Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.722
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2311075121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625942

RESUMEN

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of Na3V2(PO4)3 (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the Na3V2(PO4)3 (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

2.
Proc Natl Acad Sci U S A ; 121(43): e2308684121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39388277

RESUMEN

The aqueous alteration of the oceanic lithosphere provides significant energy that impacts the synthesis and diversity of organic compounds, which are crucial for the deep carbon cycle and may have provided the first building blocks for life. Although abiotic organic synthesis has been documented in mantle-derived rocks, the formation mechanisms and complexity of organic compounds in crustal rocks remain largely unknown. Here, we show the specific association of aliphatic carbonaceous matter with Fe oxyhydroxides in mafic crustal rocks of the Southwest Indian Ridge (SWIR). We determine potential Fe-based pathways for abiotic organic synthesis from CO2 and H2 using multimodal and molecular nano-geochemical tools. Quantum mechanical modeling is further employed to constrain the catalytical activity of Fe oxyhydroxides, revealing that the catalytic cycle of hydrogen may play a key role in carbon-carbon bond formation. This approach offers the possibility of interpreting physicochemical organic formation and condensation mechanisms at an atomic scale. The findings expand our knowledge of the existence of abiotic organic carbon in the oceanic crustal rocks and emphasize the mafic oceanic crust of the SWIR as a potential site for low-temperature abiotic organic synthesis.

3.
Plant J ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215633

RESUMEN

BARENTSZ (BTZ), a core component of the exon junction complex, regulates diverse developmental processes in animals. However, its evolutionary and developmental roles in plants remain elusive. Here, we revealed that three groups of paralogous BTZ genes existed in Poaceae, and Group 2 underwent loss-of-function mutations during evolution. They showed surprisingly low (~33%) sequence identities, implying functional divergence. Two genes retained in rice, OsBTZ1 and OsBTZ3, were edited; however, the resultant osbtz1 and osbtz3 mutants showed similar floral morphological and functional defects at a low frequency. When growing under low-temperature conditions, developmental abnormalities became pronounced, and new floral variations were induced. In particular, stamen and carpel functionality was impaired in these rice btz mutants. The double-gene mutant osbtz1/3 shared these floral defects with an increased frequency, which was further induced under low-temperature conditions. OsBTZs interacted with OsMADS7 and OsMADS8, and the floral expressions of the OsTGA10 and MADS-box genes were correlatively altered in these osbtz mutants and responded to low-temperature treatment. These novel findings demonstrate that two highly diverged OsBTZs are required to maintain floral developmental stability under low-temperature conditions, and play an integral role in male and female fertility, thus providing new insights into the indispensable roles of BTZ genes in plant development and adaptive evolution.

4.
Plant J ; 119(2): 982-997, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38743909

RESUMEN

Low temperature (LT) greatly restricts grain filling in maize (Zea mays L.), but the relevant molecular mechanisms are not fully understood. To better understand the effect of LT on grain development, 17 hybrids were subjected to LT stress in field trials over 3 years, and two hybrids of them with contrasting LT responses were exposed to 30/20°C and 20/10°C for 7 days during grain filling in a greenhouse. At LT, thousand-kernel weight declined, especially in LT-sensitive hybrid FM985, while grain-filling rate was on average about 48% higher in LT-tolerant hybrid DK159 than FM985. LT reduced starch synthesis in kernel mainly by suppression of transcript levels and enzyme activities for sucrose synthase and hexokinase. Brassinolide (BR) was abundant in DK159 kernel, and genes involved in BR and cytokinin signals were inducible by stress. LT downregulated the genes in light-harvesting complex and photosystem I/II subunits, accompanied by reduced photosynthetic rate and Fv/Fm in ear leaf. The LT-tolerant hybrid could maintain a high soluble sugar content and fast interconversion between sucrose and hexose in the stem internode and cob, improving assimilate allocation to kernel at LT stress and paving the way for simultaneous growth and LT stress responses.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Fotosíntesis , Almidón/metabolismo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/genética , Grano Comestible/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Brasinoesteroides/metabolismo , Esteroides Heterocíclicos/farmacología , Esteroides Heterocíclicos/metabolismo
5.
Plant J ; 119(3): 1433-1448, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922743

RESUMEN

Anthocyanins are natural pigments and dietary antioxidants that play multiple biological roles in plants and are important in animal and human nutrition. Low temperature (LT) promotes anthocyanin biosynthesis in many species including blood orange. A retrotransposon in the promoter of Ruby1, which encodes an R2R3 MYB transcription factor, controls cold-induced anthocyanin accumulation in blood orange flesh. However, the specific mechanism remains unclear. In this study, we characterized two LT-induced ETHYLENE RESPONSE FACTORS (CsERF054 and CsERF061). Both CsERF054 and CsERF061 can activate the expression of CsRuby1 by directly binding to a DRE/CRT cis-element within the retrotransposon in the promoter of CsRuby1, thereby positively regulating anthocyanin biosynthesis. Further investigation indicated that CsERF061 also forms a protein complex with CsRuby1 to co-activate the expression of anthocyanin biosynthetic genes, providing a dual mechanism for the upregulation of the anthocyanin pathway. These results provide insights into how LT mediates anthocyanin biosynthesis and increase the understanding of the regulatory network of anthocyanin biosynthesis in blood orange.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Regiones Promotoras Genéticas , Retroelementos , Factores de Transcripción , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Retroelementos/genética , Etilenos/metabolismo , Etilenos/biosíntesis , Frío , Citrus/genética , Citrus/metabolismo
6.
Nano Lett ; 24(40): 12442-12451, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39316758

RESUMEN

Hydrogels have shown promise as quasi-solid-state electrolytes for flexible supercapacitors but face challenges such as poor self-repair, unstable electrode adhesion, limited temperature range, and flammability. Herein, an all-round green hydrogel electrolyte (silk nanofibers (SNFs)/peach gum polysaccharide (PGP)/borax/glycerol (SPBG)-ZnSO4) addresses these issues through dynamic cross-linking of peach gum polysaccharide and silk nanofibers with borax, integrating varieties of key property including high water retention, broad temperature tolerance (-20 to 90 °C), excellent self-adhesion (60.7 kPa for carbon cloth electrodes), satisfactory flame retardancy (limited oxygen index of 51%), low-temperature self-healing (-20 °C), and good ionic conductivity (7.68 mS cm-1). The resulting supercapacitor exhibits excellent cycling stability with 98.2% capacitance retention after 40,000 long cycles at 25 °C. The specific capacitance retention remains above 90% even after 15,000 cycles at high/low temperatures (50 °C/-20 °C). Furthermore, the flexible supercapacitor demonstrates stable performance under mechanical stimuli (180° bending and perforation), highlighting the potential of biomass hydrogels in flexible energy storage devices.

7.
Nano Lett ; 24(37): 11393-11402, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39230971

RESUMEN

Sodium ion batteries (SIBs) are promising postlithium battery technologies with high safety and low cost. However, their development is hampered by complicated electrode material preparation and unsatisfactory sodium storage performance. Here, a bismuth/N-doped carbon nanosheets (Bi/N-CNSs) composite featuring a quasi-array structure (alternated porous Bi layers and N-CNSs) with hierarchical Bi distribution (large particles of ∼35 nm in Bi layers and ultrafine Bi of ∼8 nm on N-CNSs) is prepared. Bi/N-CNSs delivers an ultralong-lifespan of 26000 cycles at 5 A g-1 and prominent rate capability of 91.5% capacity retention at 100 A g-1. Even at -40 °C, it exhibits a high rate capability of 161 mAh g-1 at 5 A g-1. Notably, the involved preparation method is characterized by a high yield of 14.53 g in a single laboratory batch, which can be further scaled up, and such a method can also be extended to synthesize other metallic-based materials.

8.
Nano Lett ; 24(35): 10805-10812, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39038223

RESUMEN

This study delves into the intriguing properties of the 1H/1T-TaS2 van der Waals heterostructure, focusing on the transparency of the 1H layer to the charge density wave of the underlying 1T layer. Despite the sizable interlayer separation and metallic nature of the 1H layer, positive bias voltages result in a pronounced superposition of the 1T charge density wave structure on the 1H layer. The conventional explanation relying on tunneling effects proves insufficient. Through a comprehensive investigation combining low-temperature scanning tunneling microscopy, scanning tunneling spectroscopy, non-contact atomic force microscopy, and first-principles calculations, we propose an alternative interpretation. The transparency effect arises from a weak yet substantial electronic coupling between the 1H and 1T layers, challenging prior understanding of the system. Our results highlight the critical role played by interlayer electronic interactions in van der Waals heterostructures to determine the final ground states of the systems.

9.
Nano Lett ; 24(19): 5729-5736, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708832

RESUMEN

Quantum-dot light-emitting diodes (QLEDs), a kind of promising optoelectronic device, demonstrate potential superiority in next-generation display technology. Thermal cross-linked hole transport materials (HTMs) have been employed in solution-processed QLEDs due to their excellent thermal stability and solvent resistance, whereas the unbalanced charge injection and high cross-linking temperature of cross-linked HTMs can inhibit the efficiency of QLEDs and limit their application. Herein, a low-temperature cross-linked HTM of 4,4'-bis(3-(((4-vinylbenzyl)oxy)methyl)-9H-carbazol-9-yl)-1,1'-biphenyl (DV-CBP) with a flexible styrene side chain is introduced, which reduces the cross-linking temperature to 150 °C and enhances the hole mobility up to 1.01 × 10-3 cm2 V-1 s-1. More importantly, the maximum external quantum efficiency of 21.35% is successfully obtained on the basis of the DV-CBP as a cross-linked hole transport layer (HTL) for blue QLEDs. The low-temperature cross-linked high-mobility HTL using flexible side chains could be an excellent alternative for future HTL development.

10.
Nano Lett ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856230

RESUMEN

Lithium metal batteries utilizing lithium metal as the anode can achieve a greater energy density. However, it remains challenging to improve low-temperature performance and fast-charging features. Herein, we introduce an electrolyte solvation chemistry strategy to regulate the properties of ethylene carbonate (EC)-based electrolytes through intermolecular interactions, utilizing weakly solvated fluoroethylene carbonate (FEC) to replace EC, and incorporating the low-melting-point solvent 1,2-difluorobenzene (2FB) as a diluent. We identified that the intermolecular interaction between 2FB and solvent can facilitate Li+ desolvation and lower the freezing point of the electrolyte effectively. The resulting electrolyte enables the LiNi0.8Co0.1Mn0.1O2||Li cell to operate at -30 °C for more than 100 cycles while delivering a high capacity of 154 mAh g-1 at 5.0C. We present a solvation structure and interfacial model to analyze the behavior of the formulated electrolyte composition, establishing a relationship with cell performance and also providing insights for the electrolyte design under extreme conditions.

11.
Plant J ; 115(1): 205-219, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36999610

RESUMEN

Low temperature and abscisic acid (ABA) are the two main factors that induce anthocyanin synthesis; however, their potential relationships in governing anthocyanin biosynthesis in Solanum lycopersicum (tomato) seedlings remains unclear. Our study revealed the involvement of the transcription factor SlAREB1 in the low-temperature response of tomato seedlings via the ABA-dependent pathway, for a specific temperature range. The overexpression of SlAREB1 enhanced the expression of anthocyanin-related genes and the accumulation of anthocyanins, especially under low-temperature conditions, whereas silencing SlAREB1 dramatically reduced gene expression and anthocyanin accumulation. There is a direct interaction between SlAREB1 and the promoters of SlDFR and SlF3'5'H, which are structural genes that impact anthocyanin biosynthesis. SlAREB1 can regulate anthocyanins through controlling SlDFR and SlF3'5'H expression. Accordingly, SlAREB1 takes charge of regulating anthocyanin biosynthesis in tomato seedlings via the ABA-dependent pathway at low temperatures.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Antocianinas , Temperatura , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
BMC Genomics ; 25(1): 947, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379802

RESUMEN

BACKGROUD: Elephant grass (Cenchrus purpureus) is a perennial forage grass characterized by tall plants, high biomass and wide adaptability. Low-temperature stress severely limits elephant grass biomass and geographic distribution. WRKY is one of the largest families of plant-specific transcription factors and plays important roles in plant resistance to low-temperature. However, the understanding of the WRKY family in grasses is limited. In this study, we conducted a genome-wide characterization of WRKY proteins in elephant grass, including gene structure, phylogeny, expression, conserved motif organization, and functional annotation, to identify key CpWRKY candidates involved in cold tolerance. RESULTS: In this study, a total of 176 WRKY genes were identified in elephant grass. It was found that 172 were unevenly distributed across its 14 chromosomes, while the remaining 4 genes were not anchored to any chromosome. The genes were classified into three groups based on their WRKY conserved domains and zinc finger motifs. There were 12, 8, 19, 27, 12, 18 and 80 CpWRKYs belonging to group I, group IIa, group IIb, group IIc, group IId, group IIe and group III, respectively. We hypothesized that the ancient subgroup IIc WRKY gene is the ancestor of all WRKY genes in elephant grass. Most CpWRKYs in the same group have similar structure and motif composition. A total of 169 duplicate gene pairs were identified, suggesting that segmental duplication might have contributed to the expansion of the CpWRKY gene family. Ka/Ks analysis revealed that most of the CpWRKYs were subjected to purifying selection during the evolution. It was also found that six genes (CpWRKY51, CpWRKY81, CpWRKY100, CpWRKY101, CpWRKY140 and CpWRKY143) exhibited higher expression in roots compare to leaves, and were significantly induced by low temperature stress. Among them, CpWRKY81 had the highest expression under low-temperature stress, and its over-expression significantly enhanced the cold tolerance in yeast. CONLUSIONS: In this study, we characterized WRKY genes in elephant grass and further investigated their physicochemical properties, evolution, and expression patterns under low-temperature stress. This research provides valuable resources for identifying key CpWRKY genes that contribute to cold tolerance in elephant grass.


Asunto(s)
Familia de Multigenes , Filogenia , Proteínas de Plantas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Frío , Cenchrus/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Respuesta al Choque por Frío/genética , Estrés Fisiológico/genética
13.
BMC Genomics ; 25(1): 779, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128988

RESUMEN

Catalpa bungei, a tree indigenous to China, is renowned for its superior timber quality and as an ornamental in horticulture. To promote the cultivation of C. bungei in cold regions and expand its distribution, enhancing its cold tolerance is essential. The CCCH gene family is widely involved in plant growth, development, and expression under stress conditions, including low-temperature stress. However, a comprehensive identification and analysis of these genes have not yet been conducted. This study aims to identify key cold-tolerance-related genes within the CCCH gene family of C. bungei, providing the necessary theoretical support for its expansion in cold regions. In this study, 61 CCCH genes within C. bungei were identified and characterized. Phylogenetic assessment divided these genes into 9 subfamilies, with 55 members mapped across 16 chromosomes. The analysis of gene structures and protein motifs indicated that members within the same subfamily shared similar exon/intron distribution and motif patterns, supporting the phylogenetic classification. Collinearity analysis suggested that segmental duplications have played a significant role in the expansion of the C. bungei CCCH gene family. Notably, RNA sequencing analysis under 4 °C cold stress conditions identified CbuC3H24 and CbuC3H58 as exhibiting the most significant responses, highlighting their importance within the CCCH zinc finger family in response to cold stress. The findings of this study lay a theoretical foundation for further exploring the mechanisms of cold tolerance in C. bungei, providing crucial insights for its cultivation in cold regions.


Asunto(s)
Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Respuesta al Choque por Frío/genética , Proteínas de Plantas/genética , Frío , Perfilación de la Expresión Génica , Genes de Plantas
14.
BMC Genomics ; 25(1): 283, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500027

RESUMEN

MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.


Asunto(s)
Solanum tuberosum , Factores de Transcripción , Factores de Transcripción/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Antocianinas , Temperatura , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
15.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627628

RESUMEN

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Filogenia , Temperatura , Poliaminas/metabolismo , Etilenos/metabolismo
16.
Curr Issues Mol Biol ; 46(7): 6508-6521, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39057030

RESUMEN

Chloroplasts are organelles responsible for photosynthesis in plants, providing energy for growth and development. However, the genetic regulatory mechanisms underlying early chloroplast development in rice remain incompletely understood. In this study, we identified a rice seedling thermosensitive chlorophyll-deficient mutant, osltsa8, and the genetic analysis of two F2 populations suggested that this trait may be controlled by more than one pair of alleles. Through reciprocal F2 populations and QTL-seq technology, OsLTSA8 was mapped to the interval of 24,280,402-25,920,942 bp on rice chromosome 8, representing a novel albino gene in rice. Within the candidate gene region of OsLTSA8, there were 258 predicted genes, among which LOC_Os08g39050, LOC_Os08g39130, and LOC_Os08g40870 encode pentatricopeptide repeat (PPR) proteins. RNA-seq identified 18 DEGs (differentially expressed genes) within the candidate interval, with LOC_Os08g39420 showing homology to the pigment biosynthesis-related genes Zm00001d017656 and Sb01g000470; LOC_Os08g39430 and LOC_Os08g39850 were implicated in chlorophyll precursor synthesis. RT-qPCR was employed to assess the expression levels of LOC_Os08g39050, LOC_Os08g39130, LOC_Os08g40870, LOC_Os08g39420, LOC_Os08g39430, and LOC_Os08g39850 in the wild-type and mutant plants. Among them, the differences in the expression levels of LOC_Os08g39050 and LOC_Os08g39430 were the most significant. This study will contribute to further elucidating the molecular mechanisms of rice chloroplast development.

17.
Plant Cell Physiol ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096526

RESUMEN

Low temperature significantly inhibits the plant growth in wheat (Triticum aestivum L.), prompting the exploration of effective strategies to mitigate low temperature stress. Several priming methods enhance low temperature stress tolerant, however, the role of ozone priming remains unclear in wheat. Here we found ozone priming alleviated low temperature stress in wheat. Transcriptome analysis showed that ozone priming positively modulated 'photosynthesis-antenna proteins' pathway in wheat under low temperature. Which was confirmed by the results of the ozone-primed plants had higher trapped energy flux and electron transport flux per reaction, and less damage to chloroplasts than non-primed plants under low temperature. Ozone priming also mitigated the overstimulation of glutathione metabolism and induced the accumulation of total ascorbic acid and glutathione, maintained redox homeostasis in wheat under low temperature. Moreover, gene expressions and enzyme activities in glycolysis pathways were upregulated in ozone priming comparing with non-priming after the low temperature stress. Furthermore, exogenous antibiotics significantly increased low temperature tolerance, which further proved that the inhibition of ribosome biogenesis by ozone priming was involved in low temperature tolerance in wheat. In conclusion, ozone priming enhanced wheat low temperature tolerance through promoting light-harvesting capacity, redox homeostasis, and carbohydrate metabolism, as well as inhibiting ribosome biogenesis.

18.
BMC Plant Biol ; 24(1): 903, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350005

RESUMEN

BACKGROUND: During the cold season, low temperature (LT) and high relative humidity (HRH) are significant environmental factors in greenhouses and plastic tunnels, often hindering plant growth and development. The chlorophyll (Chl) biosynthesis inhibitory mechanisms under LT and HRH stress are still widely unclear. To understand how cucumbers seedlings respond to LT and HRH stress, we investigated the impact of these stressors on Chl biosynthesis. RESULTS: Our results revealed that individual LT, HRH and combined LT + HRH stress conditions affected chlorophyll a, b, total chlorophyll and carotenoid content, reducing the levels of these pigments. The levels of Chlorophyll precursors were also markedly reduced under LT and HRH stresses, with the greatest reduction observed in cucumber seedlings exposed to LT + HRH conditions (9/5℃, 95%HRH). The activities of glutamate-1-semialdehyde transaminase (GSA-AT), ALA dehydratase (ALAD), Mg-chelatase, and protochlorophyllide oxidoreductase (POR) were increased under individual LT, HRH, conditions but decreased by combination of LT + HRH stress condition. In addition, Chl biosynthesis related genes (except PBG) were upregulated by the HRH stress but were significantly downregulated under the LT + HRH stress condition in cucumber seedlings. Furthermore, the content of phenols, flavonoids and phenolic acids (cinnamic acid and caffeic acid) were significantly surged under LT + HRH treatment over the control. Histochemical observation showed higher O2- and H2O2 content in cucumber leaves during the LT and HRH stress. CONCLUSION: The results indicate that LT + HRH stress significantly impairs chlorophyll biosynthesis in cucumber seedlings by drastically reducing pigment accumulation, altering enzyme activity and gene expression. Additionally, LT + HRH stress induces oxidative damage, which further exacerbates the decline in chlorophyll content and affects overall cucumber metabolism.


Asunto(s)
Clorofila , Frío , Cucumis sativus , Humedad , Cucumis sativus/metabolismo , Cucumis sativus/genética , Clorofila/metabolismo , Plantones/metabolismo , Plantones/genética , Metabolismo Secundario , Regulación de la Expresión Génica de las Plantas
19.
BMC Plant Biol ; 24(1): 901, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350016

RESUMEN

BACKGROUND: Low temperature seriously limited the development of grass and crops in plateau. Thus, it is urgent to develop an effective strategy for improving the plant cold tolerance and elucidate the underlying mechanisms. RESULTS: We found that MT alleviated the effects of cold stress on suppressing ENG growth, then improved cold tolerance of ENG. Integration of transcriptome and metabolome profiles showed that both cold exposure (TW) and MT reprogrammed the transcription pattern of galactose and flavonoids biosynthesis, leading to changes in compositions of soluble sugar and flavonoids in ENG. Additionally, TW inhibited the photosynthesis, and destroyed the antioxidant system of ENG, leading to accumulation of oxidant radicals represented by MDA. By contrast, MT promoted activities of antioxidant enzymes and flavonoid accumulation in ENG under cold condition, then reduced the MDA content and maintained normal expression of photosynthesis-related genes in ENG even under TW. Importantly, MT mainly enhanced cold tolerance of ENG via activating zeatin synthesis to regulate flavonoid biosynthesis in vivo. Typically, WRKY11 was identified to regulate MT-associated zeatin synthesis in ENG via directly binding on zeatin3 promoter. CONCLUSIONS: MT could enhance ENG tolerance to cold stress via strengthening antioxidant system and especially zeatin synthesis to promote accumulation of flavonoids in ENG. Thus, our research gain insight into the global mechanisms of MT in promoting cold tolerance of ENG, then provided guidance for protecting plant from cold stress in plateau.


Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque por Frío , Flavonoides/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotosíntesis , Poaceae/genética , Poaceae/metabolismo , Poaceae/fisiología , Antioxidantes/metabolismo
20.
BMC Plant Biol ; 24(1): 781, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148017

RESUMEN

BACKGROUND: Sudden temperature drops, resulting from extreme weather events, often occur during the boll-setting period of cotton in Xinjiang, China, causing decreased expression of Bacillus thuringiensis (Bt) insecticidal proteins in cotton bolls. The precise threshold temperatures and durations that lead to significant changes in Cry1Ac endotoxin levels under low temperatures remain unclear. To address this, we investigated the effects of different temperatures and stress durations on Cry1Ac endotoxin levels in cotton bolls. In 2020-2021, two Bt transgenic cotton varieties, conventional Sikang1 and hybrid Sikang3, were selected as experimental materials. Various low temperatures (ranging from 16 to 20 °C) with different durations (12 h, 24 h and 48 h) were applied during the peak boll-setting period. RESULTS: As the temperature decreased, the Cry1Ac endotoxin content in the boll shell, fiber, and seed exhibited a declining trend. Moreover, the threshold temperature which caused a significant reduction in Cry1Ac endotoxin content increased with the prolonged duration of low-temperature stress. Among the components of cotton bolls, seeds were most affected by low-temperature stress, with the threshold temperature for a significant reduction in Cry1Ac endotoxin content ranging from 17 °C to 19 °C. Correlation analysis indicated that low temperatures led to a decrease in protein synthesis capacity and an increase in degradation ability, resulting in reduced Cry1Ac endotoxin content. Pathway analysis revealed that both free amino acid and peptidase had significant negative effects on Cry1Ac endotoxin content. CONCLUSION: In summary, when the daily average temperature was ≤ 19 °C, implementing cultural practices to reduce free amino acid content and peptidase activity could serve as effective cold defense strategies for Bt cotton production.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Frío , Endotoxinas , Gossypium , Proteínas Hemolisinas , Nitrógeno , Semillas , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Semillas/metabolismo , Nitrógeno/metabolismo , Plantas Modificadas Genéticamente , Bacillus thuringiensis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA