Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(7): 1769-1784.e18, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552613

RESUMEN

Mapping the intricate spatial relationships between the many different molecules inside a cell is essential to understanding cellular functions in all their complexity. Super-resolution fluorescence microscopy offers the required spatial resolution but struggles to reveal more than four different targets simultaneously. Exchanging labels in subsequent imaging rounds for multiplexed imaging extends this number but is limited by its low throughput. Here, we present a method for rapid multiplexed super-resolution microscopy that can, in principle, be applied to a nearly unlimited number of molecular targets by leveraging fluorogenic labeling in conjunction with transient adapter-mediated switching for high-throughput DNA-PAINT (FLASH-PAINT). We demonstrate the versatility of FLASH-PAINT with four applications: mapping nine proteins in a single mammalian cell, elucidating the functional organization of primary cilia by nine-target imaging, revealing the changes in proximity of thirteen different targets in unperturbed and dissociated Golgi stacks, and investigating and quantifying inter-organelle contacts at 3D super-resolution.


Asunto(s)
Microscopía Fluorescente , Animales , ADN , Aparato de Golgi , Mamíferos , Microscopía Fluorescente/métodos , Oligonucleótidos , Proteínas
2.
Annu Rev Biochem ; 87: 965-989, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29272143

RESUMEN

Super-resolution optical imaging based on the switching and localization of individual fluorescent molecules [photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), etc.] has evolved remarkably over the last decade. Originally driven by pushing technological limits, it has become a tool of biological discovery. The initial demand for impressive pictures showing well-studied biological structures has been replaced by a need for quantitative, reliable data providing dependable evidence for specific unresolved biological hypotheses. In this review, we highlight applications that showcase this development, identify the features that led to their success, and discuss remaining challenges and difficulties. In this context, we consider the complex topic of defining resolution for this imaging modality and address some of the more common analytical methods used with this data.


Asunto(s)
Imagen Individual de Molécula/métodos , Algoritmos , Animales , Análisis por Conglomerados , Análisis de Fourier , Humanos , Imagenología Tridimensional , Modelos Biológicos , Estructura Molecular , Nanotecnología , Imagen Individual de Molécula/estadística & datos numéricos , Procesos Estocásticos
3.
Proc Natl Acad Sci U S A ; 121(38): e2412241121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39254993

RESUMEN

Dynein is the primary molecular motor responsible for retrograde intracellular transport of a variety of cargoes, performing successive nanometer-sized steps within milliseconds. Due to the limited spatiotemporal precision of established methods for molecular tracking, current knowledge of dynein stepping is essentially limited to slowed-down measurements in vitro. Here, we use MINFLUX fluorophore localization to directly track CRISPR/Cas9-tagged endogenous dynein with nanometer/millisecond precision in living primary neurons. We show that endogenous dynein primarily takes 8 nm steps, including frequent sideways steps but few backward steps. Strikingly, the majority of direction reversals between retrograde and anterograde movement occurred on the time scale of single steps (16 ms), suggesting a rapid regulatory reversal mechanism. Tug-of-war-like behavior during pauses or reversals was unexpectedly rare. By analyzing the dwell time between steps, we concluded that a single rate-limiting process underlies the dynein stepping mechanism, likely arising from just one adenosine 5'-triphosphate hydrolysis event being required during each step. Our study underscores the power of MINFLUX localization to elucidate the spatiotemporal changes underlying protein function in living cells.


Asunto(s)
Dineínas , Neuronas , Dineínas/metabolismo , Neuronas/metabolismo , Animales , Sistemas CRISPR-Cas , Adenosina Trifosfato/metabolismo , Ratones
4.
Proc Natl Acad Sci U S A ; 121(11): e2318870121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442172

RESUMEN

We introduce MINFLUX localization with interferometric illumination through opposing objective lenses for maximizing the attainable precision in 3D-localization of single inelastic scatterers, such as fluorophores. Our 4Pi optical configuration employs three sequentially tilted counter-propagating beam pairs for illumination, each providing a narrow interference minimum of illumination intensity at the focal point. The localization precision is additionally improved by adding the inelastically scattered or fluorescence photons collected through both objective lenses. Our 4Pi configuration yields the currently highest precision per detected photon among all localization schemes. Tracking gold nanoparticles as non-blinking inelastic scatterers rendered a position uncertainty <0.4 nm3 in volume at a localization frequency of 2.9 kHz. We harnessed the record spatio-temporal precision of our 4Pi MINFLUX approach to examine the diffusion of single fluorophores and fluorescent nanobeads in solutions of sucrose in water, revealing local heterogeneities at the nanoscale. Our results show the applicability of 4Pi MINFLUX to study molecular nano-environments of diffusion and its potential for quantifying rapid movements of molecules in cells and other material composites.

5.
Proc Natl Acad Sci U S A ; 120(2): e2212456120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595705

RESUMEN

Antifreeze proteins (AFPs) bind ice to reduce freezing temperatures and arrest ice crystal ripening, making AFPs essential for the survival of many organisms in ice-laden environments and attractive as biocompatible antifreezes in many applications. While their activity was identified over 50 years ago, the physical mechanisms through which they function are still debated because experimental insights at the molecular scale remain elusive. Here, we introduce subzero nanoscopy by the design and incorporation of a freezing stage on a commercial super-resolution setup to resolve the interfacial dynamics of single AFPs with ice crystal surfaces. Using this method, we demonstrate irreversible binding and immobilization (i.e., pinning) of individual proteins to the ice/water interface. Surprisingly, pinning is lost and adsorption becomes reversible when freezing point depression activity, but not ice recrystallization inhibition, is eliminated by a single mutation in the ice-binding site of the AFP. Our results provide direct experimental evidence for the adsorption-inhibition paradigm, pivotal to all theoretical descriptions of freezing point depression activity, but also reveal that reversible binding to ice must be accounted for in an all-inclusive model for AFP activity. These mechanistic insights into the relation between interfacial interactions and activity further our understanding and may serve as leading principles in the future design of highly potent, biocompatible antifreezes with tunable affinity.


Asunto(s)
Proteínas Anticongelantes , alfa-Fetoproteínas , Cristalización , Proteínas Anticongelantes/química , Congelación , Crioprotectores
6.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28803781

RESUMEN

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Asunto(s)
Linfocitos B/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Activación de Linfocitos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Linfocitos B/inmunología , Línea Celular , Cromatina/química , Cromatina/genética , Metilación de ADN , Epigénesis Genética , Genotipo , Histonas/química , Inmunidad Humoral , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Conformación de Ácido Nucleico , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Imagen Individual de Molécula , Relación Estructura-Actividad , Factores de Tiempo , Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 119(52): e2215799119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534799

RESUMEN

Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Humanos , Animales , Células HeLa , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos
8.
Proc Natl Acad Sci U S A ; 119(29): e2201861119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858298

RESUMEN

With few-nanometer resolution recently achieved by a new generation of fluorescence nanoscopes (MINFLUX and MINSTED), the size of the tags used to label proteins will increasingly limit the ability to dissect nanoscopic biological structures. Bioorthogonal (click) chemical groups are powerful tools for the specific detection of biomolecules. Through the introduction of an engineered aminoacyl-tRNA synthetase/tRNA pair (tRNA: transfer ribonucleic acid), genetic code expansion allows for the site-specific introduction of amino acids with "clickable" side chains into proteins of interest. Well-defined label positions and the subnanometer scale of the protein modification provide unique advantages over other labeling approaches for imaging at molecular-scale resolution. We report that, by pairing a new N-terminally optimized pyrrolysyl-tRNA synthetase (chPylRS2020) with a previously engineered orthogonal tRNA, clickable amino acids are incorporated with improved efficiency into bacteria and into mammalian cells. The resulting enhanced genetic code expansion machinery was used to label ß-actin in U2OS cell filopodia for MINFLUX imaging with minimal separation of fluorophores from the protein backbone. Selected data were found to be consistent with previously reported high-resolution information from cryoelectron tomography about the cross-sectional filament bundling architecture. Our study underscores the need for further improvements to the degree of labeling with minimal-offset methods in order to fully exploit molecular-scale optical three-dimensional resolution.


Asunto(s)
Aminoacil-ARNt Sintetasas , Código Genético , Imagen Óptica , ARN de Transferencia , Aminoácidos/química , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Línea Celular Tumoral , Estudios Transversales , Fluorescencia , Humanos , Imagen Óptica/instrumentación , Imagen Óptica/métodos , ARN de Transferencia/química , ARN de Transferencia/genética
9.
Nano Lett ; 24(10): 3005-3013, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416810

RESUMEN

Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Diagnóstico por Imagen , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos
10.
EMBO J ; 39(14): e104105, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32567732

RESUMEN

Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1 Fo -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1 Fo -ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/metabolismo , Células HeLa , Humanos , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Complejos Multiproteicos/genética
11.
Small ; : e2400289, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708804

RESUMEN

This study utilizes nanoscale Fourier transform infrared spectroscopy (nanoFTIR) to perform stable isotope probing (SIP) on individual bacteria cells cultured in the presence of 13C-labelled glucose. SIP-nanoFTIR simultaneously quantifies single-cell metabolism through infrared spectroscopy and acquires cellular morphological information via atomic force microscopy. The redshift of the amide I peak corresponds to the isotopic enrichment of newly synthesized proteins. These observations of single-cell translational activity are comparable to those of conventional methods, examining bulk cell numbers. Observing cells cultured under conditions of limited carbon, SIP- nanoFTIR is used to identify environmentally-induced changes in metabolic heterogeneity and cellular morphology. Individuals outcompeting their neighboring cells will likely play a disproportionately large role in shaping population dynamics during adverse conditions or environmental fluctuations. Additionally, SIP-nanoFTIR enables the spectroscopic differentiation of specific cellular growth phases. During cellular replication, subcellular isotope distribution becomes more homogenous, which is reflected in the spectroscopic features dependent on the extent of 13C-13C mode coupling or to specific isotopic symmetries within protein secondary structures. As SIP-nanoFTIR captures single-cell metabolism, environmentally-induced cellular processes, and subcellular isotope localization, this technique offers widespread applications across a variety of disciplines including microbial ecology, biophysics, biopharmaceuticals, medicinal science, and cancer research.

12.
Annu Rev Phys Chem ; 74: 391-414, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36750411

RESUMEN

Super-resolution fluorescence microscopy techniques are powerful tools to investigate polymer systems. In this review, we address how these techniques have been applied to hydrogel nano- and microparticles, so-called nano- or microgels. We outline which research questions on microgels could be addressed and what new insights could be achieved. Studies of the morphology, shape, and deformation of microgels; their internal compartmentalization; the cross-linker distribution and polarity inside them; and their dynamics and diffusion are summarized. In particular, the abilities to super-resolve structures in three dimensions have boosted the research field and have also allowed researchers to obtain impressive 3D images of deformed microgels. Accessing information beyond 3D localization, such as spectral and lifetime properties and correlative imaging or the combination of data with other methods, shines new light onto polymer systems and helps us understand their complexity in detail. Such future trends and developments are also addressed.

13.
J Fluoresc ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214847

RESUMEN

Understanding the relationships between molecular organization and dynamics of a complex system is very important to understand the photophysical properties of such system. This paper focuses on a novel strategy based on single molecule spectroscopy and single molecule localization microscopy to elucidate the photostability and localization of a fluorophore molecule on a 2D biomembrane. Improvement of in-plane resolution of a signal in a nano-dimension within the diffraction limit has been discussed in a new way. And, how this better in-plane resolution information can be used for precise localization of a single molecule on a 2D system has also been discussed.

14.
J Nanobiotechnology ; 22(1): 589, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342336

RESUMEN

BACKGROUND: Patients with HER2-positive breast cancer can significantly benefit from HER2-directed therapy - such as the monoclonal antibody trastuzumab. However, some patients can develop therapy resistance or change HER2 status. Thus, we urgently need new, noninvasive strategies to monitor patients frequently. Extracellular vesicles (EVs) secreted from tumor cells are emerging as potential biomarker candidates. These membrane-delimited nanoparticles harbor molecular signatures of their origin cells; report rapidly on changes to cellular status; and can be frequently sampled from accessible biofluids. RESULTS: Using Single Extracellular VEsicle Nanoscopy (SEVEN) platform that combines affinity isolation of EVs with super-resolution microscopy, here we provide multiparametric characterization of EVs with ~ 8 nm precision and molecular sensitivity. We first interrogated cell culture EVs affinity-enriched in tetraspanins CD9, CD63, and CD81; these transmembrane proteins are commonly found on EV membranes. SEVEN robustly provided critical parameters of individual, tetraspanin-enriched EVs: concentration, size, shape, molecular cargo content, and heterogeneity. Trastuzumab-resistant cells (vs. trastuzumab-sensitive) secreted more EVs. Additionally, EVs from trastuzumab-resistant cells had lower tetraspanin density and higher HER2 density. We also evaluated EVs affinity-enriched in HER2; we found that these EVs (vs. tetraspanin-enriched) were larger and more elongated. We further optimized analytical sample processing to assess a rare population of HER2-enriched EVs from patient plasma. In breast cancer patients with elevated HER2 protein expression (vs. controls), HER2-enriched EVs had distinct characteristics including typically increased number of tetraspanin molecules and larger size. Importantly, these EVs were on average 25-fold more abundant compared to no cancer controls. CONCLUSIONS: SEVEN revealed unique characteristics of HER2-enriched EVs in cultured cells and complex biological fluid. In combination with current clinical approaches, this method is well poised to support precise therapeutic decisions.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Receptor ErbB-2 , Humanos , Vesículas Extracelulares/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Trastuzumab/farmacología , Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos , Tetraspaninas/metabolismo , Tetraspanina 29/metabolismo
15.
J Nanobiotechnology ; 22(1): 363, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910248

RESUMEN

Fluorescence nanoscopy, also known as super-resolution microscopy, has transcended the conventional resolution barriers and enabled visualization of biological samples at nanometric resolutions. A series of super-resolution techniques have been developed and applied to investigate the molecular distribution, organization, and interactions in blood cells, as well as the underlying mechanisms of blood-cell-associated diseases. In this review, we provide an overview of various fluorescence nanoscopy technologies, outlining their current development stage and the challenges they are facing in terms of functionality and practicality. We specifically explore how these innovations have propelled forward the analysis of thrombocytes (platelets), erythrocytes (red blood cells) and leukocytes (white blood cells), shedding light on the nanoscale arrangement of subcellular components and molecular interactions. We spotlight novel biomarkers uncovered by fluorescence nanoscopy for disease diagnosis, such as thrombocytopathies, malignancies, and infectious diseases. Furthermore, we discuss the technological hurdles and chart out prospective avenues for future research directions. This review aims to underscore the significant contributions of fluorescence nanoscopy to the field of blood cell analysis and disease diagnosis, poised to revolutionize our approach to exploring, understanding, and managing disease at the molecular level.


Asunto(s)
Células Sanguíneas , Microscopía Fluorescente , Animales , Humanos , Células Sanguíneas/ultraestructura , Plaquetas/metabolismo , Eritrocitos , Hematología/métodos , Leucocitos/metabolismo , Microscopía Fluorescente/métodos , Nanotecnología/métodos
16.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782474

RESUMEN

Visualization of three-dimensional (3D) morphological changes in the subcellular structures of a biological specimen is a major challenge in life science. Here, we present an integrated chip-based optical nanoscopy combined with quantitative phase microscopy (QPM) to obtain 3D morphology of liver sinusoidal endothelial cells (LSEC). LSEC have unique morphology with small nanopores (50-300 nm in diameter) in the plasma membrane, called fenestrations. The fenestrations are grouped in discrete clusters, which are around 100 to 200 nm thick. Thus, imaging and quantification of fenestrations and sieve plate thickness require resolution and sensitivity of sub-100 nm along both the lateral and the axial directions, respectively. In chip-based nanoscopy, the optical waveguides are used both for hosting and illuminating the sample. The fluorescence signal is captured by an upright microscope, which is converted into a Linnik-type interferometer to sequentially acquire both superresolved images and phase information of the sample. The multimodal microscope provided an estimate of the fenestration diameter of 119 ± 53 nm and average thickness of the sieve plates of 136.6 ± 42.4 nm, assuming the constant refractive index of cell membrane to be 1.38. Further, LSEC were treated with cytochalasin B to demonstrate the possibility of precise detection in the cell height. The mean phase value of the fenestrated area in normal and treated cells was found to be 161 ± 50 mrad and 109 ± 49 mrad, respectively. The proposed multimodal technique offers nanoscale visualization of both the lateral size and the thickness map, which would be of broader interest in the fields of cell biology and bioimaging.


Asunto(s)
Células Endoteliales/patología , Endotelio/diagnóstico por imagen , Endotelio/patología , Hígado/diagnóstico por imagen , Microscopía/métodos , Animales , Membrana Celular , Endotelio/metabolismo , Fluorescencia , Hepatocitos/patología , Imagenología Tridimensional/métodos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía/instrumentación , Ratas , Ratas Sprague-Dawley
17.
Nano Lett ; 23(4): 1445-1450, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36695528

RESUMEN

Carrier distribution and dynamics in semiconductor materials often govern their physical properties that are critical to functionalities and performance in industrial applications. The continued miniaturization of electronic and photonic devices calls for tools to probe carrier behavior in semiconductors simultaneously at the picosecond time and nanometer length scales. Here, we report pump-probe optical nanoscopy in the visible-near-infrared spectral region to characterize the carrier dynamics in silicon nanostructures. By coupling experiments with the point-dipole model, we resolve the size-dependent photoexcited carrier lifetime in individual silicon nanowires. We further demonstrate local carrier decay time mapping in silicon nanostructures with a sub-50 nm spatial resolution. Our study enables the nanoimaging of ultrafast carrier kinetics, which will find promising applications in the future design of a broad range of electronic, photonic, and optoelectronic devices.

18.
Nano Lett ; 23(11): 5070-5075, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37195262

RESUMEN

We investigate heterostructures composed of monolayer WSe2 stacked on α-RuCl3 using a combination of Terahertz (THz) and infrared (IR) nanospectroscopy and imaging, scanning tunneling spectroscopy (STS), and photoluminescence (PL). Our observations reveal itinerant carriers in the heterostructure prompted by charge transfer across the WSe2/α-RuCl3 interface. Local STS measurements show the Fermi level is shifted to the valence band edge of WSe2 which is consistent with p-type doping and verified by density functional theory (DFT) calculations. We observe prominent resonances in near-IR nano-optical and PL spectra, which are associated with the A-exciton of WSe2. We identify a concomitant, near total, quenching of the A-exciton resonance in the WSe2/α-RuCl3 heterostructure. Our nano-optical measurements show that the charge-transfer doping vanishes while excitonic resonances exhibit near-total recovery in "nanobubbles", where WSe2 and α-RuCl3 are separated by nanometer distances. Our broadband nanoinfrared inquiry elucidates local electrodynamics of excitons and an electron-hole plasma in the WSe2/α-RuCl3 system.

19.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38542157

RESUMEN

We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells.


Asunto(s)
ADN , Telómero , Humanos , Hibridación Fluorescente in Situ/métodos , Telómero/genética , Ciclo Celular/genética , División Celular
20.
J Cell Sci ; 134(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34435622

RESUMEN

Leukemic stem cells (LSCs) adhere to bone niches through adhesion molecules. These interactions, which are deeply reorganized in tumors, contribute to LSC resistance to chemotherapy and leukemia relapse. However, LSC adhesion mechanisms and potential therapeutic disruption using blocking antibodies remain largely unknown. Junctional adhesion molecule C (JAM-C, also known as JAM3) overexpression by LSCs correlates with increased leukemia severity, and thus constitutes a putative therapeutic target. Here, we took advantage of the ability of nanoscopy to detect single molecules with nanometric accuracy to characterize junctional adhesion molecule (JAM) dynamics at leuko-stromal contacts. Videonanoscopy trajectories were reconstructed using our dedicated multi-target tracing algorithm, pipelined with dual-color analyses (MTT2col). JAM-C expressed by LSCs engaged in transient interactions with JAM-B (also known as JAM2) expressed by stromal cells. JAM recruitment and colocalization at cell contacts were proportional to JAM-C level and reduced by a blocking anti-JAM-C antibody. MTT2col revealed, at single-molecule resolution, the ability of blocking antibodies to destabilize LSC binding to their niches, opening opportunities for disrupting LSC resistance mechanisms.


Asunto(s)
Células Madre Mesenquimatosas , Adhesión Celular , Moléculas de Adhesión Celular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA