Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Ther ; 32(2): 325-339, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38053332

RESUMEN

Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1ß contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.


Asunto(s)
Linfocitos T CD8-positivos , Factor 88 de Diferenciación Mieloide , Animales , Ratones , Proteínas de la Cápside , Células Dendríticas , Interleucina-1/metabolismo , Hígado/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
2.
J Inherit Metab Dis ; 47(1): 9-21, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171926

RESUMEN

Gene therapy clinical trials are rapidly expanding for inherited metabolic liver diseases whilst two gene therapy products have now been approved for liver based monogenic disorders. Liver-directed gene therapy has recently become an option for treatment of haemophilias and is likely to become one of the favoured therapeutic strategies for inherited metabolic liver diseases in the near future. In this review, we present the different gene therapy vectors and strategies for liver-targeting, including gene editing. We highlight the current development of viral and nonviral gene therapy for a number of inherited metabolic liver diseases including urea cycle defects, organic acidaemias, Crigler-Najjar disease, Wilson disease, glycogen storage disease Type Ia, phenylketonuria and maple syrup urine disease. We describe the main limitations and open questions for further gene therapy development: immunogenicity, inflammatory response, genotoxicity, gene therapy administration in a fibrotic liver. The follow-up of a constantly growing number of gene therapy treated patients allows better understanding of its benefits and limitations and provides strategies to design safer and more efficacious treatments. Undoubtedly, liver-targeting gene therapy offers a promising avenue for innovative therapies with an unprecedented potential to address the unmet needs of patients suffering from inherited metabolic diseases.


Asunto(s)
Hemofilia A , Hepatopatías , Enfermedades Metabólicas , Humanos , Hepatopatías/genética , Hepatopatías/terapia , Hepatopatías/metabolismo , Terapia Genética , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/terapia , Enfermedades Metabólicas/metabolismo , Hemofilia A/genética
3.
J Hepatol ; 71(2): 422-433, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31102718

RESUMEN

Porphyrias are rare inherited disorders caused by specific enzyme dysfunctions in the haem synthesis pathway, which result in abnormal accumulation of specific pathway intermediates. The symptoms depend upon the chemical characteristics of these substances. Porphyrins are photoreactive and cause photocutaneous lesions on sunlight-exposed areas, whereas accumulation of porphyrin precursors is related to acute neurovisceral attacks. Current therapies are suboptimal and mostly address symptoms rather than underlying disease mechanisms. Advances in the understanding of the molecular bases and pathogenesis of porphyrias have paved the way for the development of new therapeutic strategies. In this Clinical Trial Watch we summarise the basic principles of these emerging approaches and what is currently known about their application to porphyrias of hepatic origin or with hepatic involvement.


Asunto(s)
Acetilgalactosamina/análogos & derivados , Trasplante de Médula Ósea/métodos , Resina de Colestiramina/uso terapéutico , Terapia Genética/métodos , Trasplante de Hígado/métodos , Porfirias Hepáticas/tratamiento farmacológico , Porfirias Hepáticas/cirugía , Pirrolidinas/uso terapéutico , Receptor de Melanocortina Tipo 1/agonistas , alfa-MSH/análogos & derivados , 5-Aminolevulinato Sintetasa/antagonistas & inhibidores , Acetilgalactosamina/farmacología , Acetilgalactosamina/uso terapéutico , Hemo/biosíntesis , Humanos , Hígado/metabolismo , Porfirias Hepáticas/clasificación , Porfirias Hepáticas/patología , Porfirinas/metabolismo , Pirrolidinas/farmacología , alfa-MSH/uso terapéutico
4.
Mol Biol Rep ; 46(3): 3203-3211, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30980265

RESUMEN

Liver-directed gene therapy, using mainly viral vectors for the genetic cell modification, is a promising therapeutic approach for many genetic and metabolic liver diseases. The recent successful preclinical trials with AAV vectors expose the benefits as well as the limitations of the system. We focused on the development of an alternative non-viral episomal gene transfer system, by inserting the DNA element Scaffold/Matrix Attachment Region (S/MAR) into the free of antibiotic resistance gene miniplasmid vector (pFAR4). We produced pFAR4 derivative experimental vectors, carrying the eGFP gene driven by the composite HCRHPi liver-specific promoter and either lacking (pFAR4-noS/MAR) or containing the S/MAR element in an upstream (pFAR-S/MAR-IN) or downstream (pFAR4-S/MAR-OUT) configuration in relation to the poly-A signal of the eGFP expression cassette. Upon transfer into Huh7 cells by lipofection, vector pFAR4-S/MAR IN showed significantly higher transfection efficiency and eGFP expression than the control vector or the pFAR4-S/MAR-OUT (p < 0.005), estimated by fluorescent microscopy and flow cytometry. Stable transfections were produced only with cultures containing vector pFAR4-S/MAR IN, through the expansion of single colonies, which displayed sustained GFP expression and plasmid copy number per cell of 2.3 ± 0.4, at 3 months of culture. No vector integration events were detected in these cultures by FISH analysis, while the presence of free, circular plasmids was documented by plasmid rescue assay. The presence of S/MAR renders pFAR4 miniplasmid substantially more efficient regarding episomal gene transfer and is suitable for liver-directed studies towards gene therapy applications.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Hepatocitos/metabolismo , Plásmidos , Línea Celular Tumoral , Células Cultivadas , Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Hígado/metabolismo , Transfección
5.
Hum Gene Ther ; 34(7-8): 273-288, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36927149

RESUMEN

The liver is a prime target for in vivo gene therapies using recombinant adeno-associated viral vectors. Multiple clinical trials have been undertaken for this target in the past 15 years; however, we are still to see market approval of the first liver-targeted adeno-associated virus (AAV)-based gene therapy. Inefficient expression of the therapeutic transgene, vector-induced liver toxicity and capsid, and/or transgene-mediated immune responses reported at high vector doses are the main challenges to date. One of the contributing factors to the insufficient clinical outcomes, despite highly encouraging preclinical data, is the lack of robust, biologically and clinically predictive preclinical models. To this end, this study reports findings of a functional evaluation of 6 AAV vectors in 12 preclinical models of the human liver, with the aim to uncover which combination of models is the most relevant for the identification of AAV capsid variant for safe and efficient transgene delivery to primary human hepatocytes. The results, generated by studies in models ranging from immortalized cells, iPSC-derived and primary hepatocytes, and primary human hepatic organoids to in vivo models, increased our understanding of the strengths and weaknesses of each system. This should allow the development of novel gene therapies targeting the human liver.


Asunto(s)
Dependovirus , Hígado , Humanos , Dependovirus/genética , Hígado/metabolismo , Terapia Genética/métodos , Hepatocitos/metabolismo , Proteínas de la Cápside/metabolismo , Tropismo , Vectores Genéticos/genética
6.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36647689

RESUMEN

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Asunto(s)
Atrofia Girata , Degeneración Retiniana , Animales , Ratones , Atrofia Girata/genética , Atrofia Girata/patología , Ornitina-Oxo-Ácido Transaminasa/genética , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Ornitina/genética , Ornitina/metabolismo , Terapia Genética , Hígado/patología
7.
EMBO Mol Med ; 14(6): e15199, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491676

RESUMEN

Liver gene therapy with adeno-associated viral (AAV) vectors is under clinical investigation for haemophilia A (HemA), the most common inherited X-linked bleeding disorder. Major limitations are the large size of the F8 transgene, which makes packaging in a single AAV vector a challenge, as well as the development of circulating anti-F8 antibodies which neutralise F8 activity. Taking advantage of split-intein-mediated protein trans-splicing, we divided the coding sequence of the large and highly secreted F8-N6 variant in two separate AAV-intein vectors whose co-administration to HemA mice results in the expression of therapeutic levels of F8 over time. This occurred without eliciting circulating anti-F8 antibodies unlike animals treated with the single oversized AAV-F8 vector under clinical development. Therefore, liver gene therapy with AAV-F8-N6 intein should be considered as a potential therapeutic strategy for HemA.


Asunto(s)
Hemofilia A , Inteínas , Animales , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Hemofilia A/genética , Hemofilia A/terapia , Inteínas/genética , Hígado , Ratones , Trans-Empalme
8.
Mol Ther Methods Clin Dev ; 24: 268-279, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35211639

RESUMEN

Hepatic gene therapy by delivering non-integrating therapeutic vectors in newborns remains challenging due to the risk of dilution and loss of efficacy in the growing liver. Previously we reported on hepatocyte transfection in piglets by intraportal injection of naked DNA vectors. Here, we established delivery of naked DNA vectors to target periportal hepatocytes in weaned pigs by hydrodynamic retrograde intrabiliary injection (HRII). The surgical procedure involved laparotomy and transient isolation of the liver. For vector delivery, a catheter was placed within the common bile duct by enterotomy. Under optimal conditions, no histological abnormalities were observed in liver tissue upon pressurized injections. The transfection of hepatocytes in all tested liver samples was observed with vectors expressing luciferase from a liver-specific promoter. However, vector copy number and luciferase expression were low compared to hydrodynamic intraportal injection. A 10-fold higher number of vector genomes and luciferase expression was observed in pigs using a non-integrating naked DNA vector with the potential for replication. In summary, the HRII application was less efficient (i.e., lower luciferase activity and vector copy numbers) than the intraportal delivery method but was significantly less distressful for the piglets and has the potential for injection (or re-injection) of vector DNA by endoscopic retrograde cholangiopancreatography.

9.
Hum Gene Ther ; 30(10): 1274-1283, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31364419

RESUMEN

Phenylketonuria (PKU) is considered to be a paradigm for a monogenic metabolic disorder but was never thought to be a primary application for human gene therapy due to established alternative treatment. However, somewhat unanticipated improvement in neuropsychiatric outcome upon long-term treatment of adults with PKU with enzyme substitution therapy might slowly change this assumption. In parallel, PKU was for a long time considered to be an excellent test system for experimental gene therapy of a Mendelian autosomal recessive defect of the liver due to an outstanding mouse model and the easy to analyze and well-defined therapeutic end point, that is, blood l-phenylalanine concentration. Lifelong treatment by targeting the mouse liver (or skeletal muscle) was achieved using different approaches, including (1) recombinant adeno-associated viral (rAAV) or nonviral naked DNA vector-based gene addition, (2) genome editing using base editors delivered by rAAV vectors, and (3) by delivering rAAVs for promoter-less insertion of the PAH-cDNA into the Pah locus. In this article we summarize the gene therapeutic attempts of correcting a mouse model for PKU and discuss the future implications for human gene therapy.


Asunto(s)
Dependovirus/genética , Edición Génica/métodos , Terapia Genética/métodos , Fenilalanina Hidroxilasa/genética , Fenilcetonurias/terapia , Animales , Biomarcadores/sangre , Ensayos Clínicos como Asunto , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Hígado/enzimología , Hígado/patología , Ratones , Fenilalanina/sangre , Fenilalanina Hidroxilasa/deficiencia , Fenilcetonurias/enzimología , Fenilcetonurias/genética , Fenilcetonurias/patología , Plásmidos/química , Plásmidos/metabolismo
10.
Methods Mol Biol ; 1950: 333-360, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30783984

RESUMEN

Adeno-associated virus (AAV) vectors to treat liver-specific genetic diseases are the focus of several ongoing clinical trials. The ability to give a peripheral injection of virus that will successfully target the liver is one of many attractive features of this technology. Although initial studies of AAV liver gene transfer revealed some limitations, extensive animal modeling and further clinical development have helped solve some of these issues, resulting in several successful clinical trials that have reached curative levels of clotting factor expression in hemophilia. Looking beyond gene replacement, recent technologies offer the possibility for AAV liver gene transfer to directly repair deficient genes and potentially treat autoimmune disease.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Ingeniería Genética , Vectores Genéticos/genética , Hígado/metabolismo , Animales , Biotecnología , Cápside/inmunología , Cápside/metabolismo , Dependovirus/inmunología , Modelos Animales de Enfermedad , Edición Génica , Expresión Génica , Ingeniería Genética/métodos , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Genoma Viral , Hepatocitos/metabolismo , Humanos , Modelos Animales , Especificidad de Órganos , Regiones Promotoras Genéticas
11.
Mol Ther Nucleic Acids ; 12: 672-683, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30092403

RESUMEN

Delivery of genes to mouse liver is routinely accomplished by tail-vein injections of viral vectors or naked plasmid DNA. While viral vectors are typically injected in a low-pressure and -volume fashion, uptake of naked plasmid DNA to hepatocytes is facilitated by high pressure and volumes, also known as hydrodynamic delivery. In this study, we compare the efficacy and specificity of delivery of vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped lentiviral vectors to mouse liver by a number of injection schemes. Exploiting in vivo bioluminescence imaging as a readout after lentiviral gene transfer, we compare delivery by (1) "conventional" tail-vein injections, (2) "primed" injections, (3) "hydrodynamic" injections, or (4) direct "intrahepatic" injections into exposed livers. Reporter gene activity demonstrate potent and targeted delivery to liver by hydrodynamic injections. Enhanced efficacy is confirmed by analysis of liver sections from mice treated with GFP-encoding vectors, demonstrating 10-fold higher transduction rates and gene delivery to ∼80% of hepatocytes after hydrodynamic vector delivery. In summary, lentiviral vector transfer to mouse liver can be strongly augmented by hydrodynamic tail-vein injections, resulting in both reduced off-target delivery and transduction of the majority of hepatocytes. Our findings pave the way for more effective use of lentiviral gene delivery in the mouse.

12.
Artículo en Coreano | WPRIM | ID: wpr-225615

RESUMEN

PURPOSE: Liver-directed gene therapy is being actively pursued and developed as a method of treating various liver diseases. A number of aspects, including gene intervention, an efficient gene delivery system, and stable transgene expression are key to the success of the chosen strategy, and to overcome problems in these areas, several tactics can be used. In this study, we assess the utility of transarterial embolization using gelfoam particles soaked in an adenovirus vector as a gene-delivery method. MATERIALS AND METHODS: Using the angiographic approach, three dogs each weighing 9.5-11 kg were superselectively catheterized at the left hepatic artery using a 3-F microcatheter and the coaxial method. Two of the dogs were embolized at the left hepatic artery using 3x2x2-mm and 2x1x1-mm gelfoam particles soaked in 2x1011 particles/kg of recombinant adv.CMV.LacZ (LacZ-adv). The left hepatic artery of the remaining animal, used as a control, was infused with the same dose of lacZ-adv in the same way as before but without embolization of the left hepatic artery. Three days after embolization or the infusion of LacZ-adv, the dogs were sacrificed prior to harvest of the entire liver for the evaluation of gene transduction. RESULTS: X-gal staining of the liver tissue obtained was positive for hepatocytes, but the pattern and degree of gene transduction differed according to gelfoam particle size. Where this was 3x2x2 mm, gene transduction along the liver hilum varied, but where 2x1x1-mm particles were used, transduction was more even. No pathologic hepatic tissue injury or inflammation was apparent, and control liver tissue was not stained by Xgal. Serum SGOT and SGPT levels were slightly higher one day after the procedure, but had normalized by day 3. CONCLUSION: Intrahepatic transarterial embolization using gelfoam particles soaked in LacZ-adv appears to be a good method for effective liver-targed gene therapy.


Asunto(s)
Animales , Perros , Adenoviridae , Alanina Transaminasa , Aspartato Aminotransferasas , Catéteres , Esponja de Gelatina Absorbible , Técnicas de Transferencia de Gen , Terapia Genética , Arteria Hepática , Hepatocitos , Inflamación , Hígado , Hepatopatías , Tamaño de la Partícula , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA