Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Anim Ecol ; 93(10): 1593-1605, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39268554

RESUMEN

Clarifying the effects of biodiversity on ecosystem stability in the context of global environmental change is crucial for maintaining ecosystem functions and services. Asynchronous changes between trophic levels over time (i.e. trophic community asynchrony) are expected to increase trophic mismatch and alter trophic interactions, which may consequently alter ecosystem stability. However, previous studies have often highlighted the stabilising mechanism of population asynchrony within a single trophic level, while rarely examining the mechanism of trophic community asynchrony between consumers and their food resources. In this study, we analysed the effects of population asynchrony within and between trophic levels on community stability under the disturbances of climate warming, fishery decline and de-eutrophication, based on an 18-year monthly monitoring dataset of 137 phytoplankton and 91 zooplankton in a subtropical lake. Our results showed that species diversity promoted community stability mainly by increasing population asynchrony both for phytoplankton and zooplankton. Trophic community asynchrony had a significant negative effect on zooplankton community stability rather than that of phytoplankton, which supports the match-mismatch hypothesis that trophic mismatch has negative effects on consumers. Furthermore, the results of the structural equation models showed that warming and top-down effects may simultaneously alter community stability through population dynamics processes within and between trophic levels, whereas nutrients act on community stability mainly through the processes within trophic levels. Moreover, we found that rising water temperature decreased trophic community asynchrony, which may challenge the prevailing idea that climate warming increases the trophic mismatch between primary producers and consumers. Overall, our study provides the first evidence that population and trophic community asynchrony have contrasting effects on consumer community stability, which offers a valuable insight for addressing global environmental change.


Asunto(s)
Cadena Alimentaria , Lagos , Fitoplancton , Dinámica Poblacional , Zooplancton , Zooplancton/fisiología , Fitoplancton/fisiología , Animales , Biodiversidad , Cambio Climático , China , Explotaciones Pesqueras
2.
Glob Chang Biol ; 29(12): 3271-3284, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924241

RESUMEN

At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity-stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.


Asunto(s)
Mariposas Diurnas , Ecosistema , Animales , Biodiversidad , Teorema de Bayes , Europa (Continente)
3.
Glob Chang Biol ; 27(16): 3765-3778, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34009702

RESUMEN

Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Aclimatación , Animales , Islandia , Dinámica Poblacional , Temperatura
4.
Am Nat ; 194(6): 794-806, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31738106

RESUMEN

Identifying stable coexistence in empirical systems is notoriously difficult. Here, we show how spatiotemporal structure and complex system dynamics can confound two commonly used stability metrics in empirical contexts: response to perturbation and invasion rate when rare. We use these metrics to characterize stable coexistence across a range of spatial and temporal scales for five simulated models in which the ability of species to coexist in the long term is known a priori and for an empirical old field successional time series. We term the resulting multivariate distribution of metrics a "stability fingerprint." In accordance with a wide range of classic and recent studies, our results demonstrate that no combination of empirically tractable metrics or measurements is guaranteed to "correctly" characterize coexistence. However, we also find that heuristic information from the stability fingerprint can be used to broadly characterize dynamic behavior and identify circumstances under which particular combinations of species are likely to persist. Moreover, stability fingerprints appear to be particularly well suited for matching potential theoretical models to observed dynamics. These findings suggest that it may be prudent to shift the focus of empirical stability analysis away from quantifying single measures of stability and toward more heuristic, multivariate characterizations of community dynamics.


Asunto(s)
Ecosistema , Dinámica Poblacional , Análisis Espacio-Temporal , Simulación por Computador , Magnoliopsida
5.
J Anim Ecol ; 88(10): 1575-1586, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31257583

RESUMEN

The potential for climate change and temperature shifts to affect community stability remains relatively unknown. One mechanism by which temperature may affect stability is by altering trophic interactions. The functional response quantifies the per capita resource consumption by the consumer as a function of resource abundance and is a suitable framework for the description of nonlinear trophic interactions. We studied the effect of temperature on a ciliate predator-prey pair (Spathidium sp. and Dexiostoma campylum) by estimating warming effects on the functional response and on the associated conversion efficiency of the predator. We recorded prey and predator dynamics over 24 hr and at three temperature levels (15, 20 and 25°C). To these data, we fitted a population dynamic model including the predator functional response, such that the functional response parameters (space clearance rate, handling time and density dependence of space clearance rate) were estimated for each temperature separately. To evaluate the ecological significance of temperature effects on the functional response parameters, we simulated predator-prey population dynamics. We considered the predator-prey system to be destabilized, if the prey was driven extinct by the predator. Effects of increased temperature included a transition of the functional response from a Type III to a Type II and an increase of the conversion efficiency of the predator. The simulated population dynamics showed a destabilization of the system with warming, with greater risk of prey extinction at higher temperatures likely caused by the transition from a Type III to a Type II functional response. Warming-induced shifts from a Type III to II are not commonly considered in modelling studies that investigate how population dynamics respond to warming. Future studies should investigate the mechanism and generality of the effect we observed and simulate temperature effects in complex food webs including shifts in the type of the functional response as well as consider the possibility of a temperature-dependent conversion efficiency.


Asunto(s)
Cadena Alimentaria , Conducta Predatoria , Animales , Cambio Climático , Dinámica Poblacional , Temperatura
6.
Ecol Lett ; 21(11): 1681-1692, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30141246

RESUMEN

Foundation species enhance biodiversity and multifunctionality across many systems; however, whether foundation species patch configuration mediates their ecological effects is unknown. In a 6-month field experiment, we test which attributes of foundation species patch configuration - i.e. patch size, total patch area, perimeter, area-perimeter ratio, or connectivity - control biodiversity, stability and multifunctionality by adding a standardised density of mussel foundation species in patches of 1, 5, 10, 30, 60, 90 or 180 individuals to a southeastern US salt marsh. Over 67% of response variables increased with clustering of mussels, responses that were driven by increases in area-perimeter ratio (33%), decreases in perimeter (29%), or increases in patch size (5%), suggesting sensitivity to external stressors and/or dependence on foundation species-derived niche availability and segregation. Thus, mussel configuration - by controlling the relative distribution of multidimensional patch interior and edge niche space - critically modulates this foundation species' effects on ecosystem structure, stability and function.


Asunto(s)
Biodiversidad , Poaceae , Humedales , Ecología , Ecosistema , Humanos
7.
J Theor Biol ; 428: 98-105, 2017 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-28579427

RESUMEN

Recent efforts in controlling mosquito-borne diseases focus on biocontrol strategies that incapacitate pathogens inside mosquitoes by altering the mosquito's microbiome. A case in point is the introduction of Wolbachia into natural mosquito populations in order to eliminate Dengue virus. However, whether this strategy can successfully control vector-borne diseases is debated; particularly, how artificial infection affects population dynamics of hosts remains unclear. Here, we show that natural Wolbachia infections are associated with unstable mosquito population dynamics by contrasting Wolbachia-infected versus uninfected cage populations of the Asian tiger mosquito (Aedes albopictus). By analyzing weekly data of adult mosquito abundances, we found that the variability of the infected populations is significantly higher than that of the uninfected. The elevated population variability is explained by increased instability in dynamics, as quantified by system nonlinearity (i.e., state-dependence). In addition, predictability of infected populations is substantially lower. A mathematical model analysis suggests that Wolbachia may alter mosquito population dynamics by modifying larval competition of hosts. These results encourage examination for effects of artificial Wolbachia establishment on mosquito populations, because an enhancement of population variability with reduced predictability could pose challenges in management. Our findings have implications for application of microbiome alterations in biocontrol programs.


Asunto(s)
Culicidae/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Wolbachia/crecimiento & desarrollo , Aedes/microbiología , Animales , Modelos Biológicos , Dinámicas no Lineales , Dinámica Poblacional , Factores de Tiempo
8.
Ecol Lett ; 19(6): 668-78, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27094829

RESUMEN

The stability of consumer-resource systems can depend on the form of feeding interactions (i.e. functional responses). Size-based models predict interactions - and thus stability - based on consumer-resource size ratios. However, little is known about how interaction contexts (e.g. simple or complex habitats) might alter scaling relationships. Addressing this, we experimentally measured interactions between a large size range of aquatic predators (4-6400 mg over 1347 feeding trials) and an invasive prey that transitions among habitats: from the water column (3D interactions) to simple and complex benthic substrates (2D interactions). Simple and complex substrates mediated successive reductions in capture rates - particularly around the unimodal optimum - and promoted prey population stability in model simulations. Many real consumer-resource systems transition between 2D and 3D interactions, and along complexity gradients. Thus, Context-Dependent Scaling (CDS) of feeding interactions could represent an unrecognised aspect of food webs, and quantifying the extent of CDS might enhance predictive ecology.


Asunto(s)
Ecosistema , Cadena Alimentaria , Modelos Biológicos , Conducta Predatoria/fisiología , Anfípodos , Animales , Crustáceos/fisiología , Peces/fisiología , Dinámica Poblacional
9.
Med Vet Entomol ; 30(2): 235-40, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26744174

RESUMEN

The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success.


Asunto(s)
Aedes/genética , Variación Genética , Insectos Vectores/genética , Aedes/fisiología , África del Sur del Sahara , Animales , Brasil , Insectos Vectores/fisiología , México , Dinámica Poblacional , Puerto Rico , Queensland , Estaciones del Año , Estados Unidos
10.
Proc Biol Sci ; 282(1812): 20151126, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26224705

RESUMEN

How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment.


Asunto(s)
Biota , Ambiente , Cadena Alimentaria , Modelos Biológicos , Dinámica Poblacional
11.
J Theor Biol ; 356: 163-73, 2014 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-24801858

RESUMEN

Over the last two decades, several methods have been proposed for stabilizing the dynamics of biological populations. However, these methods have typically been evaluated using different population dynamics models and in the context of very different concepts of stability, which makes it difficult to compare their relative efficiencies. Moreover, since the dynamics of populations are dependent on the life-history of the species and its environment, it is conceivable that the stabilizing effects of control methods would also be affected by such factors, a complication that has typically not been investigated. In this study, we compare six different control methods with respect to their efficiency at inducing a common level of enhancement (defined as 50% increase) for two kinds of stability (constancy and persistence) under four different life-history/environment combinations. Since these methods have been analytically studied elsewhere, we concentrate on an intuitive understanding of realistic simulations incorporating noise, extinction probability and lattice effect. We show that for these six methods, even when the magnitude of stabilization attained is the same, other aspects of the dynamics like population size distribution can be very different. Consequently, correlated aspects of stability, like the amount of persistence for a given degree of constancy stability (and vice versa) or the corresponding effective population size (a measure of resistance to genetic drift) vary widely among the methods. Moreover, the number of organisms needed to be added or removed to attain similar levels of stabilization also varies for these methods, a fact that has economic implications. Finally, we compare the relative efficiencies of these methods through a composite index of various stability related measures. Our results suggest that Lower Limiter Control (LLC) seems to be the optimal method under most conditions, with the recently proposed Adaptive Limiter Control (ALC) being a close second.


Asunto(s)
Modelos Biológicos , Dinámica Poblacional , Animales , Humanos
12.
Sci Total Environ ; 879: 163033, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966843

RESUMEN

Under ongoing global change, whether grassland ecosystems can maintain their functions and services depends largely on their stability. However, how ecosystem stability responds to increasing phosphorus (P) inputs under nitrogen (N) loading remains unclear. We conducted a 7-year field experiment to examine the influence of elevated P inputs (ranging from 0 to 16 g P m-2 yr-1) on the temporal stability of aboveground net primary productivity (ANPP) under N addition of 5 g N·m-2·yr-1 in a desert steppe. We found that under N loading, P addition altered plant community composition but did not significantly affect ecosystem stability. Specifically, with the increase in the P addition rate, declines in the relative ANPP of legume could be compensated for by an increase in the relative ANPP of grass and forb species, yet community ANPP and diversity remained unchanged. Notably, the stability and asynchrony of dominant species tended to decrease with increasing P addition, and a significant decrease in legume stability was observed at high P rates (>8 g P m-2 yr-1). Moreover, P addition indirectly affected ecosystem stability by multiple pathways (e.g., species diversity, species asynchrony, dominant species asynchrony, and dominant species stability), as revealed by structural equation modeling results. Our results suggest that multiple mechanisms work concurrently in stabilizing the ecosystem stability of desert steppes and that increasing P inputs may not alter desert steppe ecosystem stability under future N-enriched scenarios. Our results will help improve the accuracy of vegetation dynamics assessments in arid ecosystems under future global change.


Asunto(s)
Ecosistema , Nitrógeno , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Verduras/metabolismo , Pradera
13.
Sci Total Environ ; 838(Pt 3): 156060, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35618129

RESUMEN

Increased nitrogen (N) deposition is known to reduce the ecosystem stability, while the underlying mechanisms are still controversial. We conducted an 8-year multi-level N addition experiment in a temperate semi-arid grassland to identify the mechanisms (biodiversity, species asynchrony, population stability and dominant species stability) driving the N-induced loss of temporal stability of aboveground net primary productivity (ANPP). We found that N addition decreased ecosystem, population, and dominant species stability; decreased species richness and phylogenetic diversity; increased species dominance; but had nonsignificant effects on community-wide species asynchrony. Structural equation model revealed that N-induced loss of ecosystem stability was mainly driven by the loss of dominant species stability and the reduction in population stability. Moreover, species relative instability was negatively related with species relative production and the slopes increase with N addition, indicating that N addition weakened the stabilizing effect of dominant species on ecosystem function. Overall, our results highlight that the dominant species control the temporal stability of ANPP in grassland ecosystem under N addition, and support 'dominance management' as an effective strategy for conserving ecosystem functioning in grassland under N deposition.


Asunto(s)
Ecosistema , Nitrógeno , Biodiversidad , Pradera , Filogenia
14.
Ecology ; 101(1): e02893, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31529700

RESUMEN

The extent to which populations in nature are regulated by density-dependent processes is unresolved. While experiments increasingly find evidence of strong density dependence, unmanipulated population time series yield much more ambiguous evidence of regulation, especially when accounting for effects of observation error. Here, we reexamine the evidence for density dependence in time series of population sizes in nature, by conducting an aggregate analysis of the populations in the Global Population Dynamics Database (GPDD). First, following the conventional approach, we fit a density-dependent and a density-independent variant of the Gompertz state-space model to each time series. Then, we conduct an aggregate analysis of the entire database by considering two random-effects density-dependent models that leverage information across data sets. When individual time series are tested independently, we find very little evidence for density dependence. However, in the aggregate, we find very strong evidence for density dependence, even though, paradoxically, estimated strengths of density dependence for individual time series tend to be weaker than when each individual time series is analyzed independently. Furthermore, a hierarchical model that accounts for taxonomic variation in the strength of density dependence reveals that density dependence is consistently stronger in insects and fish than in birds and mammals. Our findings resolve apparent inconsistencies between observational and experimental studies of density dependence by revealing that the observational record does indeed contain strong support for the hypothesis that density dependence is widespread in nature.


Asunto(s)
Aves , Modelos Biológicos , Animales , Peces , Densidad de Población , Dinámica Poblacional
15.
Trends Ecol Evol ; 29(6): 326-35, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24792356

RESUMEN

The first generation of research on animal social networks was primarily aimed at introducing the concept of social networks to the fields of animal behaviour and behavioural ecology. More recently, a diverse body of evidence has shown that social fine structure matters on a broader scale than initially expected, affecting many key ecological and evolutionary processes. Here, we review this development. We discuss the effects of social network structure on evolutionary dynamics (genetic drift, fixation probabilities, and frequency-dependent selection) and social evolution (cooperation and between-individual behavioural differences). We discuss how social network structure can affect important coevolutionary processes (host-pathogen interactions and mutualisms) and population stability. We also discuss the potentially important, but poorly studied, role of social network structure on dispersal and invasion. Throughout, we highlight important areas for future research.


Asunto(s)
Conducta Animal , Evolución Biológica , Conducta Social , Animales , Interacciones Huésped-Patógeno , Dinámica Poblacional , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA