RESUMEN
BACKGROUND: The uterine environment may be important for the chromosomal telomere length (TL) at birth, which, in turn, influences disease susceptibility throughout life. However, little is known about the importance of specific nutritional factors. OBJECTIVES: We assessed the impact of multiple maternal nutritional factors on TL in placenta and cord blood. METHODS: In a population-based mother-child cohort in northwestern Argentina, we measured maternal weight, BMI, body fat percentage (BFP), and several nutrients [selenium, magnesium, calcium, zinc, manganese, iodine, vitamin B-12, folate, 25-hydroxycholecalciferol (25(OH)D3)], hemoglobin, and homocysteine in maternal whole blood, serum, plasma, or urine during pregnancy (mean gestational week 27). We measured the relative TL (rTL) in placenta (n = 99) and cord blood (n = 98) at delivery by real-time PCR. Associations were evaluated by multivariable-adjusted linear regression. RESULTS: The women's prepregnancy BMI (kg/m2; mean ± SD: 23.7 ± 4.1), body weight (55.4 ± 9.9 kg), and BFP (29.9 ± 5.5%), but not height (153 ± 5.3 cm), were inversely associated with placental rTL (P < 0.01 for all), with â¼0.5 SD shorter rTL for an IQR increase in prepregnancy body weight, BMI, or BFP. Also, impedance-based BFP, but not lean body mass, in the third trimester was associated with shorter placental rTL. In addition, serum vitamin B-12 (232 ± 96 pmol/L) in pregnancy (P = 0.038), but not folate or homocysteine, was associated with shorter placental rTL (0.2 SD for an IQR increase). In contrast, plasma 25(OH)D3 (46 ± 15 nmol/L) was positively associated with placental rTL (P < 0.01), which increased by 0.4 SD for an IQR increase in 25(OH)D3. No clear associations of the studied maternal nutritional factors were found with cord blood rTL. CONCLUSIONS: Maternal BMI, BFP, and vitamin B-12 were inversely associated, whereas 25(OH)D3 was positively associated, with placental TL. No association was observed with cord blood TL. Future studies should elucidate the role of placental TL for child health.
Asunto(s)
Sangre Fetal , Placenta/metabolismo , Homeostasis del Telómero , Telómero , Composición Corporal , Índice de Masa Corporal , Femenino , Humanos , Fenómenos Fisiologicos Nutricionales Maternos , Estado Nutricional , Embarazo , Vitamina B 12/sangreRESUMEN
Gut microbiota and the central nervous system have parallel developmental windows during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in preterm infants predisposes the neonate to adverse neurological outcomes later in life. Understanding the link between gut microbiota colonization and brain development to tailor therapies aimed at optimizing initial colonization and microbiota development are promising strategies to warrant adequate brain development and enhance neurological outcomes in preterm infants. Breast-feeding has been associated with both adequate cognitive development and healthy microbiota in preterms. Infant formula are industrially produced substitutes for infant nutrition that do not completely recapitulate breast-feeding benefices and could be largely improved by the understanding of the role of breast milk components upon gut microbiota. In this review, we will first discuss the nutritional and bioactive component information on breast milk composition and its contribution to the assembly of the neonatal gut microbiota in preterms. We will then discuss the emerging pathways connecting the gut microbiota and brain development. Finally, we will discuss the promising microbiota modulation-based nutritional interventions (including probiotic and prebiotic supplementation of infant formula and maternal nutrition) for improving neurodevelopmental outcomes.