Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.714
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 521-550, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38382538

RESUMEN

Immune checkpoint blockade (ICB) induces a remarkable and durable response in a subset of cancer patients. However, most patients exhibit either primary or acquired resistance to ICB. This resistance arises from a complex interplay of diverse dynamic mechanisms within the tumor microenvironment (TME). These mechanisms include genetic, epigenetic, and metabolic alterations that prevent T cell trafficking to the tumor site, induce immune cell dysfunction, interfere with antigen presentation, drive heightened expression of coinhibitory molecules, and promote tumor survival after immune attack. The TME worsens ICB resistance through the formation of immunosuppressive networks via immune inhibition, regulatory metabolites, and abnormal resource consumption. Finally, patient lifestyle factors, including obesity and microbiome composition, influence ICB resistance. Understanding the heterogeneity of cellular, molecular, and environmental factors contributing to ICB resistance is crucial to develop targeted therapeutic interventions that enhance the clinical response. This comprehensive overview highlights key mechanisms of ICB resistance that may be clinically translatable.


Asunto(s)
Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/etiología , Resistencia a Antineoplásicos/inmunología , Animales , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Epigénesis Genética
2.
Annu Rev Immunol ; 41: 73-98, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37126422

RESUMEN

Characterization of RNA modifications has identified their distribution features and molecular functions. Dynamic changes in RNA modification on various forms of RNA are essential for the development and function of the immune system. In this review, we discuss the value of innovative RNA modification profiling technologies to uncover the function of these diverse, dynamic RNA modifications in various immune cells within healthy and diseased contexts. Further, we explore our current understanding of the mechanisms whereby aberrant RNA modifications modulate the immune milieu of the tumor microenvironment and point out outstanding research questions.


Asunto(s)
Adenosina , ARN , Humanos , Animales , Sistema Inmunológico
3.
Annu Rev Immunol ; 40: 169-193, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35044794

RESUMEN

The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Linfocitos B , Células Endoteliales , Humanos , Linfocitos T
4.
Annu Rev Immunol ; 39: 583-609, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637019

RESUMEN

Understanding tumor immune microenvironments is critical for identifying immune modifiers of cancer progression and developing cancer immunotherapies. Recent applications of single-cell RNA sequencing (scRNA-seq) in dissecting tumor microenvironments have brought important insights into the biology of tumor-infiltrating immune cells, including their heterogeneity, dynamics, and potential roles in both disease progression and response to immune checkpoint inhibitors and other immunotherapies. This review focuses on the advances in knowledge of tumor immune microenvironments acquired from scRNA-seq studies across multiple types of human tumors, with a particular emphasis on the study of phenotypic plasticity and lineage dynamics of immune cells in the tumor environment. We also discuss several imminent questions emerging from scRNA-seq observations and their potential solutions on the horizon.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Animales , Humanos , Inmunoterapia , Neoplasias/terapia , Análisis de Secuencia de ARN , Microambiente Tumoral
5.
Cell ; 187(19): 5336-5356.e30, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39137777

RESUMEN

Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Vaina de Mielina , Microambiente Tumoral , Humanos , Vaina de Mielina/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Animales , Ratones , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral , Transportador 1 de Casete de Unión a ATP/metabolismo , Femenino , Masculino
6.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714197

RESUMEN

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Proteómica , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteómica/métodos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Hematopoyesis , Nicho de Células Madre , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
7.
Cell ; 187(1): 166-183.e25, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181739

RESUMEN

To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.


Asunto(s)
Melanoma , Humanos , Redes Reguladoras de Genes , Inmunoterapia , Melanocitos , Melanoma/tratamiento farmacológico , Melanoma/genética , Factor de Transcripción 4/genética , Microambiente Tumoral
8.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242087

RESUMEN

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Epigenómica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Análisis de la Célula Individual , Microambiente Tumoral , Heterogeneidad Genética
9.
Cell ; 187(18): 4905-4925.e24, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971151

RESUMEN

Homologous recombination deficiency (HRD) is prevalent in cancer, sensitizing tumor cells to poly (ADP-ribose) polymerase (PARP) inhibition. However, the impact of HRD and related therapies on the tumor microenvironment (TME) remains elusive. Our study generates single-cell gene expression and T cell receptor profiles, along with validatory multimodal datasets from >100 high-grade serous ovarian cancer (HGSOC) samples, primarily from a phase II clinical trial (NCT04507841). Neoadjuvant monotherapy with the PARP inhibitor (PARPi) niraparib achieves impressive 62.5% and 73.6% response rates per RECIST v.1.1 and GCIG CA125, respectively. We identify effector regulatory T cells (eTregs) as key responders to HRD and neoadjuvant therapies, co-occurring with other tumor-reactive T cells, particularly terminally exhausted CD8+ T cells (Tex). TME-wide interferon signaling correlates with cancer cells upregulating MHC class II and co-inhibitory ligands, potentially driving Treg and Tex fates. Depleting eTregs in HRD mouse models, with or without PARP inhibition, significantly suppresses tumor growth without observable toxicities, underscoring the potential of eTreg-focused therapeutics for HGSOC and other HRD-related tumors.


Asunto(s)
Terapia Neoadyuvante , Neoplasias Ováricas , Piperidinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Linfocitos T Reguladores , Microambiente Tumoral , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/inmunología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Animales , Ratones , Terapia Neoadyuvante/métodos , Microambiente Tumoral/efectos de los fármacos , Piperidinas/farmacología , Piperidinas/uso terapéutico , Indazoles/uso terapéutico , Indazoles/farmacología , Recombinación Homóloga , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral
10.
Cell ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39243764

RESUMEN

There is documented sex disparity in cutaneous melanoma incidence and mortality, increasing disproportionately with age and in the male sex. However, the underlying mechanisms remain unclear. While biological sex differences and inherent immune response variability have been assessed in tumor cells, the role of the tumor-surrounding microenvironment, contextually in aging, has been overlooked. Here, we show that skin fibroblasts undergo age-mediated, sex-dependent changes in their proliferation, senescence, ROS levels, and stress response. We find that aged male fibroblasts selectively drive an invasive, therapy-resistant phenotype in melanoma cells and promote metastasis in aged male mice by increasing AXL expression. Intrinsic aging in male fibroblasts mediated by EZH2 decline increases BMP2 secretion, which in turn drives the slower-cycling, highly invasive, and therapy-resistant melanoma cell phenotype, characteristic of the aged male TME. Inhibition of BMP2 activity blocks the emergence of invasive phenotypes and sensitizes melanoma cells to BRAF/MEK inhibition.

11.
Cell ; 186(8): 1627-1651, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36924769

RESUMEN

Macrophages are versatile and heterogeneous innate immune cells undertaking central functions in balancing immune responses and tissue repair to maintain homeostasis. This plasticity, once co-opted by malignant outgrowth, orchestrates manifold reciprocal interactions within the tumor microenvironment, fueling the evolution of the cancer ecosystem. Here, we review the multilayered sources of influence that jointly underpin and longitudinally shape tumor-associated macrophage (TAM) phenotypic states in solid neoplasms. We discuss how, in response to these signals, TAMs steer tumor evolution in the context of natural selection, biological dispersion, and treatment resistance. A number of research frontiers to be tackled are laid down in this review to therapeutically exploit the complex roles of TAMs in cancer. Building upon knowledge obtained from currently applied TAM-targeting strategies and using next generation technologies, we propose conceptual advances and novel therapeutic avenues to rewire TAM multifaceted regulation of the co-evolving cancer ecosystem.


Asunto(s)
Neoplasias , Microambiente Tumoral , Macrófagos Asociados a Tumores , Humanos , Neoplasias/patología , Neoplasias/terapia
12.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608659

RESUMEN

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Asunto(s)
Longevidad , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transducción de Señal
13.
Cell ; 186(21): 4546-4566.e27, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37769657

RESUMEN

Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.

14.
Cell ; 186(17): 3686-3705.e32, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595566

RESUMEN

Mucosal-associated invariant T (MAIT) cells represent an abundant innate-like T cell subtype in the human liver. MAIT cells are assigned crucial roles in regulating immunity and inflammation, yet their role in liver cancer remains elusive. Here, we present a MAIT cell-centered profiling of hepatocellular carcinoma (HCC) using scRNA-seq, flow cytometry, and co-detection by indexing (CODEX) imaging of paired patient samples. These analyses highlight the heterogeneity and dysfunctionality of MAIT cells in HCC and their defective capacity to infiltrate liver tumors. Machine-learning tools were used to dissect the spatial cellular interaction network within the MAIT cell neighborhood. Co-localization in the adjacent liver and interaction between niche-occupying CSF1R+PD-L1+ tumor-associated macrophages (TAMs) and MAIT cells was identified as a key regulatory element of MAIT cell dysfunction. Perturbation of this cell-cell interaction in ex vivo co-culture studies using patient samples and murine models reinvigorated MAIT cell cytotoxicity. These studies suggest that aPD-1/aPD-L1 therapies target MAIT cells in HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células T Invariantes Asociadas a Mucosa , Animales , Humanos , Ratones , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/patología , Macrófagos Asociados a Tumores
15.
Cell ; 186(25): 5554-5568.e18, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065080

RESUMEN

Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-ß-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Diferenciación Celular , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Madre , Humanos , Animales , Ratones , Linaje de la Célula
16.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35649412

RESUMEN

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Evolución Molecular , Genes p16 , Glioma/genética , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Recurrencia Local de Neoplasia
17.
Cell ; 185(2): 299-310.e18, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063072

RESUMEN

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment (TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed coordinated transitions between four TME states that were delineated based on the location and function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption was more advanced in DCIS patients that did not develop IBC, suggesting this process could be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these processes.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Diferenciación Celular , Estudios de Cohortes , Progresión de la Enfermedad , Células Epiteliales/patología , Epitelio/patología , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia/patología , Fenotipo , Análisis de la Célula Individual , Células del Estroma/patología , Microambiente Tumoral
18.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35051368

RESUMEN

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Magnesio/metabolismo , Animales , Infecciones Bacterianas/inmunología , Restricción Calórica , Línea Celular Tumoral , Citotoxicidad Inmunológica , Células HEK293 , Humanos , Memoria Inmunológica , Sinapsis Inmunológicas/metabolismo , Inmunoterapia , Activación de Linfocitos/inmunología , Sistema de Señalización de MAP Quinasas , Magnesio/administración & dosificación , Masculino , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Fenotipo , Fosforilación , Proteínas Proto-Oncogénicas c-jun/metabolismo
19.
Cell ; 185(14): 2591-2608.e30, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803246

RESUMEN

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Linfocitos T CD8-positivos/patología , Ecosistema , Humanos , RNA-Seq
20.
Cell ; 185(7): 1223-1239.e20, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35290801

RESUMEN

While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying extracellular gene functions, particularly in the tissue context. Here, we developed an approach for spatial functional genomics called Perturb-map. We applied Perturb-map to knock out dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Moreover, we paired Perturb-map and spatial transcriptomics for unbiased analysis of CRISPR-edited tumors. We found that in Tgfbr2 knockout tumors, the tumor microenvironment (TME) was converted to a fibro-mucinous state, and T cells excluded, concomitant with upregulated TGFß and TGFß-mediated fibroblast activation, indicating that TGFß-receptor loss on cancer cells increased TGFß bioavailability and its immunosuppressive effects on the TME. These studies establish Perturb-map for functional genomics within the tissue at single-cell resolution with spatial architecture preserved and provide insight into how TGFß responsiveness of cancer cells can affect the TME.


Asunto(s)
Neoplasias , Microambiente Tumoral , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Genómica , Ratones , Neoplasias/genética , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA