RESUMEN
Affective touch-a slow, gentle, and pleasant form of touch-activates a different neural network than which is activated during discriminative touch in humans. Affective touch perception is enabled by specialized low-threshold mechanoreceptors in the skin with unmyelinated fibers called C tactile (CT) afferents. These CT afferents are conserved across mammalian species, including macaque monkeys. However, it is unknown whether the neural representation of affective touch is the same across species and whether affective touch's capacity to activate the hubs of the brain that compute socioaffective information requires conscious perception. Here, we used functional MRI to assess the preferential activation of neural hubs by slow (affective) vs. fast (discriminative) touch in anesthetized rhesus monkeys (Macaca mulatta). The insula, anterior cingulate cortex (ACC), amygdala, and secondary somatosensory cortex were all significantly more active during slow touch relative to fast touch, suggesting homologous activation of the interoceptive-allostatic network across primate species during affective touch. Further, we found that neural responses to affective vs. discriminative touch in the insula and ACC (the primary cortical hubs for interoceptive processing) changed significantly with age. Insula and ACC in younger animals differentiated between slow and fast touch, while activity was comparable between conditions for aged monkeys (equivalent to >70 y in humans). These results, together with prior studies establishing conserved peripheral nervous system mechanisms of affective touch transduction, suggest that neural responses to affective touch are evolutionarily conserved in monkeys, significantly impacted in old age, and do not necessitate conscious experience of touch.
Asunto(s)
Estado de Conciencia , Macaca mulatta , Imagen por Resonancia Magnética , Percepción del Tacto , Animales , Estado de Conciencia/fisiología , Percepción del Tacto/fisiología , Masculino , Tacto/fisiología , Evolución Biológica , Corteza Somatosensorial/fisiología , Encéfalo/fisiología , Envejecimiento/fisiología , Femenino , Giro del Cíngulo/fisiologíaRESUMEN
Goal-directed actions are characterized by two main features: the content (i.e., the action goal) and the form, called vitality forms (VF) (i.e., how actions are executed). It is well established that both the action content and the capacity to understand the content of another's action are mediated by a network formed by a set of parietal and frontal brain areas. In contrast, the neural bases of action forms (e.g., gentle or rude actions) have not been characterized. However, there are now studies showing that the observation and execution of actions endowed with VF activate, in addition to the parieto-frontal network, the dorso-central insula (DCI). In the present study, we established-using dynamic causal modeling (DCM)-the direction of information flow during observation and execution of actions endowed with gentle and rude VF in the human brain. Based on previous fMRI studies, the selected nodes for the DCM comprised the posterior superior temporal sulcus (pSTS), the inferior parietal lobule (IPL), the premotor cortex (PM), and the DCI. Bayesian model comparison showed that, during action observation, two streams arose from pSTS: one toward IPL, concerning the action goal, and one toward DCI, concerning the action vitality forms. During action execution, two streams arose from PM: one toward IPL, concerning the action goal and one toward DCI concerning action vitality forms. This last finding opens an interesting question concerning the possibility to elicit VF in two distinct ways: cognitively (from PM to DCI) and affectively (from DCI to PM).
Asunto(s)
Mapeo Encefálico , Objetivos , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Red Nerviosa/fisiología , Teorema de Bayes , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Lóbulo Parietal/fisiología , Modelos Neurológicos , Adulto JovenRESUMEN
Understanding the claustrum's functions has recently progressed thanks to new anatomical and behavioral studies in rodents, which suggest that it plays an important role in attention, salience detection, slow-wave generation, and neocortical network synchronization. Nevertheless, knowledge about the origin and development of the claustrum, especially in primates, is still limited. Here, we show that neurons of rhesus macaque claustrum primordium are generated between embryonic day E48 and E55 and express some neocortical molecular markers, such as NR4A2, SATB2, and SOX5. However, in the early stages, it lacks TBR1 expression, which separates it from other surrounding telencephalic structures. We also found that two waves of neurogenesis (E48 and E55) in the claustrum, corresponding to the birthdates of layers 6 and 5 of the insular cortex, establish a "core" and "shell" cytoarchitecture, which is potentially a basis for differential circuit formation and could influence information processing underlying higher cognitive functions of the claustrum. In addition, parvalbumin-positive interneurons are the dominant interneuron type in the claustrum in fetal macaque, and their maturation is independent of that in the overlaying neocortex. Finally, our study reveals that the claustrum is likely not a continuance of subplate neurons of the insular cortex, but an independent pallial region, suggesting its potentially unique role in cognitive control.
Asunto(s)
Claustro , Neocórtex , Animales , Macaca mulatta , Neuronas/metabolismo , InterneuronasRESUMEN
The human cerebrum consists of a precise and stereotyped arrangement of lobes, primary gyri, and connectivity that underlies human cognition [P. Rakic, Nat. Rev. Neurosci. 10, 724-735 (2009)]. The development of this arrangement is less clear. Current models explain individual primary gyrification but largely do not account for the global configuration of the cerebral lobes [T. Tallinen, J. Y. Chung, J. S. Biggins, L. Mahadevan, Proc. Natl. Acad. Sci. U.S.A. 111, 12667-12672 (2014) and D. C. Van Essen, Nature 385, 313-318 (1997)]. The insula, buried in the depths of the Sylvian fissure, is unique in terms of gyral anatomy and size. Here, we quantitatively show that the insula has unique morphology and location in the cerebrum and that these key differences emerge during fetal development. Finally, we identify quantitative differences in developmental migration patterns to the insula that may underlie these differences. We calculated morphologic data in the insula and other lobes in adults (N = 107) and in an in utero fetal brain atlas (N = 81 healthy fetuses). In utero, the insula grows an order of magnitude slower than the other lobes and demonstrates shallower sulci, less curvature, and less surface complexity both in adults and progressively throughout fetal development. Spherical projection analysis demonstrates that the lenticular nuclei obstruct 60 to 70% of radial pathways from the ventricular zone (VZ) to the insula, forcing a curved migration to the insula in contrast to a direct radial pathway. Using fetal diffusion tractography, we identify radial glial fascicles that originate from the VZ and curve around the lenticular nuclei to form the insula. These results confirm existing models of radial migration to the cortex and illustrate findings that suggest differential insular and cerebral development, laying the groundwork to understand cerebral malformations and insular function and pathologies.
Asunto(s)
Desarrollo Fetal , Corteza Insular , Corteza Insular/anatomía & histología , Corteza Insular/diagnóstico por imagen , Corteza Insular/crecimiento & desarrollo , Imagen de Difusión Tensora , Humanos , Masculino , Femenino , Adulto Joven , AdultoRESUMEN
Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AICâDLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AICâDLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AICâDLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.
Asunto(s)
Alcoholismo , Consumo Excesivo de Bebidas Alcohólicas , Dolor Crónico , Enfermedades del Sistema Nervioso Periférico , Humanos , Ratones , Animales , Masculino , Dolor Crónico/metabolismo , Corteza Insular , Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Etanol/farmacología , Neuronas/metabolismo , Alcoholismo/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismoRESUMEN
Much remains unknown about the etiology of compulsion-like alcohol drinking, where consumption persists despite adverse consequences. The role of the anterior insula (AIC) in emotion, motivation, and interoception makes this brain region a likely candidate to drive challenge-resistant behavior, including compulsive drinking. Indeed, subcortical projections from the AIC promote compulsion-like intake in rats and are recruited in heavy-drinking humans during compulsion for alcohol, highlighting the importance of and need for more information about AIC activity patterns that support aversion-resistant responding. Single-unit activity was recorded in the AIC from 15 male rats during alcohol-only and compulsion-like consumption. We found three sustained firing phenotypes, sustained-increase, sustained-decrease, and drinking-onset cells, as well as several firing patterns synchronized with licking. While many AIC neurons had session-long activity changes, only neurons with firing increases at drinking onset had greater activity under compulsion-like conditions. Further, only cells with persistent firing increases maintained activity during pauses in licking, suggesting roles in maintaining drive for alcohol during breaks. AIC firing was not elevated during saccharin drinking, similar to lack of effect of AIC inhibition on sweet fluid intake in many studies. In addition, we observed subsecond changes in AIC neural activity tightly entrained to licking. One lick-synched firing pattern (determined for all licks in a session) predicted compulsion-like drinking, while a separate lick-associated pattern correlated with greater consumption across alcohol intake conditions. Collectively, these data provide a more integrated model for the role of AIC firing in compulsion-like drinking, with important relevance for how the AIC promotes sustained motivated responding more generally.
Asunto(s)
Consumo de Bebidas Alcohólicas , Motivación , Humanos , Ratas , Masculino , Animales , Consumo de Bebidas Alcohólicas/psicología , Etanol/farmacología , Gusto , Conducta AnimalRESUMEN
Simulation theories predict that the observation of other's expressions modulates neural activity in the same centres controlling their production. This hypothesis has been developed by two models, postulating that the visual input is directly projected either to the motor system for action recognition (motor resonance) or to emotional/interoceptive regions for emotional contagion and social synchronization (emotional resonance). Here we investigated the role of frontal/insular regions in the processing of observed emotional expressions by combining intracranial recording, electrical stimulation and effective connectivity. First, we intracranially recorded from prefrontal, premotor or anterior insular regions of 44 patients during the passive observation of emotional expressions, finding widespread modulations in prefrontal/insular regions (anterior cingulate cortex, anterior insula, orbitofrontal cortex and inferior frontal gyrus) and motor territories (Rolandic operculum and inferior frontal junction). Subsequently, we electrically stimulated the activated sites, finding that (i) in the anterior cingulate cortex and anterior insula, the stimulation elicited emotional/interoceptive responses, as predicted by the 'emotional resonance model'; (ii) in the Rolandic operculum it evoked face/mouth sensorimotor responses, in line with the 'motor resonance' model; and (iii) all other regions were unresponsive or revealed functions unrelated to the processing of facial expressions. Finally, we traced the effective connectivity to sketch a network-level description of these regions, finding that the anterior cingulate cortex and the anterior insula are reciprocally interconnected while the Rolandic operculum is part of the parieto-frontal circuits and poorly connected with the former. These results support the hypothesis that the pathways hypothesized by the 'emotional resonance' and the 'motor resonance' models work in parallel, differing in terms of spatio-temporal fingerprints, reactivity to electrical stimulation and connectivity patterns.
Asunto(s)
Emociones , Expresión Facial , Humanos , Emociones/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Persona de Mediana Edad , Mapeo Encefálico/métodos , Estimulación Eléctrica , Corteza Insular/diagnóstico por imagen , Corteza Insular/fisiología , Imagen por Resonancia Magnética/métodosRESUMEN
Individuals with autism spectrum disorder (ASD) experience pervasive difficulties in processing social information from faces. However, the behavioral and neural mechanisms underlying social trait judgments of faces in ASD remain largely unclear. Here, we comprehensively addressed this question by employing functional neuroimaging and parametrically generated faces that vary in facial trustworthiness and dominance. Behaviorally, participants with ASD exhibited reduced specificity but increased inter-rater variability in social trait judgments. Neurally, participants with ASD showed hypo-activation across broad face-processing areas. Multivariate analysis based on trial-by-trial face responses could discriminate participant groups in the majority of the face-processing areas. Encoding social traits in ASD engaged vastly different face-processing areas compared to controls, and encoding different social traits engaged different brain areas. Interestingly, the idiosyncratic brain areas encoding social traits in ASD were still flexible and context-dependent, similar to neurotypicals. Additionally, participants with ASD also showed an altered encoding of facial saliency features in the eyes and mouth. Together, our results provide a comprehensive understanding of the neural mechanisms underlying social trait judgments in ASD.
Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Reconocimiento Facial , Imagen por Resonancia Magnética , Percepción Social , Humanos , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/psicología , Masculino , Femenino , Adulto , Adulto Joven , Reconocimiento Facial/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Juicio/fisiología , Mapeo Encefálico , AdolescenteRESUMEN
Diffusion tractography allows identification and measurement of structural tracts in the human brain previously associated with motivated behavior in animal models. Recent findings indicate that the structural properties of a tract connecting the midbrain to nucleus accumbens (NAcc) are associated with a diagnosis of stimulant use disorder (SUD), but not relapse. In this preregistered study, we used diffusion tractography in a sample of patients treated for SUD (n = 60) to determine whether qualities of tracts projecting from medial prefrontal, anterior insular, and amygdalar cortices to NAcc might instead foreshadow relapse. As predicted, reduced diffusion metrics of a tract projecting from the right anterior insula to the NAcc were associated with subsequent relapse to stimulant use, but not with previous diagnosis. These findings highlight a structural target for predicting relapse to stimulant use and further suggest that distinct connections to the NAcc may confer risk for relapse versus diagnosis.
Asunto(s)
Estimulantes del Sistema Nervioso Central , Núcleo Accumbens , Corteza Prefrontal , Trastornos Relacionados con Sustancias , Sustancia Blanca , Animales , Estimulantes del Sistema Nervioso Central/efectos adversos , Humanos , Núcleo Accumbens/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Recurrencia , Trastornos Relacionados con Sustancias/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagenRESUMEN
Development of self-regulatory competencies during adolescence is partially dependent on normative brain maturation. Here, we report that adolescent rats as compared to adults exhibit impulsive and compulsive-like behavioral traits, the latter being associated with lower expression of mRNA levels of the immediate early gene zif268 in the anterior insula cortex (AIC). This suggests that underdeveloped AIC function in adolescent rats could contribute to an immature pattern of interoceptive cue integration in decision making and a compulsive phenotype. In support of this, we report that layer 5 pyramidal neurons in the adolescent rat AIC are hypoexcitable and receive fewer glutamatergic synaptic inputs compared to adults. Chemogenetic activation of the AIC attenuated compulsive traits in adolescent rats supporting the idea that in early stages of AIC maturity there exists a suboptimal integration of sensory and cognitive information that contributes to inflexible behaviors in specific conditions of reward availability.
Asunto(s)
Conducta Compulsiva , Corteza Insular , Animales , Corteza Cerebral/fisiología , Neuronas , Corteza Prefrontal/fisiología , Ratas , RecompensaRESUMEN
We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AIâPir and PLâPir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AIâPir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PLâPir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AIâPir and PLâPir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AIâPir and PLâPir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.
Asunto(s)
Fentanilo , Corteza Piriforme , Humanos , Ratas , Masculino , Femenino , Animales , Ratas Sprague-Dawley , Preferencias Alimentarias , Alimentos , Autoadministración , Extinción Psicológica , Comportamiento de Búsqueda de Drogas/fisiologíaRESUMEN
Alcohol use disorder is complex and multifaceted, involving the coordination of multiple signaling systems across numerous brain regions. Previous work has indicated that both the insular cortex and dynorphin (DYN)/kappa opioid receptor (KOR) systems contribute to excessive alcohol use. More recently, we identified a microcircuit in the medial aspect of the insular cortex that signals through DYN/KOR. Here, we explored the role of insula DYN/KOR circuit components on alcohol intake in a long-term intermittent access (IA) procedure. Using a combination of conditional knock-out strategies and site-directed pharmacology, we discovered distinct and sex-specific roles for insula DYN and KOR in alcohol drinking and related behavior. Our findings show that insula DYN deletion blocked escalated consumption and decreased the overall intake of and preference for alcohol in male and female mice. This effect was specific to alcohol in male mice, as DYN deletion did not impact sucrose intake. Further, insula KOR antagonism reduced alcohol intake and preference during the early phase of IA in male mice only. Alcohol consumption was not affected by insula KOR knockout in either sex. In addition, we found that long-term IA decreased the intrinsic excitability of DYN and deep layer pyramidal neurons (DLPNs) in the insula of male mice. Excitatory synaptic transmission was also impacted by IA, as it drove an increase in excitatory synaptic drive in both DYN neurons and DLPNs. Combined, our findings suggest there is a dynamic interplay between excessive alcohol consumption and insula DYN/KOR microcircuitry.SIGNIFICANCE STATEMENT The insular cortex is a complex region that serves as an integratory hub for sensory inputs. In our previous work, we identified a microcircuit in the insula that signals through the kappa opioid receptor (KOR) and its endogenous ligand dynorphin (DYN). Both the insula and DYN/KOR systems have been implicated in excessive alcohol use and alcohol use disorder (AUD). Here, we use converging approaches to determine how insula DYN/KOR microcircuit components contribute to escalated alcohol consumption. Our findings show that insula DYN/KOR systems regulate distinct phases of alcohol consumption in a sex-specific manner, which may contribute to the progression to AUD.
Asunto(s)
Alcoholismo , Receptores Opioides kappa , Femenino , Ratones , Masculino , Animales , Receptores Opioides kappa/metabolismo , Dinorfinas/metabolismo , Corteza Insular , Consumo de Bebidas Alcohólicas , EtanolRESUMEN
Olfactory dysfunction is often the earliest indicator of disease in a range of neurological and psychiatric disorders. One tempting working hypothesis is that pathological changes in the peripheral olfactory system where the body is exposed to many adverse environmental stressors may have a causal role for the brain alteration. Whether and how the peripheral pathology spreads to more central brain regions may be effectively studied in rodent models, and there is successful precedence in experimental models for Parkinson's disease. It is of interest to study whether a similar mechanism may underlie the pathology of psychiatric illnesses, such as schizophrenia. However, direct comparison between rodent models and humans includes challenges under light of comparative neuroanatomy and experimental methodologies used in these two distinct species. We believe that neuroimaging modality that has been the main methodology of human brain studies may be a useful viewpoint to address and fill the knowledge gap between rodents and humans in this scientific question. Accordingly, in the present review article, we focus on brain imaging studies associated with olfaction in healthy humans and patients with neurological and psychiatric disorders, and if available those in rodents. We organize this review article at three levels: 1) olfactory bulb (OB) and peripheral structures of the olfactory system, 2) primary olfactory cortical and subcortical regions, and 3) associated higher-order cortical regions. This research area is still underdeveloped, and we acknowledge that further validation with independent cohorts may be needed for many studies presented here, in particular those with human subjects. Nevertheless, whether and how peripheral olfactory disturbance impacts brain function is becoming even a hotter topic in the ongoing COVID-19 pandemic, given the risk of long-term changes of mental status associated with olfactory infection of SARS-CoV-2. Together, in this review article, we introduce this underdeveloped but important research area focusing on its implications in neurological and psychiatric disorders, with several pioneered publications.
Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Neuroimagen/efectos adversos , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/etiología , Trastornos del Olfato/patología , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/patología , Pandemias , SARS-CoV-2 , OlfatoRESUMEN
Functional imaging has helped to understand the role of the human insula as a major processing network for integrating input with the current state of the body. However, these studies remain at a correlative level. Studies that have examined insula damage show lesion-specific performance deficits. Case reports have provided anecdotal evidence for deficits following insula damage, but group lesion studies offer a number of advances in providing evidence for functional representation of the insula. We conducted a systematic literature search to review group studies of patients with insula damage after stroke and identified 23 studies that tested emotional processing performance in these patients. Eight of these studies assessed emotional processing of visual (most commonly IAPS), auditory (e.g., prosody), somatosensory (emotional touch) and autonomic function (heart rate variability). Fifteen other studies looked at social processing, including emotional face recognition, gaming tasks and tests of empathy. Overall, there was a bias towards testing only patients with right-hemispheric lesions, making it difficult to consider hemisphere specificity. Although many studies included an overlay of lesion maps to characterise their patients, most did not differentiate lesion statistics between insula subunits and/or applied voxel-based associations between lesion location and impairment. This is probably due to small group sizes, which limit statistical comparisons. We conclude that multicentre analyses of lesion studies with comparable patients and performance tests are needed to definitively test the specific function of parts of the insula in emotional processing and social interaction.
Asunto(s)
Emociones , Corteza Insular , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Emociones/fisiología , Corteza Insular/diagnóstico por imagen , Corteza Insular/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatologíaRESUMEN
Alcohol use disorder (AUD) has been associated with changes in the processing of internal body signals, known as interoception. Changes in brain structure, particularly in the insula, are thought to underlie impaired interoception. As studies specifically investigating this association are largely lacking, this analysis takes an approach that compares meta-analytic results on interoception with recently published meta-analytic results on gray matter reduction in AUD. A systematic literature search identified 25 eligible interoception studies. Activation likelihood estimation (ALE) was used to test for spatial convergence of study results. Overlap between interoception and AUD clusters was tested using conjunction analysis. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity were used to identify the functional network of interoception and to test where this network overlapped with AUD meta-analytic clusters. The results were characterized using behavioral domain analysis. The interoception ALE identified a cluster in the left middle insula. There was no overlap with clusters of reduced gray matter in AUD. MACM analysis of the interoception cluster revealed a large network located in the insulae, thalami, basal nuclei, cingulate and medial frontal cortices, and pre- and postcentral gyri. Resting state analysis confirmed this result, showing the strongest connections to nodes of the salience- and somatomotor network. Five of the eight clusters that showed a structural reduction in AUD were located within these networks. The behavioral profiles of these clusters were suggestive of higher-level processes such as salience control, somatomotor functions, and skin sensations. The results suggest an altered salience mapping of interoceptive signals in AUD, consistent with current models. Connections to the somatomotor network may be related to action control and integration of skin sensations. Mindfulness-based interventions, pleasurable touch, and (deep) transcranial magnetic stimulation may be targeted interventions that reduce interoceptive deficits in AUD and thus contribute to drug use reduction and relapse prevention.
Asunto(s)
Alcoholismo , Interocepción , Humanos , Interocepción/fisiología , Alcoholismo/fisiopatología , Alcoholismo/diagnóstico por imagen , Alcoholismo/patología , Neuroimagen Funcional/métodos , Encéfalo/diagnóstico por imagenRESUMEN
Arterial spin labelling (ASL) is the only non-invasive technique that allows absolute quantification of perfusion and is increasingly used in brain activation studies. Contrary to the blood oxygen level-dependent (BOLD) effect ASL measures the cerebral blood flow (CBF) directly. However, the ASL signal has a lower signal-to-noise ratio (SNR), than the BOLD signal, which constrains its utilization in neurofeedback studies. If successful, ASL neurofeedback can be used to aid in the rehabilitation of health conditions with impaired blood flow, for example, stroke. We provide the first ASL-based neurofeedback study incorporating a double-blind, sham-controlled design. A pseudo-continuous ASL (pCASL) approach with background suppression and 3D GRASE readout was combined with a real-time post-processing pipeline. The real-time pipeline allows to monitor the ASL signal and provides real-time feedback on the neural activity to the subject. In total 41 healthy adults (19-56 years) divided into three groups underwent a neurofeedback-based emotion imagery training of the left anterior insula. Two groups differing only in the explicitness level of instruction received real training and a third group received sham feedback. Only those participants receiving real feedback with explicit instruction showed significantly higher absolute CBF values in the trained region during neurofeedback than participants receiving sham feedback. However, responder analyses of percent signal change values show no differences in activation between the three groups. Persisting limitations, such as the lower SNR, confounding effects of arterial transit time and partial volume effects still impact negatively the implementation of ASL neurofeedback.
Asunto(s)
Circulación Cerebrovascular , Imagen por Resonancia Magnética , Neurorretroalimentación , Marcadores de Spin , Humanos , Neurorretroalimentación/métodos , Adulto , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Circulación Cerebrovascular/fisiología , Corteza Insular/fisiología , Corteza Insular/diagnóstico por imagen , Método Doble CiegoRESUMEN
Recent studies have suggested that emotional reactivity changes with age, but the neural basis is still unclear. The insula may be critical for the emotional reactivity. The current study examined how ageing affects emotional reactivity using the emotional reactivity task data from a human sample (Cambridge Center for Age and Neuroscience, N = 243, age 18-88 years). The resting-state magnetic resonance measurements from the same sample were used to investigate the potential mechanisms of the insula. In the initial analysis, we conducted partial correlation assessments to examine the associations between emotional reactivity and age, as well as between the gray matter volume (GMV) of the insula and age. Our results revealed that emotional reactivity, especially positive emotional reactivity, decreased with age and that the GMV of the insula was negatively correlated with age. Subsequently, the bilateral insula was divided into six subregions to calculate the whole brain resting-state functional connectivity (rsFC). The mediating effect of the rsFC on age and emotional reactivity was then calculated. The results showed that the rsFC of the left anterior insula (AI) with the right hippocampus, and the rsFCs of the right AI with the striatum and the thalamus were mediated the relationship between positive emotional reactivity and age. Our findings suggest that attenuating emotional reactivity with age may be a strategic adaptation fostering emotional stability and diminishing emotional vulnerability. Meanwhile, the findings implicate a key role for the AI in the changes in positive emotional reactivity with age.
Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Corteza Cerebral/diagnóstico por imagen , Encéfalo , Corteza Insular , Lóbulo TemporalRESUMEN
Cross-situational inconsistency is common in the expression of honesty traits; yet, there is insufficient emphasis on behavioral dishonesty across multiple contexts. The current study aimed to investigate behavioral dishonesty in various contexts and reveal the associations between trait honesty, behavioral dishonesty, and neural patterns of observing others behave honestly or dishonestly in videos (abbr.: (dis)honesty video-watching). First, the results revealed limitations in using trait honesty to reflect variations in dishonest behaviors and predict behavioral dishonesty. The finding highlights the importance of considering neural patterns in understanding and predicting dishonest behaviors. Second, by comparing the predictive performance of seven types of data across three neural networks, the results showed that functional connectivity in the hypothesis-driven network during (dis)honesty video-watching provided the highest predictive power in predicting multitask behavioral dishonesty. Last, by applying the feature elimination method, the midline self-referential regions (medial prefrontal cortex, posterior cingulate cortex, and anterior cingulate cortex), anterior insula, and striatum were identified as the most informative brain regions in predicting behavioral dishonesty. In summary, the study offered insights into individual differences in deception and the intricate connections among trait honesty, behavioral dishonesty, and neural patterns during (dis)honesty video-watching.
Asunto(s)
Decepción , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Conectoma , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Grabación en Video , Conducta SocialRESUMEN
The ability to attend to and consciously process interoceptive signals is deemed critical for the development of minimal self, adaptive self-regulation and affective experience, and optimal expression of both instrumental and executive cognitive functions. Yet, notwithstanding the richness of theoretical proposals concerning inferential accounts of interoception, empirical evidence is still scarce. Building on such premises, this study was designed to investigate the electrophysiological signature of cognitive processes leading to aware coding of interoceptive signals via EEG source localization. Thirty-six healthy participants completed an interoceptive accuracy task, i.e., the Heartbeat Counting Task (HCT), while we collected task-related and resting state electrophysiological activity. eLORETA modelling and statistical nonparametric mapping were used to estimate intracortical current density and link such estimates to participants' performance at the task. Source analysis highlighted higher current density estimates for alpha frequencies during HCT with respect to rest, with the primary cortical generator in the right parahippocampal gyrus. Also, a set of medial cortical structures-primarily represented by the cingulate gyrus-showed significant relation between task-related changes in current density estimates for beta oscillations and HCT scores. Findings suggest the informativity of EEG task-related measures of neural activation when used to assess interoceptive skills, as well as of the potential of metrics and analysis based on source localization in the quest to improve our understanding of interoceptive accuracy and neurofunctional correlates of related active inferences.
RESUMEN
It has been reported that cannabis consumption affects the anterior cingulate cortex (ACC), a structure with a central role in mediating the empathic response. In this study, we compared psychometric scores of empathy subscales, between a group of regular cannabis users (85, users) and a group of non-consumers (51, controls). We found that users have a greater Emotional Comprehension, a cognitive empathy trait involving the understanding of the "other" emotional state. Resting state functional MRI in a smaller sample (users = 46, controls = 34) allowed to identify greater functional connectivity (FC) of the ACC with the left somatomotor cortex (SMC), in users when compared to controls. These differences were also evident within the empathy core network, where users showed greater within network FC. The greater FC showed by the users is associated with emotional representational areas and empathy-related regions. In addition, the differences in psychometric scores suggest that users have more empathic comprehension. These findings suggest a potential association between cannabis use, a greater comprehension of the other's affective state and the functional brain organization of the users. However, further research is needed to explore such association, since many other factors may be at play.