Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 819
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Physiol Rev ; 104(1): 329-398, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561138

RESUMEN

The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.


Asunto(s)
Células Intersticiales de Cajal , Humanos , Células Intersticiales de Cajal/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Músculo Liso/fisiología , Tracto Gastrointestinal , Intestino Delgado/fisiología
2.
Physiol Rev ; 103(2): 1487-1564, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521049

RESUMEN

Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.


Asunto(s)
Sistema Nervioso Entérico , Humanos , Tracto Gastrointestinal , Neuronas/fisiología , Neuroglía , Transducción de Señal/fisiología
3.
Development ; 150(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36815629

RESUMEN

Interstitial stromal cells play critical roles in muscle development, regeneration and repair and we have previously reported that Hoxa11 and Hoxd11 are expressed in the interstitial cells of muscles attached to the zeugopod, and are crucial for the proper embryonic patterning of these muscles. Hoxa11eGFP expression continues in a subset of muscle interstitial cells through adult stages. The induction of Hoxa11-CreERT2-mediated lineage reporting (Hoxa11iTom) at adult stages in mouse results in lineage induction only in the interstitial cells. However, Hoxa11iTom+ cells progressively contribute to muscle fibers at subsequent stages. The contribution to myofibers exceeds parallel Pax7-CreERT2-mediated lineage labeling. Nuclear-specific lineage labeling demonstrates that Hoxa11-expressing interstitial cells contribute nuclear contents to myofibers. Crucially, at no point after Hoxa11iTom induction are satellite cells lineage labeled. When examined in vitro, isolated Hoxa11iTom+ interstitial cells are not capable of forming myotubes, but Hoxa11iTom+ cells can contribute to differentiating myotubes, supporting Hox-expressing interstitial cells as a new population of muscle progenitors, but not stem cells. This work adds to a small but growing body of evidence that supports a satellite cell-independent source of muscle tissue in vivo.


Asunto(s)
Fibras Musculares Esqueléticas , Células Satélite del Músculo Esquelético , Ratones , Animales , Células Madre , Homeostasis , Células Satélite del Músculo Esquelético/metabolismo , Músculo Esquelético , Diferenciación Celular , Desarrollo de Músculos
4.
FASEB J ; 38(16): e23863, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39143726

RESUMEN

Smooth muscle cells (SMCs), Interstitial cells of Cajal (ICC) and Platelet-derived growth factor receptor α positive (PDGFRα+) cells form an integrated, electrical syncytium within the gastrointestinal (GI) muscular tissues known as the SIP syncytium. Immunohistochemical analysis of gastric corpus muscles showed that c-KIT+/ANO1+ ICC-IM and PDGFRα+ cells were closely apposed to one another in the same anatomical niches. We used intracellular microelectrode recording from corpus muscle bundles to characterize the roles of intramuscular ICC and PDGFRα+ cells in conditioning membrane potentials of gastric muscles. In muscle bundles, that have a relatively higher input impedance than larger muscle strips or sheets, we recorded an ongoing discharge of stochastic fluctuations in membrane potential, previously called unitary potentials or spontaneous transient depolarizations (STDs) and spontaneous transient hyperpolarizations (STHs). We reasoned that STDs should be blocked by antagonists of ANO1, the signature conductance of ICC. Activation of ANO1 has been shown to generate spontaneous transient inward currents (STICs), which are the basis for STDs. Ani9 reduced membrane noise and caused hyperpolarization, but this agent did not block the fluctuations in membrane potential quantitatively. Apamin, an antagonist of small conductance Ca2+-activated K+ channels (SK3), the signature conductance in PDGFRα+ cells, further reduced membrane noise and caused depolarization. Reversing the order of channel antagonists reversed the sequence of depolarization and hyperpolarization. These experiments show that the ongoing discharge of STDs and STHs by ICC and PDGFRα+ cells, respectively, exerts conditioning effects on membrane potentials in the SIP syncytium that would effectively regulate the excitability of SMCs.


Asunto(s)
Células Gigantes , Células Intersticiales de Cajal , Potenciales de la Membrana , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Células Intersticiales de Cajal/fisiología , Células Intersticiales de Cajal/metabolismo , Ratones , Potenciales de la Membrana/fisiología , Células Gigantes/metabolismo , Células Gigantes/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Anoctamina-1/metabolismo , Estómago/fisiología , Estómago/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/fisiología , Proteínas Proto-Oncogénicas c-kit/metabolismo , Masculino , Ratones Endogámicos C57BL
5.
FASEB J ; 38(3): e23447, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329326

RESUMEN

We aimed to analyze sex-related differences in galectin-1 (Gal-1), a ß-galactoside-binding lectin, in aortic stenosis (AS) and its association with the inflammatory and fibrocalcific progression of AS. Gal-1 was determined in serum and aortic valves (AVs) from control and AS donors by western blot and immunohistochemistry. Differences were validated by ELISA and qPCR in AS samples. In vitro experiments were conducted in primary cultured valve interstitial cells (VICs). Serum Gal-1 was not different neither between control and AS nor between men and women. There was no association between circulating and valvular Gal-1 levels. The expression of Gal-1 in stenotic AVs was higher in men than women, even after adjusting for confounding factors, and was associated with inflammation, oxidative stress, extracellular matrix remodeling, fibrosis, and osteogenesis. Gal-1 (LGALS1) mRNA was enhanced within fibrocalcific areas of stenotic AVs, especially in men. Secretion of Gal-1 was up-regulated over a time course of 2, 4, and 8 days in men's calcifying VICs, only peaking at day 4 in women's VICs. In vitro, Gal-1 was associated with similar mechanisms to those in our clinical cohort. ß-estradiol significantly up-regulated the activity of an LGALS1 promoter vector and the secretion of Gal-1, only in women's VICs. Supplementation with rGal-1 prevented the effects elicited by calcific challenge including the metabolic shift to glycolysis. In conclusion, Gal-1 is up-regulated in stenotic AVs and VICs from men in association with inflammation, oxidative stress, matrix remodeling, and osteogenesis. Estrogens can regulate Gal-1 expression with potential implications in post-menopause women. Exogenous rGal-1 can diminish calcific phenotypes in both women and men.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Galectina 1 , Femenino , Humanos , Masculino , Estenosis de la Válvula Aórtica/metabolismo , Células Cultivadas , Galectina 1/genética , Galectina 1/metabolismo , Inflamación/metabolismo
6.
J Cell Mol Med ; 28(10): e18409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769917

RESUMEN

Farnesoid X receptor (FXR), a ligand-activated transcription factor, plays an important role in maintaining water homeostasis by up-regulating aquaporin 2 (AQP2) expression in renal medullary collecting ducts; however, its role in the survival of renal medullary interstitial cells (RMICs) under hypertonic conditions remains unclear. We cultured primary mouse RMICs and found that the FXR was expressed constitutively in RMICs, and that its expression was significantly up-regulated at both mRNA and protein levels by hypertonic stress. Using luciferase and ChIP assays, we found a potential binding site of nuclear factor kappa-B (NF-κB) located in the FXR gene promoter which can be bound and activated by NF-κB. Moreover, hypertonic stress-induced cell death in RMICs was significantly attenuated by FXR activation but worsened by FXR inhibition. Furthermore, FXR increased the expression and nuclear translocation of hypertonicity-induced tonicity-responsive enhance-binding protein (TonEBP), the expressions of its downstream target gene sodium myo-inositol transporter (SMIT), and heat shock protein 70 (HSP70). The present study demonstrates that the NF-κB/FXR/TonEBP pathway protects RMICs against hypertonic stress.


Asunto(s)
Médula Renal , FN-kappa B , Transducción de Señal , Animales , FN-kappa B/metabolismo , Ratones , Médula Renal/metabolismo , Médula Renal/citología , Presión Osmótica , Acuaporina 2/metabolismo , Acuaporina 2/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Masculino , Ratones Endogámicos C57BL , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Regiones Promotoras Genéticas , Células Cultivadas , Regulación de la Expresión Génica , Simportadores/metabolismo , Simportadores/genética , Receptores Citoplasmáticos y Nucleares
7.
J Cell Mol Med ; 28(6): e18161, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445787

RESUMEN

Cisplatin is an antimitotic drug able to cause acute and chronic gastrointestinal side effects. Acute side effects are attributable to mucositis while chronic ones are due to neuropathy. Cisplatin has also antibiotic properties inducing dysbiosis which enhances the inflammatory response, worsening local damage. Thus, a treatment aimed at protecting the microbiota could prevent or reduce the toxicity of chemotherapy. Furthermore, since a healthy microbiota enhances the effects of some chemotherapeutic drugs, prebiotics could also improve this drug effectiveness. We investigated whether chronic cisplatin administration determined morphological and functional alterations in mouse proximal colon and whether a diet enriched in prebiotics had protective effects. The results showed that cisplatin caused lack of weight gain, increase in kaolin intake, decrease in stool production and mucus secretion. Prebiotics prevented increases in kaolin intake, changes in stool production and mucus secretion, but had no effect on the lack of weight gain. Moreover, cisplatin determined a reduction in amplitude of spontaneous muscular contractions and of Connexin (Cx)43 expression in the interstitial cells of Cajal, changes that were partially prevented by prebiotics. In conclusion, the present study shows that daily administration of prebiotics, likely protecting the microbiota, prevents most of the colonic cisplatin-induced alterations.


Asunto(s)
Cisplatino , Prebióticos , Animales , Ratones , Cisplatino/efectos adversos , Caolín , Aumento de Peso , Colon
8.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G93-G104, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772901

RESUMEN

Few biomarkers support the diagnosis and treatment of disorders of gut-brain interaction (DGBI), although gastroduodenal junction (GDJ) electromechanical coupling is a target for novel interventions. Rhythmic "slow waves," generated by interstitial cells of Cajal (ICC), and myogenic "spikes" are bioelectrical mechanisms underpinning motility. In this study, simultaneous in vivo high-resolution electrophysiological and impedance planimetry measurements were paired with immunohistochemistry to elucidate GDJ electromechanical coupling. Following ethical approval, the GDJ of anaesthetized pigs (n = 12) was exposed. Anatomically specific, high-resolution electrode arrays (256 electrodes) were applied to the serosa. EndoFLIP catheters (16 electrodes; Medtronic, MN) were positioned luminally to estimate diameter. Postmortem tissue samples were stained with Masson's trichrome and Ano1 to quantify musculature and ICC. Electrical mapping captured slow waves (n = 512) and spikes (n = 1,071). Contractions paralleled electrical patterns. Localized slow waves and spikes preceded rhythmic contractions of the antrum and nonrhythmic contractions of the duodenum. Slow-wave and spike amplitudes were correlated in the antrum (r = 0.74, P < 0.001) and duodenum (r = 0.42, P < 0.001). Slow-wave and contractile amplitudes were correlated in the antrum (r = 0.48, P < 0.001) and duodenum (r = 0.35, P < 0.001). Distinct longitudinal and circular muscle layers of the antrum and duodenum had a total thickness of (2.8 ± 0.9) mm and (0.4 ± 0.1) mm, respectively. At the pylorus, muscle layers merged and thickened to (3.5 ± 1.6) mm. Pyloric myenteric ICC covered less area (1.5 ± 1.1%) compared with the antrum (4.2 ± 3.0%) and duodenum (5.3 ± 2.8%). Further characterization of electromechanical coupling and ICC biopsies may generate DGBI biomarkers.NEW & NOTEWORTHY This study applies electrical mapping, impedance planimetry, and histological techniques to the gastroduodenal junction to elucidate electromechanical coupling in vivo. Contractions of the terminal antrum and pyloric sphincter were associated with gastric slow waves. In the duodenum, bursts of spike activity triggered oscillating contractions. The relative sparsity of myenteric interstitial cells of Cajal in the pylorus, compared with the adjacent antrum and duodenum, is hypothesized to prevent coupling between antral and duodenal slow waves.


Asunto(s)
Duodeno , Motilidad Gastrointestinal , Células Intersticiales de Cajal , Animales , Duodeno/fisiología , Duodeno/inervación , Células Intersticiales de Cajal/fisiología , Porcinos , Motilidad Gastrointestinal/fisiología , Estómago/fisiología , Estómago/inervación , Femenino , Contracción Muscular/fisiología , Impedancia Eléctrica , Músculo Liso/fisiología
9.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G254-G266, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38860855

RESUMEN

Rhythmic electrical events, termed slow waves, govern the timing and amplitude of phasic contractions of the gastric musculature. Extracellular multielectrode measurement of gastric slow waves can be a biomarker for phenotypes of motility dysfunction. However, a gastric slow-wave conduction pathway for the rat, a common animal model, is unestablished. In this study, the validity of extracellular recording was demonstrated in vitro with simultaneous intracellular and extracellular recordings and by pharmacological inhibition of slow waves. The conduction pathway was determined by in vivo extracellular recordings while considering the effect of motion. Slow-wave characteristics [means (SD)] varied regionally having higher amplitude in the antrum than the distal corpus [1.03 (0.12) mV vs. 0.75 (0.31) mV; n = 7; P = 0.025 paired t test] and faster propagation near the greater curvature than the lesser curvature [1.00 (0.14) mm·s-1 vs. 0.74 (0.14) mm·s-1; n = 9 GC, 7 LC; P = 0.003 unpaired t test]. Notably, in some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region occurring in the area near the distal corpus midline at the interface of the two wavefronts. This region had either the greater or lesser curvature wavefront propagating through it in a time-varying manner. The conduction pattern suggests that slow waves in the rat stomach form annular wavefronts in the antrum and not the corpus. This study has implications for interpretation of the relationship between slow waves, the interstitial cells of Cajal network structure, smooth muscles, and gastric motility.NEW & NOTEWORTHY Mapping of rat gastric slow waves showed regional variations in their organization. In some subjects, separate wavefronts propagated near the lesser and greater curvatures with a loosely coupled region near the midline, between the wavefronts, having a varying slow-wave origin. Furthermore, simultaneous intracellular and extracellular recordings were concordant and independent of movement artifacts, indicating that extracellular recordings can be interpreted in terms of their intracellular counterparts when intracellular recording is not possible.


Asunto(s)
Motilidad Gastrointestinal , Músculo Liso , Ratas Sprague-Dawley , Estómago , Animales , Estómago/fisiología , Ratas , Motilidad Gastrointestinal/fisiología , Masculino , Músculo Liso/fisiología , Contracción Muscular/fisiología , Antro Pilórico/fisiología , Células Intersticiales de Cajal/fisiología
10.
Development ; 148(23)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738619

RESUMEN

The shaping of tissues and organs in many animals relies on interactions between the epithelial cell layer and its underlying mesoderm-derived tissues. Inductive signals, such as receptor tyrosine kinase (RTK) signaling emanating from mesoderm, act on cells of the epithelium to initiate three-dimensional changes. However, how tissues are shaped in a diploblastic animal with no mesoderm remains largely unknown. In this study, the jellyfish Cladonema pacificum was used to investigate branch formation. The tentacles on its medusa stage undergo branching, which increases the epithelial surface area available for carrying nematocytes, thereby maximizing prey capture. Pharmacological and cellular analyses of the branching process suggest a two-step model for tentacle branch formation, in which mitogen-activated protein kinase kinase signaling accumulates interstitial cells in the future branch-forming region, and fibroblast growth factor signaling regulates branch elongation. This study highlights an essential role for these pluripotent stem cells in the tissue-shaping morphogenesis of a diploblastic animal. In addition, it identifies a mechanism involving RTK signaling and cell proliferative activity at the branch tip for branching morphogenesis that is apparently conserved across the animal kingdom.


Asunto(s)
Células Epiteliales/enzimología , Hidrozoos/embriología , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Morfogénesis , Animales
11.
FASEB J ; 37(5): e22929, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086093

RESUMEN

The cell types and conductance that contribute to normal cardiac functions remain under investigation. We used mice that express an enhanced green fluorescent protein (eGFP)-histone 2B fusion protein driven off the cell-specific endogenous promoter for Pdgfra to investigate the distribution and functional role of PDGFRα+ cells in the heart. Cardiac PDGFRα+ cells were widely distributed within the endomysium of atria, ventricle, and sino-atrial node (SAN) tissues. PDGFRα+ cells formed a discrete network of cells, lying in close apposition to neighboring cardiac myocytes in mouse and Cynomolgus monkey (Macaca fascicularis) hearts. Expression of eGFP in nuclei allowed unequivocal identification of these cells following enzymatic dispersion of muscle tissues. FACS purification of PDGFRα+ cells from the SAN and analysis of gene transcripts by qPCR revealed that they were a distinct population of cells that expressed gap junction transcripts, Gja1 and Gjc1. Cardiac PDGFRα+ cells generated spontaneous transient inward currents (STICs) and spontaneous transient depolarizations (STDs) that reversed at 0 mV. Reversal potential was maintained when ECl = -40 mV. [Na+ ]o replacement and FTY720 abolished STICs, suggesting they were due to a non-selective cation conductance (NSCC) carried by TRPM7. PDGFRα+ cells also express ß2 -adrenoceptor gene transcripts, Adrb2. Zinterol, a selective ß2 -receptor agonist, increased the amplitude and frequency of STICs, suggesting these cells could contribute to adrenergic regulation of cardiac excitability. PDGFRα+ cells in cardiac muscles generate inward currents via an NSCC. STICs generated by these cells may contribute to the integrated membrane potentials of cardiac muscles, possibly affecting the frequency of pacemaker activity.


Asunto(s)
Miocardio , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Canales Catiónicos TRPM , Animales , Ratones , Cationes/metabolismo , Corazón/fisiología , Macaca fascicularis/metabolismo , Potenciales de la Membrana/fisiología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Miocardio/metabolismo
12.
Scand Cardiovasc J ; 58(1): 2353070, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38757904

RESUMEN

Objectives: The role of diabetes mellitus as a risk factor for the development of calcific aortic valve disease has not been fully clarified. Aortic valve interstitial cells (VICs) have been suggested to be crucial for calcification of the valve. Induced calcification in cultured VICs is a good in vitro model for aortic valve calcification. The purpose of this study was to investigate whether increased glucose levels increase experimentally induced calcification in cultured human VICs. Design: VICs were isolated from explanted calcified aortic valves after valve replacement. Osteogenic medium induced calcification of cultured VICs at different glucose levels (5, 15, and 25 mM). Calcium deposits were visualized using Alizarin Red staining and measured spectrophotometrically. Results: The higher the glucose concentration, the lower the level of calcification. High glucose (25 mM) reduced calcification by 52% compared with calcification at a physiological (5 mM) glucose concentration (correlation and regression analysis: r = -0.55, p = .025 with increased concentration of glucose). Conclusions: In vitro hyperglycemia-like conditions attenuated calcification in VICs. High glucose levels may trigger a series of events that secondarily stimulate calcification of VICs in vivo.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Calcinosis , Glucosa , Hiperglucemia , Humanos , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/cirugía , Calcinosis/patología , Calcinosis/metabolismo , Células Cultivadas , Glucosa/metabolismo , Hiperglucemia/metabolismo , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/cirugía , Masculino , Persona de Mediana Edad , Anciano , Femenino , Relación Dosis-Respuesta a Droga , Osteogénesis/efectos de los fármacos
13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612808

RESUMEN

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Asunto(s)
Enfermedades del Colon , Células Intersticiales de Cajal , Animales , Ratones , Masculino , Serotonina/farmacología , Células Intersticiales del Testículo , Inhibidores de Adenilato Ciclasa , Bloqueadores de los Canales de Calcio , Inhibidores de Proteínas Quinasas
14.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612936

RESUMEN

Male infertility is a significant factor in approximately half of all infertility cases and is marked by a decreased sperm count and motility. A decreased sperm count is caused by not only a decreased production of sperm but also decreased numbers successfully passing through the male reproductive tract. Smooth muscle movement may play an important role in sperm transport in the male reproductive tract; thus, understanding the mechanism of this movement is necessary to elucidate the cause of sperm transport disorder. Recent studies have highlighted the presence of platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PICs) in various smooth muscle organs. Although research is ongoing, PICs in the male reproductive tract may be involved in the regulation of smooth muscle movement, as they are in other smooth muscle organs. This review summarizes the findings to date on PICs in male reproductive organs. Further exploration of the structural, functional, and molecular characteristics of PICs could provide valuable insights into the pathogenesis of male infertility and potentially lead to new therapeutic approaches.


Asunto(s)
Infertilidad Masculina , Semen , Masculino , Humanos , Espermatozoides , Genitales , Receptores del Factor de Crecimiento Derivado de Plaquetas
15.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279224

RESUMEN

Many large-scale studies show that exogenous erythropoietin, erythropoiesis-stimulating agents, lack any renoprotective effects. We investigated the effects of endogenous erythropoietin on renal function in kidney ischemic reperfusion injury (IRI) using the prolyl hydroxylase domain (PHD) inhibitor, Roxadustat (ROX). Four h of hypoxia (7% O2) and 4 h treatment by ROX prior to IRI did not improve renal function. In contrast, 24-72 h pretreatment by ROX significantly improved the decline of renal function caused by IRI. Hypoxia and 4 h ROX increased interstitial cells-derived Epo production by 75- and 6-fold, respectively, before IRI, and worked similarly to exogenous Epo. ROX treatment for 24-72 h increased Epo production during IRI by 9-fold. Immunohistochemistry revealed that 24 h ROX treatment induced Epo production in proximal and distal tubules and worked similarly to endogenous Epo. Our data show that tubular endogenous Epo production induced by 24-72 h ROX treatment results in renoprotection but peritubular exogenous Epo production by interstitial cells induced by hypoxia and 4 h ROX treatment did not. Stimulation of tubular, but not peritubular, Epo production may link to renoprotection.


Asunto(s)
Eritropoyetina , Inhibidores de Prolil-Hidroxilasa , Daño por Reperfusión , Humanos , Eritropoyetina/farmacología , Riñón , Epoetina alfa/farmacología , Inhibidores de Prolil-Hidroxilasa/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Hipoxia
16.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256243

RESUMEN

Amyloid deposition within stenotic aortic valves (AVs) also appears frequent in the absence of cardiac amyloidosis, but its clinical and pathophysiological relevance has not been investigated. We will elucidate the rate of isolated AV amyloid deposition and its potential clinical and pathophysiological significance in aortic stenosis (AS). In 130 patients without systemic and/or cardiac amyloidosis, we collected the explanted AVs during cardiac surgery: 57 patients with calcific AS and 73 patients with AV insufficiency (41 with AV sclerosis and 32 without, who were used as controls). Amyloid deposition was found in 21 AS valves (37%), 4 sclerotic AVs (10%), and none of the controls. Patients with and without isolated AV amyloid deposition had similar clinical and echocardiographic characteristics and survival rates. Isolated AV amyloid deposition was associated with higher degrees of AV fibrosis (p = 0.0082) and calcification (p < 0.0001). Immunohistochemistry analysis suggested serum amyloid A1 (SAA1), in addition to transthyretin (TTR), as the protein possibly involved in AV amyloid deposition. Circulating SAA1 levels were within the normal range in all groups, and no difference was observed in AS patients with and without AV amyloid deposition. In vitro, AV interstitial cells (VICs) were stimulated with interleukin (IL)-1ß which induced increased SAA1-mRNA both in the control VICs (+6.4 ± 0.5, p = 0.02) and the AS VICs (+7.6 ± 0.5, p = 0.008). In conclusion, isolated AV amyloid deposition is frequent in the context of AS, but it does not appear to have potential clinical relevance. Conversely, amyloid deposition within AV leaflets, probably promoted by local inflammation, could play a role in AS pathophysiology.


Asunto(s)
Amiloidosis , Estenosis de la Válvula Aórtica , Calcinosis , Humanos , Catéteres , Calcificación Fisiológica , Interleucina-1beta
17.
J Biol Chem ; 298(5): 101887, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367413

RESUMEN

Recent genome-wide association and transcriptome-wide association studies have identified an association between the PALMD locus, encoding palmdelphin, a protein involved in myoblast differentiation, and calcific aortic valve disease (CAVD). Nevertheless, the function and underlying mechanisms of PALMD in CAVD remain unclear. We herein investigated whether and how PALMD affects the pathogenesis of CAVD using clinical samples from CAVD patients and a human valve interstitial cell (hVIC) in vitro calcification model. We showed that PALMD was upregulated in calcified regions of human aortic valves and calcified hVICs. Furthermore, silencing of PALMD reduced hVIC in vitro calcification, osteogenic differentiation, and apoptosis, whereas overexpression of PALMD had the opposite effect. RNA-Seq of PALMD-depleted hVICs revealed that silencing of PALMD reduced glycolysis and nuclear factor-κB (NF-κB)-mediated inflammation in hVICs and attenuated tumor necrosis factor α-induced monocyte adhesion to hVICs. Having established the role of PALMD in hVIC glycolysis, we examined whether glycolysis itself could regulate hVIC osteogenic differentiation and inflammation. Intriguingly, the inhibition of PFKFB3-mediated glycolysis significantly attenuated osteogenic differentiation and inflammation of hVICs. However, silencing of PFKFB3 inhibited PALMD-induced hVIC inflammation, but not osteogenic differentiation. Finally, we showed that the overexpression of PALMD enhanced hVIC osteogenic differentiation and inflammation, as opposed to glycolysis, through the activation of NF-κB. The present study demonstrates that the genome-wide association- and transcriptome-wide association-identified CAVD risk gene PALMD may promote CAVD development through regulation of glycolysis and NF-κB-mediated inflammation. We propose that targeting PALMD-mediated glycolysis may represent a novel therapeutic strategy for treating CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis , Células Cultivadas , Estudio de Asociación del Genoma Completo , Glucólisis , Humanos , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Osteogénesis
18.
Curr Issues Mol Biol ; 45(4): 3552-3572, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37185756

RESUMEN

The enteric nervous system (ENS) is organized into two plexuses-submucosal and myenteric-which regulate smooth muscle contraction, secretion, and blood flow along the gastrointestinal tract under the influence of the rest of the autonomic nervous system (ANS). Interstitial cells of Cajal (ICCs) are mainly located in the submucosa between the two muscle layers and at the intramuscular level. They communicate with neurons of the enteric nerve plexuses and smooth muscle fibers and generate slow waves that contribute to the control of gastrointestinal motility. They are also involved in enteric neurotransmission and exhibit mechanoreceptor activity. A close relationship appears to exist between oxidative stress and gastrointestinal diseases, in which ICCs can play a prominent role. Thus, gastrointestinal motility disorders in patients with neurological diseases may have a common ENS and central nervous system (CNS) nexus. In fact, the deleterious effects of free radicals could affect the fine interactions between ICCs and the ENS, as well as between the ENS and the CNS. In this review, we discuss possible disturbances in enteric neurotransmission and ICC function that may cause anomalous motility in the gut.

19.
Curr Issues Mol Biol ; 45(9): 7557-7571, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37754260

RESUMEN

The main function of interstitial cells of Cajal (ICCs) is to regulate gastrointestinal peristalsis by acting as a "pacemaker" cell by generating spontaneous slow electrical waves. In 2005, electron microscopy revealed a cell type similar to ICCs (ICC-like) outside the gastrointestinal tract, with contractile activity and c-Kit+ immunohistochemistry shared with ICCs. Among the locations where ICC-like cells have been observed, it is in the uterus where they have a significant functional and pathophysiological role. These cells are involved in obstetric phenomena of contractile action, such as ascending sperm transport, embryo implantation, pregnancy, delivery, and the expulsion of menstrual debris. Within the pathophysiology related to these cells, we find obstetric alterations such as recurrent miscarriages, premature deliveries, abolition of uterine contractions, and failures of embryo implantation, in addition to other common conditions in the fertile age, such as endometriosis and leiomyoma.

20.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G295-G305, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37461842

RESUMEN

Effective and widely available strategies are needed to diagnose colonic motility dysfunction. We investigated whether ultrasonography could generate spatiotemporal maps combined with motor pattern frequency analysis, to become a noninvasive method to characterize human colon motor patterns. Abdominal colonic ultrasonography was performed on healthy subjects (N = 7), focusing on the detailed recording of spontaneous haustral activities. We developed image segmentation and frequency analysis software to analyze the motor patterns captured. Ultrasonography recordings of the ascending, transverse, and descending colon identified three distinct rhythmic motor patterns: the 1 cycle/min and the 3 cycles/min cyclic motor pattern were seen throughout the whole colon, whereas the 12 cycles/min cyclic motor pattern was identified in the ascending colon. The rhythmic motor patterns of the human colon that are associated with interstitial cells of Cajal-associated pacemaking activity can be accurately identified and quantified using ultrasound.NEW & NOTEWORTHY Ultrasonography in the clinical field is an underutilized tool for assessing colonic motility; however, with the addition of frequency analysis techniques, it provides a method to identify human colonic motor patterns. Here we report on the 1, 3, and 12 cpm rhythmic motor patterns. Ultrasound has the potential to become a bedside assessment for colonic dysmotility and may reveal the health of interstitial cells of Cajal (ICC) pacemaker activities.


Asunto(s)
Motilidad Gastrointestinal , Células Intersticiales de Cajal , Humanos , Colon/diagnóstico por imagen , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA