Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.895
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(11): e2307809121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437543

RESUMEN

Rapid advances in nucleic acid therapies highlight the immense therapeutic potential of genetic therapeutics. Lipid nanoparticles (LNPs) are highly potent nonviral transfection agents that can encapsulate and deliver various nucleic acid therapeutics, including but not limited to messenger RNA (mRNA), silencing RNA (siRNA), and plasmid DNA (pDNA). However, a major challenge of targeted LNP-mediated systemic delivery is the nanoparticles' nonspecific uptake by the liver and the mononuclear phagocytic system, due partly to the adsorption of endogenous serum proteins onto LNP surfaces. Tunable LNP surface chemistries may enable efficacious delivery across a range of organs and cell types. Here, we describe a method to electrostatically adsorb bioactive polyelectrolytes onto LNPs to create layered LNPs (LLNPs). LNP cores varying in nucleic acid cargo and component lipids were stably layered with four biologically relevant polyanions: hyaluronate (HA), poly-L-aspartate (PLD), poly-L-glutamate (PLE), and polyacrylate (PAA). We further investigated the impact of the four surface polyanions on the transfection and uptake of mRNA- and pDNA-loaded LNPs in cell cultures. PLD- and PLE-LLNPs increased mRNA transfection twofold over unlayered LNPs in immune cells. HA-LLNPs increased pDNA transfection rates by more than twofold in epithelial and immune cells. In a healthy C57BL/6 murine model, PLE- and HA-LLNPs increased transfection by 1.8-fold to 2.5-fold over unlayered LNPs in the liver and spleen. These results suggest that LbL assembly is a generalizable, highly tunable platform to modify the targeting specificity, stability, and transfection efficacy of LNPs, as well as incorporate other charged targeting and therapeutic molecules into these systems.


Asunto(s)
Liposomas , Nanopartículas , Animales , Ratones , Polielectrolitos , Adsorción , Electricidad Estática , Transfección , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ácido Glutámico
2.
Proc Natl Acad Sci U S A ; 121(11): e2307802121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437557

RESUMEN

RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.


Asunto(s)
Neoplasias Ováricas , Péptidos , Humanos , Femenino , Interferencia de ARN , Péptidos/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/terapia , Péptido Hidrolasas , ARN Interferente Pequeño/genética , Endopeptidasas , Proteínas Cromosómicas no Histona , Proteínas de Unión al ADN
3.
Nano Lett ; 24(8): 2574-2580, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38349338

RESUMEN

The highly programmable and responsive molecular recognition properties of DNA provide unparalleled opportunities for fabricating dynamic nanostructures capable of structural transformation in response to various external stimuli. However, they typically operate in tightly controlled environments because certain conditions (ionic strength, pH, temperature, etc.) must be met for DNA duplex formation. In this study, we adopted site-specific enzymatic ligation and DNA-based layer-by-layer thin film fabrication to build shape-morphing DNA-linked nanoparticle films operational in a broad range of environments. The ligated films remained intact in unusual conditions such as pure water and high temperature causing dissociation of DNA duplexes and showed predictable and reversible shape morphing in response to various environmental changes and DNA exchange reactions. Furthermore, domain-selective ligation combined with photoinduced interlayer mixing allowed for the fabrication of unusual edge-sealed double-layered films through midlayer etching, which is difficult to realize by other methods.


Asunto(s)
Nanopartículas , Nanoestructuras , ADN/química , Agua , Temperatura
4.
Small ; : e2402128, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246187

RESUMEN

Biomimetic hydroxyapatites are widely explored for their potential applications in the repair of mineralized tissues, particularly dental enamel, which is acellular and, thus, not naturally reformed after damage. Enamel is formed with a highly-controlled hierarchical structure, which is difficult to replicate up to the macroscale. A biomimetic approach is thus warranted, based on the same principles that drive biomineralization in vivo. Herein, a strategy for the design of enamel-like architectures is described, utilizing enzymes embedded in polyelectrolyte multilayers to generate inorganic phosphate locally, and provide a favorable chemical environment for the nucleation and growth of minerals. Moreover, a method is proposed to build up seriated mineral layers with scalable thicknesses, continuous mineral growth, and tunable morphology. Results show the outstanding growth of cohesive mineral layers, yielding macroscopic standalone fluoride and/or carbonate-substituted hydroxyapatite materials with comparable crystal structure and composition to native human mineralized tissues. This strategy presents a promising path forward for the biomimetic design of biomineral materials, particularly relevant for restorative applications, with an exquisite level of synthetic control over multiple orders of magnitude.

5.
Small ; 20(5): e2304739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37726489

RESUMEN

The depletion of fossil fuel resources and its impact on the environment provide a compelling motivation for the development of sustainable energy sources to meet the increasing demand for energy. Accordingly, research and development of energy storage devices have emerged as a critical area of focus. The electrode materials are critical in the electrochemical performance of energy storage devices, such as energy storage capacity and cycle life. Cellulose nanofiber (CNF) represents an important substrate with potentials in the applications of green electrode materials due to their environmental sustainability and excellent compatibility. By utilizing the layer-by layer (LbL) process, well-defined nanoscale multilayer structure is prepared on a variety of substrates. In recent years, increasing attention has focused on electrode materials produced from LbL process on CNFs to yield electrodes with exceptional properties, such as high specific surface area, outstanding electrical conductivity, superior electrochemical activity, and exceptional mechanical stability. This review provides a comprehensive overview on the development of functional CNF via the LbL approach as electrode materials.

6.
Small ; 20(12): e2308216, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946696

RESUMEN

The ternary strategy is one of the effective methods to regulate the morphology of the active layer in organic solar cells (OSCs). In this work, the ternary OSCs with bulk heterojunction (BHJ) or layer-by-layer (LbL) active layers are prepared by using the polymer donor PM6 and the non-fullerene acceptor L8-BO as the main system and the fullerene acceptor PC71BM as the third component. The power conversion efficiencies (PCEs) of BHJ OSCs and LbL OSCs are increased from 17.10% to 18.02% and from 17.20% to 18.20% by introducing PC71BM into the binary active layer, respectively. The in situ UV-vis absorption spectra indicate that the molecular aggregation and crystallization process can be prolonged by introducing PC71BM into the PM6:L8-BO or PM6/L8-BO active layer. The molecular orientation and molecular crystallinity in the active layer are optimized by introducing the PC71BM into the binary BHJ or LbL active layers, which can be confirmed by the experimental results of grazing incidence wide-angle X-ray scattering. This study demonstrates that the third component PC71BM can be used as a morphology regulator to regulate the morphology of BHJ or LbL active layers, thus effectively improving the performance of BHJ and LbL OSCs.

7.
Small ; 20(13): e2308165, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37968247

RESUMEN

During the layer-by-layer (LBL) processing of polymer solar cells (PSCs), the swelling and molecule interdiffusion are essential for achieving precise, controllable vertical morphology, and thus efficient PSCs. However, the influencing mechanism of material properties on morphology and correlated device performance has not been paid much attention. Herein, a series of fluorinated/non-fluorinated polymer donors (PBDB-T and PBDB-TF) and non-fullerene acceptors (ITIC, IT-2F, and IT-4F) are employed to investigate the performance of LBL devices. The impacts of fluorine substitution on the repulsion and miscibility between the donor and acceptor, as well as the molecular arrangement of the donor/acceptor and the vertical distribution of the LBL devices are systematically explored by the measurement of donor/acceptor Flory-Huggins interaction parameters, spectroscopic ellipsometry, and neutron reflectivity, respectively. With efficient charge transfer due to the ideal vertical and horizon morphology properties, devices based on PBDB-TF/IT-4F exhibit the highest fill factors (FFs) as well as champion power conversion efficiencies (PCEs). With this guidance, high-performance LBL devices with PCE of 17.2%, 18.5%, and 19.1% are obtained by the fluorinated blend of PBDB-TF/Y6, PBDB-TF/L8-BO, and D18/L8-BO respectively.

8.
Small ; 20(28): e2400491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456574

RESUMEN

Multiresponsive materials with reversible and durable characteristics are indispensable because of their promising applications in environmental change detections. To fabricate multiresponsive materials in mass production, however, complex reactions and impractical situations are often involved. Herein, a dual responsive (light and pH) spiropyran-based smart sensor fabricated by a simple layer-by-layer (LbL) assembly process from upcycled thermoplastic polyester elastomer (TPEE) materials derived from recycled polyethylene terephthalate (r-PET) is proposed. Positively charged chitosan solutions and negatively charged merocyanine-COOH (MC-COOH) solutions are employed in the LbL assembly technique, forming the chitosan-spiropyran deposited TPEE (TPEE-CH-SP) film. Upon UV irradiation, the spiropyran-COOH (SP-COOH) molecules on the TPEE-CH-SP film undergo the ring-opening isomerization, along with an apparent color change from colorless to purple, to transform into the MC-COOH molecules. By further exposing the TPEE-CH-MC film to hydrogen chloride (HCl) and nitric acid (HNO3) vapors, the MC-COOH molecules can be transformed into protonated merocyanine-COOH (MCH-COOH) with the simultaneous color change from purple to yellow.

9.
Small ; 20(27): e2308293, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282181

RESUMEN

Zeolites have been widely applied as versatile catalysts, sorbents, and ion exchangers with unique porous structures showing molecular sieving capability. In these years, it is reported that some layered zeolites can be delaminated into molecularly thin 2-dimensional (2D) nanosheets characterized by inherent porous structures and highly exposed active sites. In the present study, two types of zeolite nanosheets with distinct porous structures with MWW topology (denoted mww) and ferrierite-related structure (denoted bifer) are deposited on a substrate through the solution process via electrostatic self-assembly. Alternate deposition of zeolite nanosheets with polycation under optimized conditions allows the layer-by-layer growth of their multilayer films with a stacking distance of 2-3 nm. Furthermore, various hierarchical structures defined at the unit-cell dimensions can be constructed simply by conducting the deposition of mww and bifer nanosheets in a designed sequence. Adsorption of a dye, Rhodamine B, in these films, is examined to show that adsorption is dependent on constituent zeolite nanosheets and their assembled nanostructures. This work has provided fundamental advancements in the fabrication of artificial zeolite-related hierarchical structures, which may be extended to other zeolite nanosheets, broadening their functionalities, applications, and benefits.

10.
Chemistry ; 30(37): e202400565, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642002

RESUMEN

Thin films of crystalline solids with substantial free volume built from organic chromophores and metal secondary building units (SBUs) are promising for engineering new optoelectronic properties through control of interchromophore coupling. Zn-based SBUs are especially relevant in this case because they avoid quenching the chromophore's luminescence. We find that layer-by-layer spin-coating using Zn acetate dihydrate and benzene-1,4-dicarboxylic acid (H2BDC) and biphenyl-4,4'-dicarboxylic acid (H2BPDC) linkers readily produces crystalline thin films. However, analysis of the grazing-incidence wide-angle X-ray scattering (GIWAXS) data reveals the structures of these films vary significantly with the linker, and with the metal-to-linker molar ratio used for fabrication. Under equimolar conditions, H2BPDC creates a type of structure like that proposed for SURMOF-2, whereas H2BDC generates a different metal-hydroxide-organic framework. Large excess of Zn2+ ions causes the growth of layered zinc hydroxides, irrespective of the linker used. Density functional theory (DFT) calculations provide structural models with minimum total energy that are consistent with the experimentally observed diffractograms. In the broader sense, this work illustrates the importance in this field of careful structure determination, e. g., by utilizing GIWAXS and DFT simulations to determine the structure of the obtained crystalline metal-organic thin films, such that properties can be rationally engineered and explained.

11.
Biopolymers ; 115(5): e23609, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38899576

RESUMEN

Polysaccharide-protein multilayers (PPMLs) consisting of bovine serum albumin (BSA) and chondroitin sulfate (CS) are assembled in acidic solution (pH 4.2) via layer-by-layer deposition method. The formation of PPMLs on gold surface and their responsiveness to pH change from 4.2 to 7 is investigated by Surface Plasmon Resonance Spectroscopy. The buildup of the multilayer at pH 4.2 exhibits non-linear growth while the formation of the first layers is strongly affected by the physicochemical properties of the gold surface. Neutral solution (pH 7) affects the interactions between the biopolymers and results in a partially disassemble (disintegration) of the multilayer film. On one hand, the single pair of layers, BSA-CS and the double pair of layers, (BSA-CS)2, assemblies are stable in neutral pH, a result that will be of interest for biomedical applications. On the other hand, multilayer films consisting of more than four layers that is (BSA-CS)2

Asunto(s)
Sulfatos de Condroitina , Oro , Albúmina Sérica Bovina , Resonancia por Plasmón de Superficie , Oro/química , Resonancia por Plasmón de Superficie/métodos , Concentración de Iones de Hidrógeno , Albúmina Sérica Bovina/química , Adsorción , Sulfatos de Condroitina/química , Propiedades de Superficie , Bovinos , Animales , Polisacáridos/química
12.
Langmuir ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018029

RESUMEN

Nanofilms fabricated by layer-by-layer (LbL) assembly from polyelectrolytes (PEs) are important materials for various applications. However, PE films cannot retain the charges along the polymer chains during fabrication, resulting in a low charge density. In this study, the preparation of LbL nanofilms with preserved positive charges via a controllable and efficient approach was achieved. To fabricate fully positively charged (FPC) LbL nanofilms, a polycation, poly-l-lysine, was partially grafted with azide and alkyne groups. Through copper-catalyzed azide-alkyne cycloaddition and the LbL procedure, nanofilms were fabricated with all of the individual layers covalently bonded, improving the pH stability of the nanofilms. Because the resulting nanofilms had a high charge density with positive charges both inside and on the surface, they showed unique pH-dependent swelling properties and adsorption of negatively charged molecules compared with those of traditional polyelectrolyte LbL nanofilms. This kind of FPC nanofilm has great potential for use in sensors, diagnostics, and filter nanomaterials in the biomedical and environmental fields.

13.
Biomacromolecules ; 25(9): 5729-5744, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39185801

RESUMEN

Nucleic acid (NA)-based therapies are revolutionizing biomedical research through their ability to control cellular functions at the genetic level. This work demonstrates a versatile elastin-like polypeptide (ELP) carrier system using a layer-by-layer (LbL) formulation approach that delivers NA cargos ranging in size from siRNA to plasmids. The components of the system can be reconfigured to modulate the biochemical and biophysical characteristics of the carrier for engaging the unique features of the biological target. We show the physical characterization and biological performance of LbL ELP nucleic acid nanoparticles (LENNs) in murine and human bladder tumor cell lines. Targeting bladder tumors is difficult owing to the constant influx of urine into the bladder, leading to low contact times (typically <2 h) for therapeutic agents delivered via intravesical instillation. LENN complexes bind to bladder tumor cells within 30 min and become rapidly internalized to release their NA cargo within 60 min. Our data show that a readily adaptable NA-delivery system has been created that is flexible in its targeting ability, cargo size, and disassembly kinetics. This approach provides an alternative path to either lipid nanoparticle formulations that suffer from inefficiency and physicochemical instability or viral vectors that are plagued by manufacturing and immune rejection challenges. This agile ELP-based nanocarrier provides an alternative route for nucleic acid delivery using a biomanufacturable, biodegradable, biocompatible, and highly tunable vehicle capable of targeting cells via engagement with overexpressed cell surface receptors.


Asunto(s)
Elastina , Nanopartículas , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Humanos , Elastina/química , Ratones , Animales , Nanopartículas/química , Línea Celular Tumoral , Receptores ErbB/metabolismo , Receptores ErbB/genética , Péptidos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Polipéptidos Similares a Elastina
14.
J Fluoresc ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373790

RESUMEN

This study presents the development of a sensitive and selective gold ion (Au3+) sensor utilizing layer-by-layer (LbL) assembled thin films composed of polyethylenimine (PEI) and poly (acrylic acid) (PAA) conjugated with rhodamine (Rho). The first study revealed that the polymeric sensors (PAA-Rho) demonstrated significant selectivity and sensitivity in their colorimetric and fluorescence responses to Au3+ compared to other metal ions. In their spirolactam form, the polymeric sensors were non-fluorescent but could selectively transform into the fluorescent ring-opened amide form upon interaction with Au3+ ions, resulting in fluorescence enhancement and observable color changes. Common co-existing metal ions showed negligible interference in the detection of Au3+. The LbL sensor exhibited a linear increase in absorbance with the addition of bilayers, confirming successful film deposition. Surface morphology analysis using SEM, along with structural confirmation via ATR-FTIR and XRD, further validated the sensor's capability to detect cation. Results demonstrated that the LbL sensor exhibited selectivity for Au3+ ions within the range 1 × 10-6 to 1 × 10-3 M. This approach offers an easily understandable and intrinsically sensitive means for detecting Au3+ ions in both environmental and biological applications.

15.
Macromol Rapid Commun ; : e2400482, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108056

RESUMEN

Digitally-encoded poly(phosphodiesters) (d-PPDE) with highly complex primary structures are evaluated for layer-by-layer (LbL) assembly. To be easily decoded by mass spectrometry (MS), these digital polymers contain many different monomers: 2 coding units allowing binary encryption, 1 cleavable spacer allowing controlled MS fragmentation, and 3 mass tags allowing fragment identification. These complex heteropolymers are therefore composed of 6 different motifs. Despite this strong sequence heterogeneity, it is found that they enable a highly controlled LbL film formation. For instance, a regular growth is observed when alternating the deposition of negatively-charged d-PPDE and positively-charged poly(allyl amine hydrochloride) (PAH). Yet, in this approach, the interdistance between consecutive coded d-PPDE layers remains relatively small, which may be an issue for data storage applications, especially for the selective decoding of the stored information. Using poly(sodium 4-styrene sulfonate) (PSS) as an intermediate non-coded polyanion, it is shown that a controlled interdistance between d-PPDE layers can be easily achieved, while still maintaining a regular LbL growth. Last but not least, it is found in this work that d-PPDE of relatively small molecular weight (i.e., significantly smaller than those of PAH and PSS) still enables a controlled LbL assembly.

16.
Environ Res ; 251(Pt 1): 118589, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428560

RESUMEN

The use of graphene sheets in water treatment is increasing due to its adsorption capacity, reactivity, catalytic action and surface area. The challenges linked to wastewater treatment are vast due to the constant influx of various pollutants. Can the challenges of water desalination and purification be encountered by graphene-based composites and membranes?.The current work describes the synthesis of graphene oxide (GO) using modified Hummers' method. GO was functionalized with chitosan and used as adsorbents. On the other hand, it was reported that the surface of thin-film-composite (TFC) polyamide membranes was modified in order to desalinate highly saline water using pervaporation. The findings showed that GO synthesized by modified Hummers' method has a greater capacity for the adsorption of sodium ion and have better regeneration performance. Functionalization with chitosan increased adsorption capacity from 680.2 to 740.5 mg/g at the initial concentration of 45,000 mg/l of Na+ ions. On the other hand, modification in membrane comprises the chlorine treatment of surface of polyamide membrane. Layer-by-layer (LbL) deposition of positively charged polyethyleneimine (PEI) and negatively charged graphene oxide (GO) was followed. The PEI/GO LbL membrane's pure water flux was twice as high as compare to the original membrane. The synthesized membrane was tested against the aqueous solutions containing Na2SO4, MgSO4, NaCl and MgCl2 salts for their desalination. At different concentrations, a water flux of 8.9 kg/m2h with a huge salt rejection (>99.9%) was attained for every tested salt. It was observed that CS functionalized GO and GO membrane showed higher adsorption capacity and improved regeneration performance can be measured as an operational and active adsorbent for sea water desalination.


Asunto(s)
Quitosano , Grafito , Membranas Artificiales , Purificación del Agua , Grafito/química , Quitosano/química , Purificación del Agua/métodos , Adsorción , Salinidad , Cloruro de Sodio/química
17.
J Nanobiotechnology ; 22(1): 582, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304919

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS: In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aß deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION: Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Transgénicos , Probióticos , Animales , Ratones , Probióticos/farmacología , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Presenilina-1/genética , Péptidos beta-Amiloides/metabolismo , Lactobacillus plantarum
18.
Nanomedicine ; 57: 102742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460654

RESUMEN

Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers. T-cells were modified with the following magnetic capsules: Parg/DEX (150 nm), BSA/TA (300 nm), and BSA/TA (500 nm). T-cells were magnetonavigated in a phantom blood vessel capillary in cultural medium and in whole blood. The permeability of tumor tissues to captured T-cells was analyzed by magnetic delivery of modified T-cells to spheroids formed from 4T1 breast cancer cells. The dynamics of T-cell motion under a magnetic field gradient in model environments were analyzed by particle image velocimetry. The magnetic properties of the nanocomposite capsules and magnetic T-cells were measured. The obtained results are promising for biomedical applications in cancer immunotherapy.


Asunto(s)
Nanocápsulas , Nanocompuestos , Sistemas de Liberación de Medicamentos/métodos , Linfocitos T , Fenómenos Electromagnéticos , Cápsulas
19.
Chem Pharm Bull (Tokyo) ; 72(1): 121-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296514

RESUMEN

In clinical diagnosis, fluorescent particles are applied to detect analytes in biofluids, such as blood and saliva. However, current fluorescence detection methods have not been optimized to account for the overlapping autofluorescence peaks of biological substances. Gold and silver nanoclusters are known to the novel fluorescent materials and their emission wavelengths depend on cluster size. In this study, we developed fluorescent silica nanoparticles using gold-silver alloy nanoclusters and chitosan (CS) (NH2-SiO2@Au@CS@AuAg) by the layer-by-layer method. Under UV-light irradiation at 365 nm, the emission wavelength of NH2-SiO2@Au@CS@AuAg reached 750 nm in the near-IR region. Scanning electron microscopy images revealed that the shape of NH2-SiO2@Au@CS@AuAg was uniform and spherical. The fluorescence spectrum of horse blood obtained in the presence of NH2-SiO2@Au@CS@AuAg contained a specific fluorescence peak attributed to NH2-SiO2@Au@CS@AuAg, which was distinguishable from the autofluorescence peaks. These results showed that NH2-SiO2@Au@CS@AuAg has advantageous fluorescence properties for clinical diagnostic applications.


Asunto(s)
Aleaciones de Oro , Nanopartículas del Metal , Animales , Caballos , Plata , Dióxido de Silicio , Oro
20.
Sci Technol Adv Mater ; 25(1): 2300697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38249722

RESUMEN

A selective composite membrane for vanadium redox flow battery (VRFB) was successfully prepared by layer-by-layer (LbL) technique using a perfluorosulfonic sulfonic acid or Nafion 117 (N117). The composite membrane referred as N117-(PEI/GO)n, was obtained by depositing alternating layers of positively charged polyethylenimine (PEI) and negatively charged graphene oxide (GO) as polyelectrolytes. The physicochemical properties and performance of the pristine and composite membranes were investigated. The membrane showed an enhancement in proton conductivity and simultaneously exhibited a notable 90% reduction in vanadium permeability. This, in turn, results in a well-balanced ratio of proton conductivity to vanadium permeability, leading to high selectivity. The highest selectivity of the LbL membranes was found to be 19.2 × 104 S.min/cm3, which is 13 times higher than the N117 membrane (n = 0). This was translated into an improvement in the battery performance, with the n = 1 membrane showing a 4-6% improvement in coulombic efficiency and a 7-15% improvement in voltage efficiency at current densities ranging from 40 to 80 mA/cm2. Furthermore, the membrane displays stable operation over a long-term stability at around 88% at a current density of 40 mA/cm2, making it an attractive option for VRFB applications using the LbL technique. The use of PEI/GO bilayers maintains high proton conductivity and VE of the battery, opening up possibilities for further optimization and improvement of VRFBs.


An innovative N117-(PEI/GO)n layer-by-layer membrane prepared for vanadium redox flow battery improved the balance between the proton conductivity and vanadium permeability, yielding a remarkable selectivity of 19.2 × 104 S.min/cm3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA