Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.119
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(38): e2403655121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39250671

RESUMEN

The presence of livestock inside protected areas, or "livestock encroachment," is a global conservation concern because livestock is broadly thought to negatively affect wildlife. The Maasai Mara National Reserve (MMNR), Kenya, exemplifies this tension as livestock is believed to have resulted in the declining wildlife populations, contributing to the strict and sometimes violent exclusion measures targeting Maasai pastoralists. However, research embedded in the real-world setting that draws insights from the social-ecological contexts is lacking. In this study, we conducted 19 mo of ecological monitoring covering 60 sites in MMNR and found that cattle presence inside the reserve did not significantly impact most co-occurring wild herbivores at the current intensity. Using the Hierarchical Modeling of Species Communities and Gaussian copula graphic models, we showed that cattle had no direct associations-neither negative nor positive-with nearly all wild herbivores despite frequently sharing the same space. Moreover, we did not detect resource degradation correlated with cattle presence near the MMNR boundary. Given the colonial legacy and land use history of Mara, entering MMNR becomes the only viable option for many herders. These results corroborate the emerging perspective that the ecological impacts of extensively herded livestock on wildlife might be more nuanced than previously thought. To effectively balance the needs of people, livestock, and wildlife, the current rigid livestock exclusion measures need to be reassessed to holistically consider herbivore ecology, local land use history, and modern politics of protected area management.


Asunto(s)
Conservación de los Recursos Naturales , Ganado , Animales , Kenia , Bovinos , Herbivoria , Ecosistema , Animales Salvajes
2.
Proc Natl Acad Sci U S A ; 120(35): e2302048120, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603738

RESUMEN

Gaseous nitrous acid (HONO) is a critical source of hydroxyl radicals (OH) in the troposphere. While both direct and secondary sources contribute to atmospheric HONO, direct emissions have traditionally been considered minor contributors. In this study, we developed δ15N and δ18O isotopic fingerprints to identify six direct HONO emission sources and conducted a 1-y case study on the isotopic composition of atmospheric HONO at rural and urban sites. Interestingly, we identified that livestock farming is a previously overlooked direct source of HONO and determined its HONO to ammonia (NH3) emission ratio. Additionally, our results revealed that spatial and temporal variations in atmospheric HONO isotopic composition can be partially attributed to direct emissions. Through a detailed HONO budget analysis incorporating agricultural sources, we found that direct HONO emissions accounted for 39~45% of HONO production in rural areas across different seasons. The findings were further confirmed by chemistry transport model simulations, highlighting the significance of direct HONO emissions and their impact on air quality in the North China Plain. These findings provide compelling evidence that direct HONO emissions play a more substantial role in contributing to atmospheric HONO than previously believed. Moreover, the δ15N and δ18O isotopic fingerprints developed in this study may serve as a valuable tool for further research on the atmospheric chemistry of reactive nitrogen gases.

3.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963246

RESUMEN

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Infecciones Estreptocócicas/veterinaria , Granjas , Enfermedades de los Porcinos/epidemiología , Virulencia/genética , Streptococcus suis/genética , Ganado
4.
Trends Genet ; 38(12): 1228-1252, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35945076

RESUMEN

The rearing of farmed animals is a vital component of global food production systems, but its impact on the environment, human health, animal welfare, and biodiversity is being increasingly challenged. Developments in genetic and genomic technologies have had a key role in improving the productivity of farmed animals for decades. Advances in genome sequencing, annotation, and editing offer a means not only to continue that trend, but also, when combined with advanced data collection, analytics, cloud computing, appropriate infrastructure, and regulation, to take precision livestock farming (PLF) and conservation to an advanced level. Such an approach could generate substantial additional benefits in terms of reducing use of resources, health treatments, and environmental impact, while also improving animal health and welfare.


Asunto(s)
Crianza de Animales Domésticos , Ganado , Animales , Humanos , Ganado/genética , Bienestar del Animal , Genómica , Genoma/genética
5.
J Virol ; 98(7): e0088124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38958444

RESUMEN

In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow's milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.


Asunto(s)
Productos Lácteos , Leche , ARN Viral , Animales , Bovinos , Leche/virología , Estados Unidos , Productos Lácteos/virología , ARN Viral/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Pasteurización , Gripe Aviar/virología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Proc Natl Acad Sci U S A ; 119(38): e2202338119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36099297

RESUMEN

Understanding, prioritizing, and mitigating methane (CH4) emissions requires quantifying CH4 budgets from facility scales to regional scales with the ability to differentiate between source sectors. We deployed a tiered observing system for multiple basins in the United States (San Joaquin Valley, Uinta, Denver-Julesburg, Permian, Marcellus). We quantify strong point source emissions (>10 kg CH4 h-1) using airborne imaging spectrometers, attribute them to sectors, and assess their intermittency with multiple revisits. We compare these point source emissions to total basin CH4 fluxes derived from inversion of Sentinel-5p satellite CH4 observations. Across basins, point sources make up on average 40% of the regional flux. We sampled some basins several times across multiple months and years and find a distinct bimodal structure to emission timescales: the total point source budget is split nearly in half by short-lasting and long-lasting emission events. With the increasing airborne and satellite observing capabilities planned for the near future, tiered observing systems will more fully quantify and attribute CH4 emissions from facility to regional scales, which is needed to effectively and efficiently reduce methane emissions.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Metano/análisis , Estados Unidos
7.
J Infect Dis ; 229(6): 1904-1908, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38669235

RESUMEN

We are currently witnessing the endemization of urogenital schistosomiasis in southern Europe. The incriminated parasite is a hybrid between a human parasite and a livestock parasite. Using an experimental evolutionary protocol, we created hybrid lines from pure strains of both parasite species. We showed that the host spectrum of the human parasite is enlarged to the livestock parasite after genomic introgression. We also evidenced that the tropism of the parasites within the host changes and that some hybrid lines are more virulent than the parental strains. These results engage a paradigm shift from human to zoonotic transmission of urogenital schistosomiasis.


Asunto(s)
Hibridación Genética , Zoonosis , Animales , Humanos , Zoonosis/transmisión , Zoonosis/parasitología , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis Urinaria/parasitología , Schistosoma haematobium/genética , Ratones
8.
BMC Genomics ; 25(1): 708, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033279

RESUMEN

BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS: This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers.


Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Humanos , Microbioma Gastrointestinal/genética , Estudios Transversales , Femenino , Industria Lechera , Metagenómica/métodos , Adulto , Animales , Persona de Mediana Edad , Bacterias/genética , Bacterias/clasificación , Agricultores , Masculino , Farmacorresistencia Bacteriana/genética
9.
BMC Genomics ; 25(1): 726, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060982

RESUMEN

BACKGROUND: A heterozygous-enriched region (HER) is a genomic region with high variability generated by factors such as balancing selection, introgression, and admixture processes. In this study, we evaluated the genomic background of HERs and the impact of different parameters (i.e., minimum number of SNPs in a HER, maximum distance between two consecutive SNPs, minimum length of a HER, maximum number of homozygous allowed in a HER) and scenarios [i.e., different SNP panel densities and whole-genome sequence (WGS)] on the detection of HERs. We also compared HERs characterized in Holstein cattle with those identified in Angus, Jersey, and Norwegian Red cattle using WGS data. RESULTS: The parameters used for the identification of HERs significantly impact their detection. The maximum distance between two consecutive SNPs did not impact HERs detection as the same average of HERs (269.31 ± 787.00) was observed across scenarios. However, the minimum number of markers, maximum homozygous markers allowed inside a HER, and the minimum length size impacted HERs detection. For the minimum length size, the 10 Kb scenario showed the highest average number of HERs (1,364.69 ± 1,483.64). The number of HERs decreased as the minimum number of markers increased (621.31 ± 1,271.83 to 6.08 ± 21.94), and an opposite pattern was observed for the maximum homozygous markers allowed inside a HER (54.47 ± 195.51 to 494.89 ± 1,169.35). Forty-five HER islands located in 23 chromosomes with high Tajima's D values and differential among the observed and estimated heterozygosity were detected in all evaluated scenarios, indicating their ability to potentially detect regions under balancing selection. In total, 3,440 markers and 28 genes previously related to fertility (e.g., TP63, ZSCAN23, NEK5, ARHGAP44), immunity (e.g., TP63, IGC, ARHGAP44), residual feed intake (e.g., MAYO9A), stress sensitivity (e.g., SERPINA6), and milk fat percentage (e.g., NOL4) were identified. When comparing HER islands among breeds, there were substantial overlaps between Holstein with Angus (95.3%), Jersey (94.3%), and Norwegian Red cattle (97.1%), indicating conserved HER across taurine breeds. CONCLUSIONS: The detection of HERs varied according to the parameters used, but some HERs were consistently identified across all scenarios. Heterozygous genotypes observed across generations and breeds appear to be conserved in HERs. The results presented could serve as a guide for defining HERs detection parameters and further investigating their biological roles in future studies.


Asunto(s)
Heterocigoto , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Animales , Bovinos/genética , Secuenciación Completa del Genoma/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos , Genoma , Genómica/métodos
10.
BMC Genomics ; 25(1): 177, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355406

RESUMEN

BACKGROUND: Prion diseases, also known as transmissible spongiform encephalopathies (TSEs) remain one of the deleterious disorders, which have affected several animal species. Polymorphism of the prion protein (PRNP) gene majorly determines the susceptibility of animals to TSEs. However, only limited studies have examined the variation in PRNP gene in different Nigerian livestock species. Thus, this study aimed to identify the polymorphism of PRNP gene in Nigerian livestock species (including camel, dog, horse, goat, and sheep). We sequenced the open reading frame (ORF) of 65 camels, 31 village dogs and 12 horses from Nigeria and compared with PRNP sequences of 886 individuals retrieved from public databases. RESULTS: All the 994 individuals were assigned into 162 haplotypes. The sheep had the highest number of haplotypes (n = 54), and the camel had the lowest (n = 7). Phylogenetic tree further confirmed clustering of Nigerian individuals into their various species. We detected five non-synonymous SNPs of PRNP comprising of G9A, G10A, C11G, G12C, and T669C shared by all Nigerian livestock species and were in Hardy-Weinberg Equilibrium (HWE). The amino acid changes in these five non-synonymous SNP were all "benign" via Polyphen-2 program. Three SNPs G34C, T699C, and C738G occurred only in Nigerian dogs while C16G, G502A, G503A, and C681A in Nigerian horse. In addition, C50T was detected only in goats and sheep. CONCLUSION: Our study serves as the first to simultaneously investigate the polymorphism of PRNP gene in Nigerian livestock species and provides relevant information that could be adopted in programs targeted at breeding for prion diseases resistance.


Asunto(s)
Enfermedades por Prión , Priones , Scrapie , Animales , Caballos/genética , Ovinos/genética , Perros , Priones/genética , Priones/metabolismo , Proteínas Priónicas/genética , Polimorfismo de Nucleótido Simple , Ganado/genética , Sistemas de Lectura Abierta , Filogenia , Camelus/genética , Enfermedades por Prión/genética , Enfermedades por Prión/veterinaria , Cabras/genética , Cabras/metabolismo , Scrapie/genética
11.
BMC Genomics ; 25(1): 294, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504177

RESUMEN

BACKGROUND: Muscle growth post-birth relies on muscle fiber number and size. Myofibre number, metabolic and contractile capacities are established pre-birth during prenatal myogenesis. The aim of this study was to identify genes involved in skeletal muscle development in cattle, sheep, and pigs - livestock. RESULTS: The cattle analysis showed significant differences in 5043 genes during the 135-280 dpc period. In sheep, 444 genes differed significantly during the 70-120 dpc period. Pigs had 905 significantly different genes for the 63-91 dpc period.The biological processes and KEGG pathway enrichment results in each species individually indicated that DEGs in cattle were significantly enriched in regulation of cell proliferation, cell division, focal adhesion, ECM-receptor interaction, and signaling pathways (PI3K-Akt, PPAR, MAPK, AMPK, Ras, Rap1); in sheep - positive regulation of fibroblast proliferation, negative regulation of endothelial cell proliferation, focal adhesion, ECM-receptor interaction, insulin resistance, and signaling pathways (PI3K-Akt, HIF-1, prolactin, Rap1, PPAR); in pigs - regulation of striated muscle tissue development, collagen fibril organization, positive regulation of insulin secretion, focal adhesion, ECM-receptor interaction, and signaling pathways (PPAR, FoxO, HIF-1, AMPK). Among the DEGs common for studied animal species, 45 common genes were identified. Based on these, a protein-protein interaction network was created and three significant modules critical for skeletal muscle myogenesis were found, with the most significant module A containing four recognized hub genes - EGFR, VEGFA, CDH1, and CAV1. Using the miRWALK and TF2DNA databases, miRNAs (bta-miR-2374 and bta-miR-744) and transcription factors (CEBPB, KLF15, RELA, ZNF143, ZBTB48, and REST) associated with hub genes were detected. Analysis of GO term and KEGG pathways showed that such processes are related to myogenesis and associated with module A: positive regulation of MAP kinase activity, vascular endothelial growth factor receptor, insulin-like growth factor binding, focal adhesion, and signaling pathways (PI3K-Akt, HIF-1, Rap1, Ras, MAPK). CONCLUSIONS: The identified genes, common to the prenatal developmental period of skeletal muscle in livestock, are critical for later muscle development, including its growth by hypertrophy. They regulate valuable economic characteristics. Enhancing and breeding animals according to the recognized genes seems essential for breeders to achieve superior gains in high-quality muscle mass.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs , Porcinos/genética , Animales , Bovinos , Ovinos/genética , Perfilación de la Expresión Génica/métodos , Ganado/genética , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Receptores Activados del Proliferador del Peroxisoma/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Músculo Esquelético/metabolismo , MicroARNs/genética , Desarrollo de Músculos/genética
12.
BMC Genomics ; 25(1): 750, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090567

RESUMEN

BACKGROUND: Association testing between molecular phenotypes and genomic variants can help to understand how genotype affects phenotype. RNA sequencing provides access to molecular phenotypes such as gene expression and alternative splicing while DNA sequencing or microarray genotyping are the prevailing options to obtain genomic variants. RESULTS: We genotype variants for 74 male Braunvieh cattle from both DNA (~ 13-fold coverage) and deep total RNA sequencing from testis, vas deferens, and epididymis tissue (~ 250 million reads per tissue). We show that RNA sequencing can be used to identify approximately 40% of variants (7-10 million) called from DNA sequencing, with over 80% precision. Within highly expressed coding regions, over 92% of expected variants were called with nearly 98% precision. Allele-specific expression and putative post-transcriptional modifications negatively impact variant genotyping accuracy from RNA sequencing and contribute to RNA-DNA differences. Variants called from RNA sequencing detect roughly 75% of eGenes identified using variants called from DNA sequencing, demonstrating a nearly 2-fold enrichment of eQTL variants. We observe a moderate-to-strong correlation in nominal association p-values (Spearman ρ2 ~ 0.6), although only 9% of eGenes have the same top associated variant. CONCLUSIONS: We find hundreds of thousands of RNA-DNA differences in variants called from RNA and DNA sequencing on the same individuals. We identify several highly significant eQTL when using RNA sequencing variant genotypes which are not found with DNA sequencing variant genotypes, suggesting that using RNA sequencing variant genotypes for association testing results in an increased number of false positives. Our findings demonstrate that caution must be exercised beyond filtering for variant quality or imputation accuracy when analysing or imputing variants called from RNA sequencing.


Asunto(s)
Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Masculino , ADN/genética , Genotipo , Análisis de Secuencia de ARN , Testículo/metabolismo , Variación Genética , Polimorfismo de Nucleótido Simple , ARN/genética , Análisis de Secuencia de ADN
13.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678201

RESUMEN

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Asunto(s)
Estudio de Asociación del Genoma Completo , Glucógeno Fosforilasa de Forma Muscular , Animales , Bovinos , Femenino , Masculino , Enfermedades de los Bovinos/genética , Genes Recesivos , Glucógeno Fosforilasa de Forma Muscular/genética , Glucógeno Fosforilasa de Forma Muscular/deficiencia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Linaje , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
15.
Emerg Infect Dis ; 30(4): 836-838, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526202

RESUMEN

We conducted a cross-sectional study of Crimean-Congo hemorrhagic fever virus (CCHFV) in northern Tanzania. CCHFV seroprevalence in humans and ruminant livestock was high, as were spatial heterogeneity levels. CCHFV could represent an unrecognized human health risk in this region and should be included as a differential diagnosis for febrile illness.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Humanos , Animales , Ganado , Estudios Transversales , Estudios Seroepidemiológicos , Tanzanía/epidemiología
16.
Proc Biol Sci ; 291(2027): 20240675, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39045693

RESUMEN

Greenhouse gas (GHG) emissions from livestock production must be urgently tackled to substantially reduce their contribution to global warming. Simply reducing livestock numbers to this end risks impacting negatively on food security, rural livelihoods and climate change adaptation. We argue that significant mitigation of livestock emissions can be delivered immediately by improving animal health and hence production efficiency, but this route is not prioritized because its benefits, although intuitive, are poorly quantified. Rigorous methodology must be developed to estimate emissions from animal disease and hence achievable benefits from improved health through interventions. If, as expected, climate change is to affect the distribution and severity of health conditions, such quantification becomes of even greater importance. We have therefore developed a framework and identified data sources for robust quantification of the relationship between animal health and greenhouse gas emissions, which could be applied to drive and account for positive action. This will not only help mitigate climate change but at the same time promote cost-effective food production and enhanced animal welfare, a rare win-win in the search for a sustainable planetary future.


Asunto(s)
Cambio Climático , Gases de Efecto Invernadero , Ganado , Animales , Gases de Efecto Invernadero/análisis , Crianza de Animales Domésticos/métodos , Calentamiento Global , Bienestar del Animal
17.
Microb Pathog ; 195: 106905, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39236967

RESUMEN

Antibiotic resistance poses a persistent threat to modern medicine due to the emergence of novel antibiotic-resistant strains. Therefore, a timely understanding of antibiotic resistance and the virulence biology of pathogenic bacteria, particularly those of public health significance, is crucial for implementing effective mitigation strategies. This study aimed to investigate the virulence profiles of ten S. aureus isolates (NDa to NDj) and ten E. coli isolates (ND1 to ND10) originating from livestock and poultry, and to assess how various cell surface properties and biofilm formation abilities influence antibiotic resistance phenotypes. Antibiotic resistance profiling through phenotypic (AST) and genotypic methods (PCR) confirmed that NDa to NDe were methicillin-resistant S. aureus (MRSA) and ND1 to ND5 were extended-spectrum ß-lactamase (ESBL) producing E. coli isolates. Virulence properties such as hemolytic activity, coagulase activity, and nuclease activity were found to be independent of the antibiotic resistance phenotype in S. aureus. In contrast, biofilm formation phenotype was observed to influence antibiotic resistance phenotypes, with MRSA and ESBL E. coli isolates demonstrating higher biofilm formation potency. Chemical and enzymatic analysis of S. aureus and E. coli biofilms revealed proteins and polysaccharides as major components, followed by nucleic acids. Furthermore, cell surface properties such as auto-aggregation and hydrophobicity were notably higher in isolates with strong to medium biofilm-forming capabilities (ESBL and MRSA isolates), corroborated by genomic confirmation of various genes associated with biofilm, adhesion, and colonization. In conclusion, this study highlights that surface hydrophobicity and biofilm formation ability of MRSA (NDa to NDe) and ESBL E. coli (ND1 to ND5) isolates may influence antibiotic resistance phenotypes.


Asunto(s)
Antibacterianos , Biopelículas , Escherichia coli , Ganado , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Aves de Corral , Factores de Virulencia , beta-Lactamasas , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Aves de Corral/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Ganado/microbiología , Virulencia , Antibacterianos/farmacología , Propiedades de Superficie , Genotipo , Fenotipo , Infecciones Estafilocócicas/microbiología
18.
Glob Chang Biol ; 30(1): e17026, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37962145

RESUMEN

Many grassland ecosystems and their associated biodiversity depend on the interactions between fire and land-use, both of which are shaped by socioeconomic conditions. The Eurasian steppe biome, much of it situated in Kazakhstan, contains 10% of the world's remaining grasslands. The break-up of the Soviet Union in 1991, widespread land abandonment and massive declines in wild and domestic ungulates led to biomass accumulation over millions of hectares. This rapid fuel increase made the steppes a global fire hotspot, with major changes in vegetation structure. Yet, the response of steppe biodiversity to these changes remains unexplored. We utilized a unique bird abundance dataset covering the entire Kazakh steppe and semi-desert regions together with the MODIS burned area product. We modeled the response of bird species richness and abundance as a function of fire disturbance variables-fire extent, cumulative burned area, fire frequency-at varying grazing intensity. Bird species richness was impacted negatively by large fire extent, cumulative burned area, and high fire frequency in moderately grazed and ungrazed steppe. Similarly, overall bird abundance was impacted negatively by large fire extent, cumulative burned area and higher fire frequency in the moderately grazed steppe, ungrazed steppe, and ungrazed semi-deserts. At the species level, the effect of high fire disturbance was negative for more species than positive. There were considerable fire legacy effects, detectable for at least 8 years. We conclude that the increase in fire disturbance across the post-Soviet Eurasian steppe has led to strong declines in bird abundance and pronounced changes in community assembly. To gain back control over wildfires and prevent further biodiversity loss, restoration of wild herbivore populations and traditional domestic ungulate grazing systems seems much needed.


Asunto(s)
Aves , Ecosistema , Animales , Aves/fisiología , Biodiversidad , Biomasa , Herbivoria , Pradera
19.
Glob Chang Biol ; 30(5): e17303, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741339

RESUMEN

Nitrous oxide (N2O) emissions from livestock manure contribute significantly to the growth of atmospheric N2O, a powerful greenhouse gas and dominant ozone-depleting substance. Here, we estimate global N2O emissions from livestock manure during 1890-2020 using the tier 2 approach of the 2019 Refinement to the 2006 IPCC Guidelines. Global N2O emissions from livestock manure increased by ~350% from 451 [368-556] Gg N year-1 in 1890 to 2042 [1677-2514] Gg N year-1 in 2020. These emissions contributed ~30% to the global anthropogenic N2O emissions in the decade 2010-2019. Cattle contributed the most (60%) to the increase, followed by poultry (19%), pigs (15%), and sheep and goats (6%). Regionally, South Asia, Africa, and Latin America dominated the growth in global emissions since the 1990s. Nationally, the largest emissions were found in India (329 Gg N year-1), followed by China (267 Gg N year-1), the United States (163 Gg N year-1), Brazil (129 Gg N year-1) and Pakistan (102 Gg N year-1) in the 2010s. We found a substantial impact of livestock productivity, specifically animal body weight and milk yield, on the emission trends. Furthermore, a large spread existed among different methodologies in estimates of global N2O emission from livestock manure, with our results 20%-25% lower than those based on the 2006 IPCC Guidelines. This study highlights the need for robust time-variant model parameterization and continuous improvement of emissions factors to enhance the precision of emission inventories. Additionally, urgent mitigation is required, as all available inventories indicate a rapid increase in global N2O emissions from livestock manure in recent decades.


Asunto(s)
Ganado , Estiércol , Óxido Nitroso , Óxido Nitroso/análisis , Estiércol/análisis , Animales , Contaminantes Atmosféricos/análisis
20.
J Theor Biol ; : 111963, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389292

RESUMEN

Disease modelling at the livestock-wildlife interface is an important topic for which discrete-space models are used for the wildlife component. One prominent example is African Swine Fever, where wild boar play an influential role as reservoirs of disease spillover into domestic pig farms. In this paper, we present a simulation study that demonstrates the impact of seemingly arbitrary choices of landscape discretisation method on the inferred rate of spread within the model. We use an ordinary differential equation model to implement a simplified model of disease transmission between discrete groups of wild boar with spillover into domestic pig farms contained within a homogeneous landscape. We examine a range of scenarios whereby the landscape is discretised into wild boar patches of varying size and shape, and compare the rate of spread between domestic pig farms placed at fixed points on the landscape. Our results demonstrate a non-monotonic relationship between patch size and rate of spread, which is particularly unstable and unpredictable for square and triangular shaped patches. Discretisation of the landscape into hexagons appears to produce a more stable relationship between patch size and rate of spread for the three types of transmission kernel we investigated. Although the rate of disease spread does converge to a stable value, this occurs at patch sizes that are much smaller than would be used in practice for wild boar. We conclude that outputs of disease models containing a wildlife component should not be considered to be robust to arbitrary choices for patch size and placement, but rather as a source of uncertainty to be examined using sensitivity analysis. Furthermore, we strongly recommend the use of hexagons rather than squares or right triangles for landscape discretisation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA