately function. In the spirit of Sir Archibald Garrod, this metabolic reprogramming actually imparts a chemical individuality which confers advantage, while in others confers vulnerability, depending upon the milieu. Studying T cell immunometabolism in the context of inborn errors of metabolism allows one to define essential pathways of intermediary metabolism as well metabolic vulnerabilities and plasticity. Inborn errors of metabolism, a class of diseases first named by Garrod, have a long history of being informative for common physiologic and pathologic processes. This endeavor may be accomplished through the study of patients, animal models, and in vitro models of inborn errors of metabolism. In this review, the basics of intermediary metabolism and core metabolic pathways will be discussed, along with their relationship to T cell immunometabolism. Due to their pleiotropic nature, the reader will be specifically directed toward various inborn errors of metabolism which may be helpful for answering important questions about the role of metabolism in T cells.


Asunto(s)
Metabolismo Energético , Inmunidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Humanos , Metabolismo de los Lípidos , Activación de Linfocitos/inmunología , Redes y Vías Metabólicas , Oxidación-Reducción , Estrés Oxidativo
19.
J Pak Med Assoc ; 74(6): 1136-1143, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948986

RESUMEN

Organic acid disorders are rare inherited metabolic disorders of key metabolic pathways. For the identification of specific organic acids, investigation of urinary metabolites and genetic testing are required through newborn screening programmes. Delayed diagnosis leads to complications, such as cardiac attacks, respiratory problems, neuro-developmental disorders, intellectual disability, and even premature death. The burden of such inherited disorders is quite high in developing countries of South Asia due to high rate of consanguinity in the region. Unfortunately, such disorders are left untreated due to the lack of screening facilities in such countries. The current narrative review was planned to highlight the urgent need for closing this gap and implementing effective newborn screening programmes for organic acid disorders in developing countries. The implementation of effective programmes is crucial for reducing morbidity and mortality, and for improving the quality of life for the affected children and of their families, thus promoting global health equity.


Asunto(s)
Países en Desarrollo , Tamizaje Neonatal , Humanos , Tamizaje Neonatal/métodos , Recién Nacido , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/epidemiología , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico
20.
Turk J Med Sci ; 54(4): 710-717, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39295611

RESUMEN

Background/aim: Tandem mass spectrometry is helpful in diagnosing amino acid metabolism disorders, organic acidemias, and fatty acid oxidation disorders and can provide rapid and accurate diagnosis for inborn errors of metabolism. The aim of this study was to predict inborn errors of metabolism in children with the help of artificial neural networks using tandem mass spectrometry data. Materials and methods: Forty-seven and 13 parameters of tandem mass spectrometry datasets obtained from 2938 different patients were respectively taken into account to train and test the artificial neural networks. Different artificial neural network models were established to obtain better prediction performances. The obtained results were compared with each other for fair comparisons. Results: The best results were obtained by using the rectified linear unit activation function. One, two, and three hidden layers were considered for artificial neural network models established with both 47 and 13 parameters. The sensitivity of model B2 for definitive inherited metabolic disorders was found to be 80%. The accuracy rates of model A3 and model B2 are 99.3% and 99.2%, respectively. The area under the curve value of model A3 was 0.87, while that of model B2 was 0.90. Conclusion: The results showed that the proposed artificial neural networks are capable of predicting inborn errors of metabolism very accurately. Therefore, developing new technologies to identify and predict inborn errors of metabolism will be very useful.


Asunto(s)
Errores Innatos del Metabolismo , Redes Neurales de la Computación , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Errores Innatos del Metabolismo/diagnóstico , Niño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA