Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.055
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38503281

RESUMEN

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Asunto(s)
Nucléolo Celular , Proteínas Nucleares , Fuerza Protón-Motriz , Nucléolo Celular/química , Núcleo Celular/química , Proteínas Nucleares/química , ARN/metabolismo , Separación de Fases , Proteínas Intrínsecamente Desordenadas/química , Animales , Xenopus laevis , Oocitos/química , Oocitos/citología
2.
Cell ; 186(4): 821-836.e13, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36750096

RESUMEN

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.


Asunto(s)
Endocitosis , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Animales , Humanos , Ratones , Microscopía por Crioelectrón , Riñón/metabolismo , Ligandos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo
3.
Cell ; 185(13): 2292-2308.e20, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35750034

RESUMEN

Lysosomes require an acidic lumen between pH 4.5 and 5.0 for effective digestion of macromolecules. This pH optimum is maintained by proton influx produced by the V-ATPase and efflux through an unidentified "H+ leak" pathway. Here we show that TMEM175, a genetic risk factor for Parkinson's disease (PD), mediates the lysosomal H+ leak by acting as a proton-activated, proton-selective channel on the lysosomal membrane (LyPAP). Acidification beyond the normal range potently activated LyPAP to terminate further acidification of lysosomes. An endogenous polyunsaturated fatty acid and synthetic agonists also activated TMEM175 to trigger lysosomal proton release. TMEM175 deficiency caused lysosomal over-acidification, impaired proteolytic activity, and facilitated α-synuclein aggregation in vivo. Mutational and pH normalization analyses indicated that the channel's H+ conductance is essential for normal lysosome function. Thus, modulation of LyPAP by cellular cues may dynamically tune the pH optima of endosomes and lysosomes to regulate lysosomal degradation and PD pathology.


Asunto(s)
Enfermedad de Parkinson , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Canales de Potasio/metabolismo , Protones
4.
Cell ; 185(18): 3341-3355.e13, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998629

RESUMEN

The extracellular pH is a vital regulator of various biological processes in plants. However, how plants perceive extracellular pH remains obscure. Here, we report that plant cell-surface peptide-receptor complexes can function as extracellular pH sensors. We found that pattern-triggered immunity (PTI) dramatically alkalinizes the acidic extracellular pH in root apical meristem (RAM) region, which is essential for root meristem growth factor 1 (RGF1)-mediated RAM growth. The extracellular alkalinization progressively inhibits the acidic-dependent interaction between RGF1 and its receptors (RGFRs) through the pH sensor sulfotyrosine. Conversely, extracellular alkalinization promotes the alkaline-dependent binding of plant elicitor peptides (Peps) to its receptors (PEPRs) through the pH sensor Glu/Asp, thereby promoting immunity. A domain swap between RGFR and PEPR switches the pH dependency of RAM growth. Thus, our results reveal a mechanism of extracellular pH sensing by plant peptide-receptor complexes and provide insights into the extracellular pH-mediated regulation of growth and immunity in the RAM.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Meristema/metabolismo , Péptidos/metabolismo , Células Vegetales , Raíces de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
5.
Cell ; 183(6): 1520-1535.e14, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33157038

RESUMEN

ß-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that ß-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of ß-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. ß-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.


Asunto(s)
COVID-19/metabolismo , SARS-CoV-2/metabolismo , Vías Secretoras , Liberación del Virus , Factores de Ribosilacion-ADP/metabolismo , Animales , COVID-19/patología , Femenino , Células HeLa , Compuestos Heterocíclicos con 2 Anillos/farmacología , Humanos , Lisosomas , Ratones , Tiourea/análogos & derivados , Tiourea/farmacología , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7 , Tratamiento Farmacológico de COVID-19
6.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32359423

RESUMEN

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/fisiología , Expresión Génica/genética , Genes Esenciales/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología
7.
Cell ; 180(2): 278-295.e23, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978345

RESUMEN

Mutations in FAMIN cause arthritis and inflammatory bowel disease in early childhood, and a common genetic variant increases the risk for Crohn's disease and leprosy. We developed an unbiased liquid chromatography-mass spectrometry screen for enzymatic activity of this orphan protein. We report that FAMIN phosphorolytically cleaves adenosine into adenine and ribose-1-phosphate. Such activity was considered absent from eukaryotic metabolism. FAMIN and its prokaryotic orthologs additionally have adenosine deaminase, purine nucleoside phosphorylase, and S-methyl-5'-thioadenosine phosphorylase activity, hence, combine activities of the namesake enzymes of central purine metabolism. FAMIN enables in macrophages a purine nucleotide cycle (PNC) between adenosine and inosine monophosphate and adenylosuccinate, which consumes aspartate and releases fumarate in a manner involving fatty acid oxidation and ATP-citrate lyase activity. This macrophage PNC synchronizes mitochondrial activity with glycolysis by balancing electron transfer to mitochondria, thereby supporting glycolytic activity and promoting oxidative phosphorylation and mitochondrial H+ and phosphate recycling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Adenina/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Cromatografía Liquida/métodos , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intracelular/fisiología , Espectrometría de Masas/métodos , Enzimas Multifuncionales/genética , Fosforilación , Proteínas/genética , Nucleótidos de Purina/metabolismo , Purinas/metabolismo
8.
Cell ; 177(6): 1480-1494.e19, 2019 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-31056283

RESUMEN

Varying pH of luminal fluid along the female reproductive tract is a physiological cue that modulates sperm motility. CatSper is a sperm-specific, pH-sensitive calcium channel essential for hyperactivated motility and male fertility. Multi-subunit CatSper channel complexes organize linear Ca2+ signaling nanodomains along the sperm tail. Here, we identify EF-hand calcium-binding domain-containing protein 9 (EFCAB9) as a bifunctional, cytoplasmic machine modulating the channel activity and the domain organization of CatSper. Knockout mice studies demonstrate that EFCAB9, in complex with the CatSper subunit, CATSPERζ, is essential for pH-dependent and Ca2+-sensitive activation of the CatSper channel. In the absence of EFCAB9, sperm motility and fertility is compromised, and the linear arrangement of the Ca2+ signaling domains is disrupted. EFCAB9 interacts directly with CATSPERζ in a Ca2+-dependent manner and dissociates at elevated pH. These observations suggest that EFCAB9 is a long-sought, intracellular, pH-dependent Ca2+ sensor that triggers changes in sperm motility.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Motilidad Espermática/fisiología , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/fisiología , Línea Celular , Membrana Celular/metabolismo , Fertilidad , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Espermatozoides/metabolismo
9.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29861175

RESUMEN

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Asunto(s)
Hipoxia de la Célula , Relojes Circadianos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Aminoácidos Dicarboxílicos/farmacología , Animales , Proteínas CLOCK/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Relojes Circadianos/efectos de los fármacos , Medios de Cultivo/química , Factores Eucarióticos de Iniciación , Concentración de Iones de Hidrógeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Ratones , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/metabolismo , Transcriptoma/efectos de los fármacos , Proteína 2 del Complejo de la Esclerosis Tuberosa/deficiencia , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
10.
Immunity ; 56(12): 2682-2698.e9, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38091950

RESUMEN

T cell responses are inhibited by acidic environments. T cell receptor (TCR)-induced protein phosphorylation is negatively regulated by dephosphorylation and/or ubiquitination, but the mechanisms underlying sensitivity to acidic environments are not fully understood. Here, we found that TCR stimulation induced a molecular complex of Cbl-b, an E3-ubiquitin ligase, with STS1, a pH-sensitive unconventional phosphatase. The induced interaction depended upon a proline motif in Cbl-b interacting with the STS1 SH3 domain. STS1 dephosphorylated Cbl-b interacting phosphoproteins. The deficiency of STS1 or Cbl-b diminished the sensitivity of T cell responses to the inhibitory effects of acid in an autocrine or paracrine manner in vitro or in vivo. Moreover, the deficiency of STS1 or Cbl-b promoted T cell proliferative and differentiation activities in vivo and inhibited tumor growth, prolonged survival, and improved T cell fitness in tumor models. Thus, a TCR-induced STS1-Cbl-b complex senses intra- or extra-cellular acidity and regulates T cell responses, presenting a potential therapeutic target for improving anti-tumor immunity.


Asunto(s)
Transducción de Señal , Linfocitos T , Ubiquitina-Proteína Ligasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno
11.
Cell ; 168(6): 1028-1040.e19, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283059

RESUMEN

In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1's LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Gránulos Citoplasmáticos/química , Calor , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Mutagénesis , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Prolina/análisis , Prolina/metabolismo , Dominios Proteicos , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Estrés Fisiológico
12.
Cell ; 167(4): 985-1000.e21, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881304

RESUMEN

Mitochondrial sirtuins, SIRT3-5, are NAD+-dependent deacylases and ADP-ribosyltransferases that are critical for stress responses. However, a comprehensive understanding of sirtuin targets, regulation of sirtuin activity, and the relationships between sirtuins remains a key challenge in mitochondrial physiology. Here, we employ systematic interaction proteomics to elucidate the mitochondrial sirtuin protein interaction landscape. This work reveals sirtuin interactions with numerous functional modules within mitochondria, identifies candidate sirtuin substrates, and uncovers a fundamental role for sequestration of SIRT3 by ATP synthase in mitochondrial homeostasis. In healthy mitochondria, a pool of SIRT3 binds ATP synthase, but upon matrix pH reduction with concomitant loss of mitochondrial membrane potential, SIRT3 dissociates. This release correlates with rapid deacetylation of matrix proteins, and SIRT3 is required for recovery of membrane potential. In vitro reconstitution experiments, as well as analysis of CRISPR/Cas9-engineered cells, indicate that pH-dependent SIRT3 release requires H135 in the ATP5O subunit of ATP synthase. Our SIRT3-5 interaction network provides a framework for discovering novel biological functions regulated by mitochondrial sirtuins.


Asunto(s)
Mitocondrias/metabolismo , Mapas de Interacción de Proteínas , Sirtuina 3/metabolismo , Acetilación , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales , Sirtuinas/clasificación , Sirtuinas/metabolismo
13.
Mol Cell ; 83(23): 4413-4423.e10, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37979585

RESUMEN

DEAD-box ATPases are major regulators of biomolecular condensates and orchestrate diverse biochemical processes that are critical for the functioning of cells. How DEAD-box proteins are selectively recruited to their respective biomolecular condensates is unknown. We explored this in the context of the nucleolus and DEAD-box protein DDX21. We find that the pH of the nucleolus is intricately linked to the transcriptional activity of the organelle and facilitates the recruitment and condensation of DDX21. We identify an evolutionarily conserved feature of the C terminus of DDX21 responsible for nucleolar localization. This domain is essential for zebrafish development, and its intrinsically disordered and isoelectric properties are necessary and sufficient for the ability of DDX21 to respond to changes in pH and form condensates. Molecularly, the enzymatic activities of poly(ADP-ribose) polymerases contribute to maintaining the nucleolar pH and, consequently, DDX21 recruitment and nucleolar partitioning. These observations reveal an activity-dependent physicochemical mechanism for the selective recruitment of biochemical activities to biomolecular condensates.


Asunto(s)
ARN Helicasas DEAD-box , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/química , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Orgánulos/metabolismo , Concentración de Iones de Hidrógeno
14.
Mol Cell ; 83(14): 2524-2539.e7, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390818

RESUMEN

Maintaining a highly acidic lysosomal pH is central to cellular physiology. Here, we use functional proteomics, single-particle cryo-EM, electrophysiology, and in vivo imaging to unravel a key biological function of human lysosome-associated membrane proteins (LAMP-1 and LAMP-2) in regulating lysosomal pH homeostasis. Despite being widely used as a lysosomal marker, the physiological functions of the LAMP proteins have long been overlooked. We show that LAMP-1 and LAMP-2 directly interact with and inhibit the activity of the lysosomal cation channel TMEM175, a key player in lysosomal pH homeostasis implicated in Parkinson's disease. This LAMP inhibition mitigates the proton conduction of TMEM175 and facilitates lysosomal acidification to a lower pH environment crucial for optimal hydrolase activity. Disrupting the LAMP-TMEM175 interaction alkalinizes the lysosomal pH and compromises the lysosomal hydrolytic function. In light of the ever-increasing importance of lysosomes to cellular physiology and diseases, our data have widespread implications for lysosomal biology.


Asunto(s)
Enfermedad de Parkinson , Humanos , Concentración de Iones de Hidrógeno , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Enfermedad de Parkinson/metabolismo , Canales de Potasio/metabolismo
15.
Physiol Rev ; 103(1): 515-606, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35981302

RESUMEN

The protonation state of soluble and membrane-associated macromolecules dictates their charge, conformation, and functional activity. In addition, protons (H+ or their equivalents) partake in numerous metabolic reactions and serve as a source of electrochemical energy to drive the transmembrane transport of both organic and inorganic substrates. Stringent regulation of the intracellular pH is therefore paramount to homeostasis. Although the regulation of the cytosolic pH has been studied extensively, our understanding of the determinants of the H+ concentration ([H+]) of intracellular organelles has developed more slowly, limited by their small size and inaccessibility. Recently, however, targeting of molecular probes to the organellar lumen together with advances in genomic, proteomic, and electrophysiological techniques have led to the identification and characterization of unique pumps, channels, and transporters responsible for the establishment and maintenance of intraorganellar pH. These developments and their implications for cellular function in health and disease are the subject of this review.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares , Humanos , Concentración de Iones de Hidrógeno , Sondas Moleculares , Orgánulos/metabolismo , Proteómica , Protones
16.
Physiol Rev ; 102(3): 1327-1383, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166161

RESUMEN

During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, ß, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and ß-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs, but also contribute to a plethora of previously undescribed functions.


Asunto(s)
Anhidrasas Carbónicas , Equilibrio Ácido-Base , Animales , Humanos , Ratones , Especificidad de la Especie , Pez Cebra
17.
Annu Rev Physiol ; 86: 357-377, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37931166

RESUMEN

A handful of biological proton-selective ion channels exist. Some open at positive or negative membrane potentials, others open at low or high pH, and some are light activated. This review focuses on common features that result from the unique properties of protons. Proton conduction through water or proteins differs qualitatively from that of all other ions. Extraordinary proton selectivity is needed to ensure that protons permeate and other ions do not. Proton selectivity arises from a proton pathway comprising a hydrogen-bonded chain that typically includes at least one titratable amino acid side chain. The enormously diverse functions of proton channels in disparate regions of the phylogenetic tree can be summarized by considering the chemical and electrical consequences of proton flux across membranes. This review discusses examples of cells in which proton efflux serves to increase pHi, decrease pHo, control the membrane potential, generate action potentials, or compensate transmembrane movement of electrical charge.


Asunto(s)
Activación del Canal Iónico , Protones , Humanos , Activación del Canal Iónico/fisiología , Concentración de Iones de Hidrógeno , Filogenia , Canales Iónicos/metabolismo
18.
Trends Biochem Sci ; 48(11): 949-962, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37716870

RESUMEN

Cellular ageing described at the molecular level is a multifactorial process that leads to a spectrum of ageing trajectories. There has been recent discussion about whether a decline in physicochemical homeostasis causes aberrant phase transitions, which are a driver of ageing. Indeed, the function of all biological macromolecules, regardless of their participation in biomolecular condensates, depends on parameters such as pH, crowding, and redox state. We expand on the physicochemical homeostasis hypothesis and summarise recent evidence that the intracellular milieu influences molecular processes involved in ageing.


Asunto(s)
Senescencia Celular , Oxidación-Reducción
19.
Proc Natl Acad Sci U S A ; 121(2): e2311700120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175863

RESUMEN

The ionizable-lipid component of RNA-containing nanoparticles controls the pH-dependent behavior necessary for an efficient delivery of the cargo-the so-called endosomal escape. However, it is still an empirical exercise to identify optimally performing lipids. Here, we study two well-known ionizable lipids, DLin-MC3-DMA and DLin-DMA using a combination of experiments, multiscale computer simulations, and electrostatic theory. All-atom molecular dynamics simulations, and experimentally measured polar headgroup pKa values, are used to develop a coarse-grained representation of the lipids, which enables the investigation of the pH-dependent behavior of lipid nanoparticles (LNPs) through Monte Carlo simulations, in the absence and presence of RNA molecules. Our results show that the charge state of the lipids is determined by the interplay between lipid shape and headgroup chemistry, providing an explanation for the similar pH-dependent ionization state observed for lipids with headgroup pKa values about one-pH-unit apart. The pH dependence of lipid ionization is significantly influenced by the presence of RNA, whereby charge neutrality is achieved by imparting a finite and constant charge per lipid at intermediate pH values. The simulation results are experimentally supported by measurements of α-carbon 13C-NMR chemical shifts for eGFP mRNA LNPs of both DLin-MC3-DMA and DLin-DMA at various pH conditions. Further, we evaluate the applicability of a mean-field Poisson-Boltzmann theory to capture these phenomena.


Asunto(s)
Lípidos , Nanopartículas , Lípidos/química , ARN Mensajero/genética , ARN Mensajero/química , ARN Interferente Pequeño/genética , Nanopartículas/química , Simulación de Dinámica Molecular , Concentración de Iones de Hidrógeno
20.
Proc Natl Acad Sci U S A ; 121(1): e2310404120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147551

RESUMEN

Newly synthesized secretory proteins are exported from the endoplasmic reticulum (ER) at specialized subcompartments called exit sites (ERES). Cargoes like procollagen are too large for export by the standard COPII-coated vesicle of 60 nm average diameter. We have previously suggested that procollagen is transported from the ER to the next secretory organelle, the ER-Golgi intermediate compartment (ERGIC), in TANGO1-dependent interorganelle tunnels. In the theoretical model presented here, we suggest that intrinsically disordered domains of TANGO1 in the ER lumen induce an entropic contraction, which exerts a force that draws procollagen toward the ERES. Within this framework, molecular gradients of pH and/or HSP47 between the ER and ERGIC create a force in the order of tens of femto-Newtons. This force is substantial enough to propel procollagen from the ER at a speed of approximately 1 nm · s-1. This calculated speed and the quantities of collagen secreted are similar to its observed physiological secretion rate in fibroblasts, consistent with the proposal that ER export is the rate-limiting step for procollagen secretion. Hence, the mechanism we propose is theoretically adequate to explain how cells can utilize molecular gradients and export procollagens at a rate commensurate with physiological needs.


Asunto(s)
Colágeno , Procolágeno , Procolágeno/metabolismo , Transporte de Proteínas/fisiología , Colágeno/metabolismo , Transporte Biológico , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA