Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.776
Filtrar
Más filtros

Intervalo de año de publicación
1.
FASEB J ; 38(10): e23669, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38747734

RESUMEN

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Asunto(s)
Amomum , Dieta Alta en Grasa , Fermentación , Lacticaseibacillus casei , Obesidad , Animales , Dieta Alta en Grasa/efectos adversos , Ratones , Obesidad/metabolismo , Masculino , Lacticaseibacillus casei/metabolismo , Amomum/química , Ratones Endogámicos C57BL , Probióticos/farmacología , Proteína Desacopladora 1/metabolismo , Resistencia a la Insulina , Ratones Obesos , Adiponectina/metabolismo , Insulina/metabolismo , Insulina/sangre , Glucemia/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35074921

RESUMEN

Proinflammatory cytokine production by innate immune cells plays a crucial role in inflammatory diseases, but the molecular mechanisms controlling the inflammatory responses are poorly understood. Here, we show that TANK-binding kinase 1 (TBK1) serves as a vital regulator of proinflammatory macrophage function and protects against tissue inflammation. Myeloid cell-conditional Tbk1 knockout (MKO) mice spontaneously developed adipose hypertrophy and metabolic disorders at old ages, associated with increased adipose tissue M1 macrophage infiltration and proinflammatory cytokine expression. When fed with a high-fat diet, the Tbk1-MKO mice also displayed exacerbated hepatic inflammation and insulin resistance, developing symptoms of nonalcoholic steatohepatitis. Furthermore, myeloid cell-specific TBK1 ablation exacerbates inflammation in experimental colitis. Mechanistically, TBK1 functions in macrophages to suppress the NF-κB and MAP kinase signaling pathways and thus attenuate induction of proinflammatory cytokines, particularly IL-1ß. Ablation of IL-1 receptor 1 (IL-1R1) eliminates the inflammatory symptoms of Tbk1-MKO mice. These results establish TBK1 as a pivotal anti-inflammatory mediator that restricts inflammation in different disease models.


Asunto(s)
Inflamación/etiología , Inflamación/metabolismo , Células Mieloides/inmunología , Células Mieloides/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Biomarcadores , Colitis/etiología , Colitis/metabolismo , Colitis/patología , Citocinas/genética , Citocinas/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Regulación de la Expresión Génica , Glucosa/metabolismo , Hipertrofia , Inmunomodulación/genética , Inflamación/patología , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Especificidad de Órganos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Interleucina-1/deficiencia , Transducción de Señal
3.
Artículo en Inglés | MEDLINE | ID: mdl-39017680

RESUMEN

Familial Partial Lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-year-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the 7th amino acid, significantly expanding the genetic landscape of FPLD3. By performing next generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers in the comparison of healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose and lipid metabolism related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, EGR1, a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and AGPAT3, which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.

4.
Mol Med ; 30(1): 103, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030488

RESUMEN

Myeloid-derived growth factor (MYDGF) is a novel secreted protein with potent antiapoptotic and tissue-repairing properties that is present in nearly 140 human tissues and cell lines, with the highest abundance in the oral epithelium and skin. Initially, MYDGF was found in bone marrow-derived monocytes and macrophages for cardioprotection and repair after myocardial infarction. Subsequent studies have shown that MYDGF plays an important role in other cardiovascular diseases (e.g., atherosclerosis and heart failure), metabolic disorders, renal disease, autoimmune/inflammatory disorders, and cancers. Although the underlying mechanisms have not been fully explored, the role of MYDGF in health and disease may involve cell apoptosis and proliferation, tissue repair and regeneration, anti-inflammation, and glycolipid metabolism regulation. In this review, we summarize the current progress in understanding the role of MYDGF in health and disease, focusing on its structure, function and mechanisms. The graphical abstract shows the current role of MYDGF in different organs and diseases (Fig. 1).


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Animales , Enfermedades Cardiovasculares/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Apoptosis , Susceptibilidad a Enfermedades
5.
Biochem Biophys Res Commun ; 726: 150256, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38909536

RESUMEN

Understanding of embryonic development has led to the clinical application of Assisted Reproductive technologies (ART), with the resulting birth of millions of children. Recent developments in metabolomics, proteomics, and transcriptomics have brought to light new insights into embryonic growth dynamics, with implications spanning reproductive medicine, stem cell research, and regenerative medicine. The review explores the key metabolic processes and molecular pathways active during preimplantation embryo development, including PI3K-Akt, mTOR, AMPK, Wnt/ß-catenin, TGF-ß, Notch and Jak-Stat signaling pathways. We focused on analyzing the differences occurring in vitro as opposed to in vivo development and we discussed significant physiological and clinical implications.


Asunto(s)
Blastocisto , Desarrollo Embrionario , Desarrollo Embrionario/genética , Animales , Humanos , Blastocisto/metabolismo , Transducción de Señal
6.
Biochem Soc Trans ; 52(3): 1305-1315, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38716960

RESUMEN

Mitochondria represent the metabolic hub of normal cells and play this role also in cancer but with different functional purposes. While cells in differentiated tissues have the prerogative of maintaining basal metabolism and support the biosynthesis of specialized products, cancer cells have to rewire the metabolic constraints imposed by the differentiation process. They need to balance the bioenergetic supply with the anabolic requirements that entail the intense proliferation rate, including nucleotide and membrane lipid biosynthesis. For this aim, mitochondrial metabolism is reprogrammed following the activation of specific oncogenic pathways or due to specific mutations of mitochondrial proteins. The main process leading to mitochondrial metabolic rewiring is the alteration of the tricarboxylic acid cycle favoring the appropriate orchestration of anaplerotic and cataplerotic reactions. According to the tumor type or the microenvironmental conditions, mitochondria may decouple glucose catabolism from mitochondrial oxidation in favor of glutaminolysis or disable oxidative phosphorylation for avoiding harmful production of free radicals. These and other metabolic settings can be also determined by the neo-production of oncometabolites that are not specific for the tissue of origin or the accumulation of metabolic intermediates able to boost pro-proliferative metabolism also impacting epigenetic/transcriptional programs. The full characterization of tumor-specific mitochondrial signatures may provide the identification of new biomarkers and therapeutic opportunities based on metabolic approaches.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Mitocondrias/metabolismo , Metabolismo Energético , Fosforilación Oxidativa , Ciclo del Ácido Cítrico , Animales
7.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452608

RESUMEN

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Discapacidades del Desarrollo , Succionato-Semialdehído Deshidrogenasa , Succionato-Semialdehído Deshidrogenasa/deficiencia , Humanos , Succionato-Semialdehído Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Consenso , Ácido gamma-Aminobutírico/metabolismo , Guías de Práctica Clínica como Asunto
8.
Mol Genet Metab ; 143(1-2): 108540, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39067348

RESUMEN

The pyruvate dehydrogenase complex (PDC) is remarkable for its size and structure as well as for its physiological and pathological importance. Its canonical location is in the mitochondrial matrix, where it primes the tricarboxylic acid (TCA) cycle by decarboxylating glycolytically-derived pyruvate to acetyl-CoA. Less well appreciated is its role in helping to shape the epigenetic landscape, from early development throughout mammalian life by its ability to "moonlight" in the nucleus, with major repercussions for human healthspan and lifespan. The PDC's influence on two crucial modifiers of the epigenome, acetylation and lactylation, is the focus of this brief review.

9.
Mol Genet Metab ; 143(1-2): 108531, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053125

RESUMEN

PMM2-CDG is the most common congenital disorder of glycosylation (CDG). Patients with this disease often carry compound heterozygous mutations of the gene encoding the phosphomannomutase 2 (PMM2) enzyme. PMM2 converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P), which is a critical upstream metabolite for proper protein N-glycosylation. Therapeutic options for PMM2-CDG patients are limited to management of the disease symptoms, as no drug is currently approved to treat this disease. GLM101 is a M1P-loaded liposomal formulation being developed as a candidate drug to treat PMM2-CDG. This report describes the effect of GLM101 treatment on protein N-glycosylation of PMM2-CDG patient-derived fibroblasts. This treatment normalized intracellular GDP-mannose, increased the relative glycoprotein mannosylation content and TNFα-induced ICAM-1 expression. Moreover, glycomics profiling revealed that GLM101 treatment of PMM2-CDG fibroblasts resulted in normalization of most high mannose glycans and partial correction of multiple complex and hybrid glycans. In vivo characterization of GLM101 revealed its favorable pharmacokinetics, liver-targeted biodistribution, and tolerability profile with achieved systemic concentrations significantly greater than its effective in vitro potency. Taken as a whole, the results described in this report support further exploration of GLM101's safety, tolerability, and efficacy in PMM2-CDG patients.

10.
HIV Med ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38746980

RESUMEN

BACKGROUND: Studies on switching to tenofovir alafenamide (TAF)-based regimens raise concerns about a worse metabolic profile in people with HIV, even though most received tenofovir disoproxil fumarate (TDF) in their previous regimen. This study aims to evaluate changes in lipid fractions, glucose, and serum markers for hepatic steatosis (HS) after switching from a TDF- or TAF-sparing regimen to bictegravir/emtricitabine/TAF (B/F/TAF). METHODS: We performed a retrospective cohort study of people with HIV who switched to B/F/TAF from TDF- or TAF-sparing regimens between January 2019 and May 2022 with at least 6 months of follow-up. The primary endpoint was the absolute change in lipid fractions at 6 months. Secondary outcomes were changes in lipid fractions at 12 months and changes in other metabolic parameters (glucose, creatinine, and HS based on the triglyceride-to-glucose [TyG] ratio at 6 and 12 months). Changes were analysed using mixed linear regression models with random intercept and time as a fixed effect. RESULTS: The study included 259 people with HIV (median age 55 [interquartile range (IQR) 47-60] years; 80% male; 88% Caucasian; CD4+ T-cell count 675 [IQR 450-880] cells/mm3; 84.3% HIV-RNA <50 copies/mL). In total, 63 patients (30%) had hypertension, 93 (44%) dyslipidaemia, 30 (14%) diabetes, and 45% obesity/overweight. Most (60%) switched from integrase inhibitor-based regimens, and 21% switched from a boosted regimen. At 6 months, significant reductions were observed in total cholesterol (-7.64 mg/dL [95% confidence interval (CI) -13.52 to -1.76; p = 0.002]), triglycerides (-23.4 [95% CI -42.07 to -4.65]; p = 0.003), and TyG ratio (-0.14 [95% CI -0.23 to -0.05]; p < 0.001). CONCLUSION: In our real-life cohort, the effect of switching TDF-/TAF-sparing regimens to triple therapy with B/F/TAF improved total cholesterol, triglycerides, and serum markers of HS at 6 months and was neutral for the remaining metabolic parameters at 12 months.

11.
Clin Genet ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099467

RESUMEN

There are few cerebrotendineous xanthomatosis (CTX) case series and observational studies including a significant number of Latin American patients. We describe a multicenter Brazilian cohort of patients with CTX highlighting their clinical phenotype, recurrent variants and assessing possible genotype-phenotype correlations. We analyzed data from all patients with clinical and molecular or biochemical diagnosis of CTX regularly followed at six genetics reference centers in Brazil between March 2020 and August 2023. We evaluated 38 CTX patients from 26 families, originating from 4 different geographical regions in Brazil. Genetic analysis identified 13 variants in the CYP27A1 gene within our population, including 3 variants that had not been previously described. The most frequent initial symptom of CTX in Brazil was cataract (27%), followed by xanthomas (24%), chronic diarrhea (13.5%), and developmental delay (13.5%). We observed that the median age at loss of ambulation correlates with the age of onset of neurological symptoms, with an average interval of 10 years (interquartile range 6.9 to 11 years). This study represents the largest CTX case series ever reported in South America. We describe phenotypic characteristics and report three new pathogenic or likely pathogenic variants.

12.
Clin Proteomics ; 21(1): 30, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649851

RESUMEN

BACKGROUND: Cardio-metabolic disorders (CMDs) are common in aging people and are pivotal risk factors for cardiovascular diseases (CVDs). Inflammation is involved in the pathogenesis of CVDs and aging, but the underlying inflammatory molecular phenotypes in CMDs and aging are still unknown. METHOD: We utilized multiple proteomics to detect 368 inflammatory proteins in the plasma of 30 subjects, including healthy young individuals, healthy elderly individuals, and elderly individuals with CMDs, by Proximity Extension Assay technology (PEA, O-link). Protein-protein interaction (PPI) network and functional modules were constructed to explore hub proteins in differentially expressed proteins (DEPs). The correlation between proteins and clinical traits of CMDs was analyzed and diagnostic value for CMDs of proteins was evaluated by ROC curve analysis. RESULT: Our results revealed that there were 161 DEPs (adjusted p < 0.05) in normal aging and EGF was the most differentially expressed hub protein in normal aging. Twenty-eight DEPs were found in elderly individuals with CMDs and MMP1 was the most differentially expressed hub protein in CMDs. After the intersection of DEPs in aging and CMDs, there were 10 overlapping proteins: SHMT1, MVK, EGLN1, SLC39A5, NCF2, CXCL6, IRAK4, REG4, PTPN6, and PRDX5. These proteins were significantly correlated with the level of HDL-C, TG, or FPG in plasma. They were verified to have good diagnostic value for CMDs in aging with an AUC > 0.7. Among these, EGLN1, NCF2, REG4, and SLC39A2 were prominently increased both in normal aging and aging with CMDs. CONCLUSION: Our results could reveal molecular markers for normal aging and CMDs, which need to be further expanded the sample size and to be further investigated to predict their significance for CVDs.

13.
Clin Sci (Lond) ; 138(13): 777-795, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38860674

RESUMEN

Renal tubular injury is considered as the main pathological feature of acute kidney injury (AKI), and mitochondrial dysfunction in renal tubular cells is implicated in the pathogenesis of AKI. The estrogen-related receptor γ (ERRγ) is a member of orphan nuclear receptors which plays a regulatory role in mitochondrial biosynthesis, energy metabolism and many metabolic pathways. Online datasets showed a dominant expression of ERRγ in renal tubules, but the role of ERRγ in AKI is still unknown. In the present study, we investigated the role of ERRγ in the pathogenesis of AKI and the therapeutic efficacy of ERRγ agonist DY131 in several murine models of AKI. ERRγ expression was reduced in kidneys of AKI patients and AKI murine models along with a negative correlation to the severity of AKI. Consistently, silencing ERRγ in vitro enhanced cisplatin-induced tubular cells apoptosis, while ERRγ overexpression in vivo utilizing hydrodynamic-based tail vein plasmid delivery approach alleviated cisplatin-induced AKI. ERRγ agonist DY131 could enhance the transcriptional activity of ERRγ and ameliorate AKI in various murine models. Moreover, DY131 attenuated the mitochondrial dysfunction of renal tubular cells and metabolic disorders of kidneys in AKI, and promoted the expression of the mitochondrial transcriptional factor A (TFAM). Further investigation showed that TFAM could be a target gene of ERRγ and DY131 might ameliorate AKI by enhancing ERRγ-mediated TFAM expression protecting mitochondria. These findings highlighted the protective effect of DY131 on AKI, thus providing a promising therapeutic strategy for AKI.


Asunto(s)
Lesión Renal Aguda , Receptores de Estrógenos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Animales , Receptores de Estrógenos/metabolismo , Humanos , Masculino , Ratones , Mitocondrias/metabolismo , Ratones Endogámicos C57BL , Enfermedades Metabólicas/metabolismo , Apoptosis , Modelos Animales de Enfermedad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cisplatino , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
14.
Neurochem Res ; 49(4): 847-871, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38244132

RESUMEN

A significant rise in metabolic disorders, frequently brought on by lifestyle choices, is alarming. A wide range of preliminary studies indicates the significance of the gut-brain axis, which regulates bidirectional signaling between the gastrointestinal tract and the cognitive system, and is crucial for regulating host metabolism and cognition. Intimate connections between the brain and the gastrointestinal tract provide a network of neurohumoral transmission that can transmit in both directions. The gut-brain axis successfully establishes that the wellness of the brain is always correlated with the extent to which the gut operates. Research on the gut-brain axis has historically concentrated on how psychological health affects how well the gastrointestinal system works. The latest studies, however, revealed that the gut microbiota interacts with the brain via the gut-brain axis to control phenotypic changes in the brain and in behavior. This study addresses the significance of the gut microbiota, the role of the gut-brain axis in management of various metabolic disorders, the hormonal and neural signaling pathways and the therapeutic treatments available. Its objective is to establish the significance of the gut-brain axis in metabolic disorders accurately and examine the link between the two while evaluating the therapeutic strategies to be incorporated in the future.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Metabólicas , Humanos , Eje Cerebro-Intestino , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Enfermedades Metabólicas/terapia , Enfermedades Metabólicas/metabolismo , Cognición
15.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189263

RESUMEN

Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.

16.
Diabetes Obes Metab ; 26(9): 3491-3500, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38747214

RESUMEN

Obesity has become a major global problem that significantly confers an increased risk of developing life-threatening complications, including type 2 diabetes mellitus, fatty liver disease and cardiovascular diseases. Protein arginine methyltransferases (PRMTs) are enzymes that catalyse the methylation of target proteins. They are ubiquitous in eukaryotes and regulate transcription, splicing, cell metabolism and RNA biology. As a key, epigenetically modified enzyme, protein arginine methyltransferase 1 (PRMT1) is involved in obesity-related metabolic processes, such as lipid metabolism, the insulin signalling pathway, energy balance and inflammation, and plays an important role in the pathology of obesity-related metabolic disorders. This review summarizes recent research on the role of PRMT1 in obesity-related metabolic disorders. The primary objective was to comprehensively elucidate the functional role and regulatory mechanisms of PRMT1. Moreover, this study attempts to review the pathogenesis of PRMT1-mediated obesity-related metabolic disorders, thereby offering pivotal information for further studies and clinical treatment.


Asunto(s)
Enfermedades Metabólicas , Obesidad , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Obesidad/complicaciones , Obesidad/metabolismo , Enfermedades Metabólicas/enzimología , Enfermedades Metabólicas/metabolismo , Animales , Metabolismo de los Lípidos , Transducción de Señal , Metabolismo Energético , Resistencia a la Insulina , Proteínas Represoras/metabolismo , Ratones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/enzimología
17.
Diabetes Obes Metab ; 26(1): 3-15, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37726973

RESUMEN

Emerging evidence suggests that the ubiquitin-mediated degradation of insulin-signalling-related proteins may be involved in the development of insulin resistance and its related disorders. Tripartite motif-containing (TRIM) proteins, a superfamily belonging to the E3 ubiquitin ligases, are capable of controlling protein levels and function by ubiquitination, which is essential for the modulation of insulin sensitivity. Recent research has indicated that some of these TRIMs act as key regulatory factors of metabolic disorders such as type 2 diabetes mellitus, obesity, nonalcoholic fatty liver disease, and atherosclerosis. This review provides a comprehensive overview of the latest evidence linking TRIMs to the regulation of insulin resistance and its related disorders, their roles in regulating multiple signalling pathways or cellular processes, such as insulin signalling pathways, peroxisome proliferator-activated receptor signalling pathways, glucose and lipid metabolism, the inflammatory response, and cell cycle control, as well as recent advances in the development of TRIM-targeted drugs.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Humanos , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
18.
J Pediatr Gastroenterol Nutr ; 78(6): 1251-1260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38682389

RESUMEN

OBJECTIVES: Adverse food reactions, often underestimated, encompass congenital monosaccharide-disaccharide metabolism disorders, yielding diverse outcomes such as abdominal pain, diarrhea, bleeding disorders, and even death. This study retrospectively scrutinized genetic variants linked to these disorders in a cohort subjected to whole-exome sequence analysis (WES), determining carrier frequencies and genotype-phenotype correlations. METHODS: Data from 484 patients, were retrospectively analyzed using a gene panel (ALDOB, FBP1, GALE, GALK1, GALM, GALT, LCT, SLC2A2, SLC5A1, SI) for congenital monosaccharide-disaccharide metabolism disorders. WES was performed on patients using the xGen Exome Research Panel v2 kit, utilizing Next Generation Sequence Analysis (NGS). The study encompassed pathogenic, likely pathogenic, and variant of uncertain significance (VUS) variants. RESULTS: Among 484 patients (244 female, 240 male), 17.35% carried 99 variants (67 distinct) in the analyzed genes. Pathogenic/likely pathogenic allele frequency stood at 0.013, while VUS allele frequency was 0.088. Notably, 44% (37/84) of patients harboring mutations manifested at least one relevant phenotype. Carriage frequencies ranged from 1:25 (SI gene) to 1:968 (GALE gene), with the estimated disease frequency spanning from 1:2500 to 1:3748000. CONCLUSIONS: Our study underscores clinical manifestations in heterozygous carriers of recessive genetic disorders, addressing gaps in carrier frequencies and phenotypic effects for congenital monosaccharide-disaccharide metabolism disorders. This knowledge can improve these conditions' diagnosis and management, potentially preventing adverse food reactions and their associated complications.


Asunto(s)
Fenotipo , Humanos , Femenino , Masculino , Estudios Retrospectivos , Secuenciación del Exoma , Errores Innatos del Metabolismo de los Carbohidratos/genética , Variación Genética , Niño , Lactante , Preescolar , Disacáridos , Mutación , Estudios de Asociación Genética , Monosacáridos , Frecuencia de los Genes , Heterocigoto , Recién Nacido , Adolescente
19.
Jpn J Clin Oncol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807545

RESUMEN

BACKGROUND: The purpose of this study is to evaluate the effects of neoadjuvant therapy on glucose and lipid metabolism, bone mineral density (BMD) and muscle, and to explore the relationship between metabolic disorders and changes in body composition, so as to provide better health management strategies for breast cancer survivors. METHODS: The clinical data of 43 patients with breast cancer who received neoadjuvant therapy in Xuanwu Hospital from January 2020 to June 2021 were analyzed retrospectively. The biochemical results, including albumin, blood glucose, triglyceride and cholesterol, were collected before neoadjuvant therapy and before surgery. The pectoral muscle area, pectoral muscle density and cancellous bone mineral density of the 12th thoracic vertebra were also measured by chest CT. RESULTS: After neoadjuvant therapy, fasting blood glucose, triglyceride and cholesterol were significantly increased, albumin was decreased. At the same time, pectoral muscle area, pectoral muscle density and T12 BMD were decreased. After treatment, BMD was positively correlated with pectoral muscle area, R2 = 0.319, P = 0.037, and BMD was also positively correlated with pectoral muscle density, R2 = 0.329, P = 0.031. Multivariate analysis showed that BMD and pectoral muscle density were correlated with menstrual status, and pectoral muscle area was correlated with body mass index before treatment, none of which was related to glucose and lipid metabolism. CONCLUSION: Neoadjuvant therapy can cause glucose and lipid metabolism disorder, BMD decrease and muscle reduction. BMD was positively correlated with muscle area and density after treatment, suggesting that patients had an increased chance of developing osteosarcopenia.

20.
Acta Pharmacol Sin ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992120

RESUMEN

Fecal microbiota transplant (FMT) is becoming as a promising area of interest for treating refractory diseases. In this study, we investigated the effects of FMT on diabetes-associated cognitive defects in mice as well as the underlying mechanisms. Fecal microbiota was prepared from 8-week-aged healthy mice. Late-stage type 1 diabetics (T1D) mice with a 30-week history of streptozotocin-induced diabetics were treated with antibiotics for 7 days, and then were transplanted with bacterial suspension (100 µL, i.g.) once a day for 14 days. We found that FMT from healthy young mice significantly alleviated cognitive defects of late-stage T1D mice assessed in Morris water maze test. We revealed that FMT significantly reduced the relative abundance of Gram-negative bacteria in the gut microbiota and enhanced intestinal barrier integrity, mitigating LPS translocation into the bloodstream and NLRP3 inflammasome activation in the hippocampus, thereby reducing T1D-induced neuronal loss and astrocytic proliferation. FMT also reshaped the metabolic phenotypes in the hippocampus of T1D mice especially for alanine, aspartate and glutamate metabolism. Moreover, we showed that application of aspartate (0.1 mM) significantly inhibited NLRP3 inflammasome activation and IL-1ß production in BV2 cells under a HG/LPS condition. We conclude that FMT can effectively relieve T1D-associated cognitive decline via reducing the gut-brain metabolic disorders and neuroinflammation, providing a potential therapeutic approach for diabetes-related brain disorders in clinic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA