Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.455
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38697107

RESUMEN

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Asunto(s)
Inmunoterapia , Lípidos , ARN , Microambiente Tumoral , Animales , Perros , Femenino , Humanos , Ratones , Antígenos de Neoplasias/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Citocinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glioblastoma/terapia , Glioblastoma/inmunología , Glioma/terapia , Glioma/inmunología , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Neoplasias/terapia , Neoplasias/inmunología , ARN/química , ARN/uso terapéutico , ARN Mensajero/metabolismo , ARN Mensajero/genética , Lípidos/química
2.
Am J Hum Genet ; 111(4): 714-728, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579669

RESUMEN

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Asunto(s)
Argininosuccinatoliasa , Aciduria Argininosuccínica , Humanos , Argininosuccinatoliasa/genética , Aciduria Argininosuccínica/genética , Aciduria Argininosuccínica/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Sistemas CRISPR-Cas , Urea , Edición Génica/métodos
3.
Proc Natl Acad Sci U S A ; 121(13): e2319856121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513098

RESUMEN

The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Interleucina-7 , Liposomas , Nanopartículas , Biosíntesis de Proteínas , ARN Mensajero , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Interleucina-7/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL , Células Cultivadas , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología
4.
Proc Natl Acad Sci U S A ; 121(11): e2307803120, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437542

RESUMEN

Lipid nanoparticle (LNP) formulations are a proven method for the delivery of nucleic acids for gene therapy as exemplified by the worldwide rollout of LNP-based RNAi therapeutics and mRNA vaccines. However, targeting specific tissues or cells is still a major challenge. After LNP administration, LNPs interact with biological fluids (i.e., blood), components of which adsorb onto the LNP surface forming a layer of biomolecules termed the "biomolecular corona (BMC)" which affects LNP stability, biodistribution, and tissue tropism. The mechanisms by which the BMC influences tissue- and cell-specific targeting remains largely unknown, due to the technical challenges in isolating LNPs and their corona from complex biological media. In this study, we present a new technique that utilizes magnetic LNPs to isolate LNP-corona complexes from unbound proteins present in human serum. First, we developed a magnetic LNP formulation, containing >40 superparamagnetic iron oxide nanoparticles (IONPs)/LNP, the resulting LNPs containing iron oxide nanoparticles (IOLNPs) displayed a similar particle size and morphology as LNPs loaded with nucleic acids. We further demonstrated the isolation of the IOLNPs and their corresponding BMC from unbound proteins using a magnetic separation (MS) system. The BMC profile of LNP from the MS system was compared to size exclusion column chromatography and further analyzed via mass spectrometry, revealing differences in protein abundances. This new approach enabled a mild and versatile isolation of LNPs and its corona, while maintaining its structural integrity. The identification of the BMC associated with an intact LNP provides further insight into LNP interactions with biological fluids.


Asunto(s)
Liposomas , Nanopartículas , Ácidos Nucleicos , Humanos , Distribución Tisular , Fenómenos Magnéticos
5.
Proc Natl Acad Sci U S A ; 121(11): e2307809121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437543

RESUMEN

Rapid advances in nucleic acid therapies highlight the immense therapeutic potential of genetic therapeutics. Lipid nanoparticles (LNPs) are highly potent nonviral transfection agents that can encapsulate and deliver various nucleic acid therapeutics, including but not limited to messenger RNA (mRNA), silencing RNA (siRNA), and plasmid DNA (pDNA). However, a major challenge of targeted LNP-mediated systemic delivery is the nanoparticles' nonspecific uptake by the liver and the mononuclear phagocytic system, due partly to the adsorption of endogenous serum proteins onto LNP surfaces. Tunable LNP surface chemistries may enable efficacious delivery across a range of organs and cell types. Here, we describe a method to electrostatically adsorb bioactive polyelectrolytes onto LNPs to create layered LNPs (LLNPs). LNP cores varying in nucleic acid cargo and component lipids were stably layered with four biologically relevant polyanions: hyaluronate (HA), poly-L-aspartate (PLD), poly-L-glutamate (PLE), and polyacrylate (PAA). We further investigated the impact of the four surface polyanions on the transfection and uptake of mRNA- and pDNA-loaded LNPs in cell cultures. PLD- and PLE-LLNPs increased mRNA transfection twofold over unlayered LNPs in immune cells. HA-LLNPs increased pDNA transfection rates by more than twofold in epithelial and immune cells. In a healthy C57BL/6 murine model, PLE- and HA-LLNPs increased transfection by 1.8-fold to 2.5-fold over unlayered LNPs in the liver and spleen. These results suggest that LbL assembly is a generalizable, highly tunable platform to modify the targeting specificity, stability, and transfection efficacy of LNPs, as well as incorporate other charged targeting and therapeutic molecules into these systems.


Asunto(s)
Liposomas , Nanopartículas , Animales , Ratones , Polielectrolitos , Adsorción , Electricidad Estática , Transfección , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ácido Glutámico
6.
Proc Natl Acad Sci U S A ; 121(11): e2307810121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437545

RESUMEN

Treating pregnancy-related disorders is exceptionally challenging because the threat of maternal and/or fetal toxicity discourages the use of existing medications and hinders new drug development. One potential solution is the use of lipid nanoparticle (LNP) RNA therapies, given their proven efficacy, tolerability, and lack of fetal accumulation. Here, we describe LNPs for efficacious mRNA delivery to maternal organs in pregnant mice via several routes of administration. In the placenta, our lead LNP transfected trophoblasts, endothelial cells, and immune cells, with efficacy being structurally dependent on the ionizable lipid polyamine headgroup. Next, we show that LNP-induced maternal inflammatory responses affect mRNA expression in the maternal compartment and hinder neonatal development. Specifically, pro-inflammatory LNP structures and routes of administration curtailed efficacy in maternal lymphoid organs in an IL-1ß-dependent manner. Further, immunogenic LNPs provoked the infiltration of adaptive immune cells into the placenta and restricted pup growth after birth. Together, our results provide mechanism-based structural guidance on the design of potent LNPs for safe use during pregnancy.


Asunto(s)
Células Endoteliales , Feto , Liposomas , Nanopartículas , Femenino , Embarazo , Humanos , Animales , Ratones , ARN Mensajero/genética , Atención Prenatal
7.
Proc Natl Acad Sci U S A ; 121(7): e2314747121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315853

RESUMEN

Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.


Asunto(s)
Liposomas , Nanopartículas , Neumonía Viral , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Lípidos/farmacología , Macrófagos/metabolismo , ARN Interferente Pequeño/metabolismo , Citocinas/metabolismo , Neumonía Viral/metabolismo
8.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38670158

RESUMEN

Despite the widespread use of ionizable lipid nanoparticles (LNPs) in clinical applications for messenger RNA (mRNA) delivery, the mRNA drug delivery system faces an efficient challenge in the screening of LNPs. Traditional screening methods often require a substantial amount of experimental time and incur high research and development costs. To accelerate the early development stage of LNPs, we propose TransLNP, a transformer-based transfection prediction model designed to aid in the selection of LNPs for mRNA drug delivery systems. TransLNP uses two types of molecular information to perceive the relationship between structure and transfection efficiency: coarse-grained atomic sequence information and fine-grained atomic spatial relationship information. Due to the scarcity of existing LNPs experimental data, we find that pretraining the molecular model is crucial for better understanding the task of predicting LNPs properties, which is achieved through reconstructing atomic 3D coordinates and masking atom predictions. In addition, the issue of data imbalance is particularly prominent in the real-world exploration of LNPs. We introduce the BalMol block to solve this problem by smoothing the distribution of labels and molecular features. Our approach outperforms state-of-the-art works in transfection property prediction under both random and scaffold data splitting. Additionally, we establish a relationship between molecular structural similarity and transfection differences, selecting 4267 pairs of molecular transfection cliffs, which are pairs of molecules that exhibit high structural similarity but significant differences in transfection efficiency, thereby revealing the primary source of prediction errors. The code, model and data are made publicly available at https://github.com/wklix/TransLNP.


Asunto(s)
Lípidos , Liposomas , Nanopartículas , ARN Mensajero , Nanopartículas/química , ARN Mensajero/genética , ARN Mensajero/química , Lípidos/química , Transfección , Humanos , Modelos Moleculares , Sistemas de Liberación de Medicamentos
9.
Proc Natl Acad Sci U S A ; 120(50): e2310491120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38055742

RESUMEN

Lipid nanoparticles (LNPs) are advanced core-shell particles for messenger RNA (mRNA) based therapies that are made of polyethylene glycol (PEG) lipid, distearoylphosphatidylcholine (DSPC), cationic ionizable lipid (CIL), cholesterol (chol), and mRNA. Yet the mechanism of pH-dependent response that is believed to cause endosomal release of LNPs is not well understood. Here, we show that eGFP (enhanced green fluorescent protein) protein expression in the mouse liver mediated by the ionizable lipids DLin-MC3-DMA (MC3), DLin-KC2-DMA (KC2), and DLinDMA (DD) ranks MC3 ≥ KC2 > DD despite similar delivery of mRNA per cell in all cell fractions isolated. We hypothesize that the three CIL-LNPs react differently to pH changes and hence study the structure of CIL/chol bulk phases in water. Using synchrotron X-ray scattering a sequence of ordered CIL/chol mesophases with lowering pH values are observed. These phases show isotropic inverse micellar, cubic Fd3m inverse micellar, inverse hexagonal [Formula: see text] and bicontinuous cubic Pn3m symmetry. If polyadenylic acid, as mRNA surrogate, is added to CIL/chol, excess lipid coexists with a condensed nucleic acid lipid [Formula: see text] phase. The next-neighbor distance in the excess phase shows a discontinuity at the Fd3m inverse micellar to inverse hexagonal [Formula: see text] transition occurring at pH 6 with distinctly larger spacing and hydration for DD vs. MC3 and KC2. In mRNA LNPs, DD showed larger internal spacing, as well as retarded onset and reduced level of DD-LNP-mediated eGFP expression in vitro compared to MC3 and KC2. Our data suggest that the pH-driven Fd3m-[Formula: see text] transition in bulk phases is a hallmark of CIL-specific differences in mRNA LNP efficacy.


Asunto(s)
Liposomas , Nanopartículas , Animales , Ratones , Nanopartículas/química , Micelas , Concentración de Iones de Hidrógeno , ARN Mensajero/genética , ARN Mensajero/química , ARN Interferente Pequeño/genética
10.
Proc Natl Acad Sci U S A ; 120(52): e2313009120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109533

RESUMEN

Genetic medicines have the potential to treat various diseases; however, certain ailments including inflammatory diseases and cancer would benefit from control over extracellular localization of therapeutic proteins. A critical gap therefore remains the need to develop and incorporate methodologies that allow for posttranslational control over expression dynamics, localization, and stability of nucleic acid-generated protein therapeutics. To address this, we explored how the body's endogenous machinery controls protein localization through signal peptides (SPs), including how these motifs could be incorporated modularly into therapeutics. SPs serve as a virtual zip code for mRNA transcripts that direct the cell where to send completed proteins within the cell and the body. Utilizing this signaling biology, we incorporated secretory SP sequences upstream of mRNA transcripts coding for reporter, natural, and therapeutic proteins to induce secretion of the proteins into systemic circulation. SP sequences generated secretion of various engineered proteins into the bloodstream following intravenous, intramuscular, and subcutaneous SP mRNA delivery by lipid, polymer, and ionizable phospholipid delivery carriers. SP-engineered etanercept/TNF-α inhibitor proteins demonstrated therapeutic efficacy in an imiquimod-induced psoriasis model by reducing hyperkeratosis and inflammation. An SP-engineered anti-PD-L1 construct mediated mRNA encoded proteins with longer serum half-lives that reduced tumor burden and extended survival in MC38 and B16F10 cancer models. The modular nature of SP platform should enable intracellular and extracellular localization control of various functional proteins for diverse therapeutic applications.


Asunto(s)
Dermatitis , Melanoma , Psoriasis , Humanos , Animales , Melanoma/tratamiento farmacológico , Melanoma/genética , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Inflamación/patología , Señales de Clasificación de Proteína , ARN Mensajero/genética , Modelos Animales de Enfermedad
11.
Proc Natl Acad Sci U S A ; 120(50): e2309472120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38060560

RESUMEN

Ionizable lipid nanoparticles (LNPs) pivotal to the success of COVID-19 mRNA (messenger RNA) vaccines hold substantial promise for expanding the landscape of mRNA-based therapies. Nevertheless, the risk of mRNA delivery to off-target tissues highlights the necessity for LNPs with enhanced tissue selectivity. The intricate nature of biological systems and inadequate knowledge of lipid structure-activity relationships emphasize the significance of high-throughput methods to produce chemically diverse lipid libraries for mRNA delivery screening. Here, we introduce a streamlined approach for the rapid design and synthesis of combinatorial libraries of biodegradable ionizable lipids. This led to the identification of iso-A11B5C1, an ionizable lipid uniquely apt for muscle-specific mRNA delivery. It manifested high transfection efficiencies in muscle tissues, while significantly diminishing off-targeting in organs like the liver and spleen. Moreover, iso-A11B5C1 also exhibited reduced mRNA transfection potency in lymph nodes and antigen-presenting cells, prompting investigation into the influence of direct immune cell transfection via LNPs on mRNA vaccine effectiveness. In comparison with SM-102, while iso-A11B5C1's limited immune transfection attenuated its ability to elicit humoral immunity, it remained highly effective in triggering cellular immune responses after intramuscular administration, which is further corroborated by its strong therapeutic performance as cancer vaccine in a melanoma model. Collectively, our study not only enriches the high-throughput toolkit for generating tissue-specific ionizable lipids but also encourages a reassessment of prevailing paradigms in mRNA vaccine design. This study encourages rethinking of mRNA vaccine design principles, suggesting that achieving high immune cell transfection might not be the sole criterion for developing effective mRNA vaccines.


Asunto(s)
Nanopartículas , Vacunas de ARNm , Músculos , Liposomas , Transfección
12.
Mol Ther ; 32(5): 1284-1297, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38414245

RESUMEN

The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs. To improve the translation of mRNA, we developed spike domain-based trimeric S1 (TS1) mRNA with optimized codon sequence, base modification, and engineered 5' and 3' UTRs. In a mouse model, SMART-LNP-TS1 vaccine could elicit robust broad cross-reactive IgGs against Omicron sub-variants, and induced interferon-γ-producing T cells against SARS-CoV-2 virus compared with non-targeted LNP-TS1 vaccine. Further, T cells analysis revealed that SMART-LNP-TS1 vaccine induced long-lived memory T cell subsets, T helper 1 (Th1)-dominant and cytotoxic T cells immune responses against the SARS-CoV-2 virus. Importantly, SMART-LNP-TS1 vaccine produced strong Th1-predominant humoral and cellular immune responses. Overall, SMART-LNPs can be explored for precise antigenic mRNA delivery and robust immune responses. This platform technology can be explored further as a next-generation delivery system for mRNA-based immune therapies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Células Dendríticas , Inmunidad Humoral , Liposomas , Nanopartículas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , Animales , Nanopartículas/química , Ratones , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas de ARNm/inmunología , Reacciones Cruzadas/inmunología , Anticuerpos Antivirales/inmunología , Lípidos/química , Lípidos/inmunología , Femenino , ARN Mensajero/genética , ARN Mensajero/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo
13.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454606

RESUMEN

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Liposomas , Nanopartículas , Molécula 1 de Adhesión Celular Vascular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Animales , Ratones , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Nanopartículas/química , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Humanos
14.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35173043

RESUMEN

Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Linfangioleiomiomatosis/tratamiento farmacológico , ARN Mensajero/administración & dosificación , Animales , Femenino , Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Liposomas/química , Liposomas/farmacología , Pulmón/citología , Pulmón/patología , Enfermedades Pulmonares/tratamiento farmacológico , Enfermedades Pulmonares/metabolismo , Linfangioleiomiomatosis/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/química , Corona de Proteínas/química , Corona de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/farmacología , ARN Interferente Pequeño/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(34): e2207841119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969778

RESUMEN

The targeted delivery of messenger RNA (mRNA) to desired organs remains a great challenge for in vivo applications of mRNA technology. For mRNA vaccines, the targeted delivery to the lymph node (LN) is predicted to reduce side effects and increase the immune response. In this study, we explored an endogenously LN-targeting lipid nanoparticle (LNP) without the modification of any active targeting ligands for developing an mRNA cancer vaccine. The LNP named 113-O12B showed increased and specific expression in the LN compared with LNP formulated with ALC-0315, a synthetic lipid used in the COVID-19 vaccine Comirnaty. The targeted delivery of mRNA to the LN increased the CD8+ T cell response to the encoded full-length ovalbumin (OVA) model antigen. As a result, the protective and therapeutic effect of the OVA-encoding mRNA vaccine on the OVA-antigen-bearing B16F10 melanoma model was also improved. Moreover, 113-O12B encapsulated with TRP-2 peptide (TRP2180-188)-encoding mRNA also exhibited excellent tumor inhibition, with the complete response of 40% in the regular B16F10 tumor model when combined with anti-programmed death-1 (PD-1) therapy, revealing broad application of 113-O12B from protein to peptide antigens. All the treated mice showed long-term immune memory, hindering the occurrence of tumor metastatic nodules in the lung in the rechallenging experiments that followed. The enhanced antitumor efficacy of the LN-targeting LNP system shows great potential as a universal platform for the next generation of mRNA vaccines.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Vacunas de ARNm , Amino Alcoholes , Animales , Antígenos/metabolismo , Linfocitos T CD8-positivos , Vacunas contra el Cáncer/uso terapéutico , Decanoatos , Memoria Inmunológica , Liposomas , Ganglios Linfáticos , Ratones , Metástasis de la Neoplasia/prevención & control , Neoplasias/terapia , Ovalbúmina , Vacunas de ARNm/uso terapéutico
16.
Nano Lett ; 24(17): 5104-5109, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640421

RESUMEN

mRNA lipid nanoparticles (LNPs) have emerged as powerful modalities for gene therapies to control cancer and infectious and immune diseases. Despite the escalating interest in mRNA-LNPs over the past few decades, endosomal entrapment of delivered mRNAs vastly impedes therapeutic developments. In addition, the molecular mechanism of LNP-mediated mRNA delivery is poorly understood to guide further improvement through rational design. To tackle these challenges, we characterized LNP-mediated mRNA delivery using a library of small molecules targeting endosomal trafficking. We found that the expression of delivered mRNAs is greatly enhanced via inhibition of endocytic recycling in cells and in live mice. One of the most potent small molecules, endosidine 5 (ES5), interferes with recycling endosomes through Annexin A6, thereby promoting the release and expression of mRNA into the cytoplasm. Together, these findings suggest that targeting endosomal trafficking with small molecules is a viable strategy to potentiate the efficacy of mRNA-LNPs.


Asunto(s)
Endosomas , Liposomas , Nanopartículas , ARN Mensajero , Endosomas/metabolismo , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nanopartículas/química , Ratones , Humanos , Lípidos/química , Técnicas de Transferencia de Gen , Endocitosis/efectos de los fármacos
17.
Nano Lett ; 24(20): 6092-6101, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728297

RESUMEN

Despite their successful implementation in the COVID-19 vaccines, lipid nanoparticles (LNPs) still face a central limitation in the delivery of mRNA payloads: endosomal trapping. Improving upon this inefficiency could afford improved drug delivery systems, paving the way toward safer and more effective mRNA-based medicines. Here, we present polyphenolic nanoparticle platforms (PARCELs) as effective mRNA delivery systems. In brief, our investigation begins with a computationally guided structural analysis of 1825 discrete polyphenolic structural data points across 73 diverse small molecule polyphenols and 25 molecular parameters. We then generate structurally diverse PARCELs, evaluating their in vitro mechanism and activity, ultimately highlighting the superior endosomal escape properties of PARCELs relative to analogous LNPs. Finally, we examine the in vivo biodistribution, protein expression, and therapeutic efficacy of PARCELs in mice. In undertaking this approach, the goal of this study is to establish PARCELs as viable delivery platforms for safe and effective mRNA delivery.


Asunto(s)
Nanopartículas , Polifenoles , ARN Mensajero , Polifenoles/química , Animales , ARN Mensajero/genética , Ratones , Nanopartículas/química , Humanos , SARS-CoV-2/efectos de los fármacos , COVID-19 , Sistemas de Liberación de Medicamentos , Distribución Tisular , Lípidos/química , Endosomas/metabolismo , Liposomas
18.
Nano Lett ; 24(10): 2961-2971, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477058

RESUMEN

The delivery of RNA across biological barriers can be achieved by encapsulation in lipid nanoparticles (LNPs). Cationic amphiphilic drugs (CADs) are pharmacologically diverse compounds with ionizable lipid-like features. In this work, we applied CADs as a fifth component of state-of-the-art LNPs via microfluidic mixing. Improved cytosolic delivery of both siRNA and mRNA was achieved by partly replacing the cholesterol fraction of LNPs with CADs. The LNPs could cross the mucus layer in a mucus-producing air-liquid interface model of human primary bronchial epithelial cells following nebulization. Moreover, CAD-LNPs demonstrated improved epithelial and endothelial targeting following intranasal administration in mice, without a marked pro-inflammatory signature. Importantly, quantification of the CAD-LNP molar composition, as demonstrated for nortriptyline, revealed a gradual leakage of the CAD from the formulation during LNP dialysis. Altogether, these data suggest that the addition of a CAD prior to the rapid mixing process might have an impact on the composition, structure, and performance of LNPs.


Asunto(s)
Liposomas , Nanopartículas , Ratones , Animales , Humanos , Nanopartículas/química , ARN Interferente Pequeño/genética , Colesterol/química
19.
Nano Lett ; 24(3): 920-928, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207109

RESUMEN

Organic nanoparticles are used in nanomedicine, including for cancer treatment and some types of COVID-19 vaccines. Here, we demonstrate the scalable, rapid, reproducible, and cost-effective synthesis of three model organic nanoparticle formulations relevant to nanomedicine applications. We employed a custom-made, low-cost fluid mixer device constructed from a commercially available three-dimensional printer. We investigated how systematically changing aqueous and organic volumetric flow rate ratios determined liposome, polymer nanoparticle, and solid lipid nanoparticle sizes, size distributions, and payload encapsulation efficiencies. By manipulating inlet volumes, we synthesized organic nanoparticles with encapsulation efficiencies approaching 100% for RNA-based payloads. The synthesized organic nanoparticles were safe and effective at the cell culture level, as demonstrated by various assays. Such cost-effective synthesis approaches could potentially increase the accessibility to clinically relevant organic nanoparticle formulations for personalized nanomedicine applications at the point of care, especially in nonhospital and low-resource settings.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Sistemas de Liberación de Medicamentos/métodos , Nanomedicina/métodos , Sistemas de Atención de Punto , Vacunas contra la COVID-19 , Análisis Costo-Beneficio , Liposomas
20.
Eur J Neurosci ; 59(11): 2915-2954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622050

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aß) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas , ARN Interferente Pequeño , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , ARN Interferente Pequeño/administración & dosificación , Humanos , Animales , Nanopartículas/administración & dosificación , Péptidos beta-Amiloides/metabolismo , Terapia Genética/métodos , Lípidos , Liposomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA