RESUMEN
Leptomeningeal dissemination (LMD) is the primary cause of treatment failure in children with Group 3 medulloblastoma (MB). Building on our previous work on protein phosphatase 2A (PP2A) activation in MB, here we present pre-clinical and molecular data on the effects of two novel classes of PP2A activators on disease processes of LMD in Group 3 MB. The PP2A activators employed in this study are ATUX-6156 and ATUX-6954 (diarylmethylcycloamine sulfonylureas), and ATUX-1215 and ATUX-5800 (diarylmethyl-4-aminotetrahydropyran-sulfonamides). Treatment with these compounds led to suppression of the endogenous PP2A inhibitor, cancerous inhibitor of PP2A (CIP2A), enhanced phosphatase activity (10-60%), and reduced MB viability, migration, and invasion, prerequisites for MB cells to access the cerebrospinal fluid, affecting the initiation stage of LMD. PP2A activator treatment of MB cells led to apoptosis mediated via caspase 9/PARP signaling due to decreased phosphorylation of Bad, impeding the dispersal stage of LMD. Cell proliferation and LMD-driving cellular traits and molecules pertinent to the third stage, colonization, were also affected. Treatment with ATUX-1215 or ATUX-5800 prevented LMD in an intraventricular murine model of MB, possibly mediated by disruption of the CCL2-CCR2 axis by altered NF-kB phosphorylation via disrupted AKT signaling. The present investigation offers proof-of-principle data for PP2A-based reactivation therapy for Group 3 MB and provides the first indications that PP2A reactivation may challenge the current paradigm in targeting the 3-stage process of MB LMD. Further investigations of PP2A activators are warranted as these compounds may prove beneficial as therapeutics for MB.
RESUMEN
Candida albicans (C. albicans) biofilm infections are quite difficult to manage due to their resistance against conventional antifungal drugs. To address this issue, there is a desperate need for new therapeutic drugs. In the present study, a green and efficient protocol has been developed for the synthesis of 2-amino-4H-pyran-3-carbonitrile scaffolds 4a-i, 6a-j, and 8a-g by Knoevenagel-Michael-cyclocondensation reaction between aldehydes, malononitrile, and diverse enolizable C-H activated acidic compounds using guanidinium carbonate as a catalyst either under grinding conditions or by stirring at room temperature. This protocol is operationally simple, rapid, inexpensive, has easy workup and column-free purification. A further investigation of the synthesized compounds was conducted to examine their antifungal potential and their ability to inhibit the growth and development of biofilm-forming yeasts like fungus C. albicans. According to our findings, 4b, 4d, 4e, 6e, 6f, 6g, 6i, 8c, 8d, and 8g were found to be active and potential inhibitors for biofilm infection causing C. albicans. The inhibition of biofilm by active compounds were observed using field emission scanning electron microscopy (FESEM). Biofilm inhibiting compounds were also tested for in vitro toxicity by using 3T3-L1 cell line, and 4b, 6e, 6f, 6g, 6i, 8c, and 8d were found to be biocompatible. Furthermore, the in silico ADME descriptors revealed drug-like properties with no violation of Lipinski's rule of five. Hence, the result suggested that synthesized derivatives could serve as a useful aid in the development of novel antifungal compounds for the treatment of fungal infections and virulence in C. albicans.
Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/síntesis química , Animales , Ratones , Piranos/farmacología , Piranos/síntesis química , Piranos/química , Nitrilos/farmacología , Nitrilos/síntesis química , Tecnología Química Verde , Supervivencia Celular/efectos de los fármacosRESUMEN
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Asunto(s)
Patulina , Penicillium , Patulina/metabolismo , Patulina/farmacología , Aspergillus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo , Penicillium/metabolismoRESUMEN
Anthocyanins (ACNs) are secondary metabolites found in plants. Due to their impressive biological activities, ACNs have gained significant popularity and extensive application within the food, pharmaceutical, and nutraceutical industries. A derivative of ACNs: pyranoanthocyanins (PACNs) possesses more stable properties and interesting biological activities. However, conventional methods for the production of ACNs, including chemical synthesis and plant extraction, involve organic solvents. Microbial synthesis of ACNs from renewable biomass, such as amino acids or flavonoids, is considered a sustainable and environmentally friendly method for large-scale production of ACNs. Recently, the construction of microbial cell factories (MCFs) for the efficient biosynthesis of ACNs and PACNs has attracted much attention. In this review, we summarize the cases of microbial synthesis of ACNs, and analyze the bottlenecks in reconstructing the metabolic pathways for synthesizing PACNs in microorganisms. Consequently, there is an urgent need to investigate the mechanisms behind the development of MCFs for PACNs synthesis. Such research also holds significant promise for advancing the production of food pigments. Meanwhile, we propose potential solutions to the bottleneck problem based on metabolic engineering and enzyme engineering. Finally, the development prospects of natural food and biotechnology are discussed.
RESUMEN
Dehydroacetic acid (DHA) was utilized as a fundamental precursor in the synthesis of novel pyrano [4,3-b] pyran and pyrano [2,3-b] pyridine systems. Whereas, a new series of fused polyheteronuclear systems was achieved through the reaction of DHA with active methylene compounds such as malononitrile and pyrazolone. Whereas, the treatment of DHA 1 with cyclic ketones involving cyclohexanone and cyclododecanone afforded annulated tricyclic systemâ 6 and spiro hybrid moleculeâ 7. Also, the reaction of DHA 1 with cyanoacetamide derivativesâ 8 and 11 yielded their corresponding novel pyrano [2,3-b] pyridine-6-carbonitrile frameworksâ 9 and 12, respectively. Also, inâ silico predictive theoretical molecular docking studies for bioactive synthesized scaffolds against both HER2 and 6BBP displayed an optimistic result for compounds 2 b, 5, 9, and 12 highlighting their expediency as up-and-coming candidates for future preclinical trials. Additionally, all compounds were assessed as antibacterial agents against various types of four candidates of bacteria in the presence of ampicillin as a reference. Notably, compounds 6, 7, and 12 showed promising antibacterial potential against Bacillus subtilis with activity indexes (69.6, 91.3, and 82.6 %), respectively.
Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Piridonas , Humanos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Teoría Funcional de la Densidad , Estructura Molecular , Piranos/química , Piranos/farmacología , Piranos/síntesis química , Piridonas/química , Piridonas/farmacología , Piridonas/síntesis química , Relación Estructura-Actividad , Acetatos/química , Acetatos/farmacologíaRESUMEN
Skin yellowness is a hallmark of dull or unhealthy skin, particularly among Asians. Previous research has indicated a link between skin glycation and skin yellowness. However, the specific glycated chemicals contributing to yellowish skin appearance have not been identified yet. Using HPLC-PDA-HRMS coupled with native and artificially glycated human epidermal explant skin, we identified intensely yellow colored glycated chromophores "(1R, 8aR) and (1S, 8aR)-4-(2-furyl)-7-[(2-furyl)-methylidene]-2-hydroxy-2H,7H,8AH-pyrano-[2,3-B]-pyran-3-one" (abbreviated as AGEY) from human skin samples for the first time. The abundance of AGEY was strongly correlated with skin yellowness in the multiple skin explant tissues. We further confirmed the presence of AGEY in cultured human keratinocytes and 3D reconstructed human epidermal (RHE) models. Additionally, we demonstrated that a combination of four cosmetic compounds with anti-glycation properties can inhibit the formation of AGEY and reduce yellowness in the RHE models. In conclusion, we have identified specific advanced glycation end products with an intense yellow color, namely AGEY, in human skin tissues for the first time. The series of study results highlighted the significant contribution of AGEY to the yellow appearance of the skin. Furthermore, we have identified a potential cosmetic solution to mitigate AGEY formation, leading to a reduction in yellowness in the in vitro RHE models.
Asunto(s)
Productos Finales de Glicación Avanzada , Queratinocitos , Piel , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Piel/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Glicosilación , Epidermis/metabolismo , Cosméticos/química , Femenino , Adulto , Pigmentación de la Piel/efectos de los fármacosRESUMEN
This work investigated the substitution of the aldehyde with a pyran functional group in D-π-aldehyde dye to improve cell performance. This strategy was suggested by recent work that synthesized D-π-aldehyde dye, which achieved a maximum absorption wavelength that was only slightly off the threshold for an ideal sensitizer. Therefore, DFT and TD-DFT were used to investigate the effect of different pyran substituents to replace the aldehyde group. The pyran groups reduced the dye energy gap better than other known anchoring groups. The proposed dyes showed facile intermolecular charge transfer through the localization of HOMO and LUMO orbitals on the donor and acceptor parts, which promoted orbital overlap with the TiO2 surface. The studied dyes have HOMO and LOMO energy levels that could regenerate electrons from redox potential electrodes and inject electrons into the TiO2 conduction band. The lone pairs of oxygen atoms in pyran components act as nucleophile centers, facilitating adsorption on the TiO2 surface through their electrophile atoms. Pyrans increased the efficacy of dye sensitizers by extending their absorbance range and causing the maximum peak to redshift deeper into the visible region. The effects of the pyran groups on photovoltaic properties such as light harvesting efficiency (LHE), free energy change of electron injection, and dye regeneration were investigated and discussed. The adsorption behaviors of the proposed dyes on the TiO2 (1 1 0) surface were investigated by means of Monte Carlo simulations. The calculated adsorption energies indicates that pyran fragments, compared to the aldehyde in the main dye, had a greater ability to induce the adsorption onto the TiO2 substrate.
RESUMEN
Activatable fluorescent and chemiluminescent dyes with near-infrared emission have indispensable roles in the fields of bioimaging, molecular prodrugs, and phototheranostic agents. As one of the most popular fluorophore scaffolds, the dicyanomethylene-4H-pyran scaffold has been applied to fabricate a large number of versatile activatable optical dyes for analytes detection and diseases diagnosis and treatment by virtue of its high photostability, large Stokes shift, considerable two-photon absorption cross-section, and structural modifiability. This review discusses the molecular design strategies, recognition mechanisms, and both in vitro and in vivo bio-applications (especially for diagnosis and therapy of tumors) of activatable dicyanomethylene-4H-pyran dyes. The final section describes the current shortcomings and future development prospects of this topic.
Asunto(s)
Colorantes Fluorescentes , Medicina de Precisión , Colorantes Fluorescentes/química , Piranos/química , Espectroscopía Infrarroja Corta/métodos , Imagen ÓpticaRESUMEN
In this work, we describe the synthesis of halogenated pyran analogues of á´ -talose using a halo-divergent strategy from known 1,6-anhydro-2,3-dideoxy-2,3-difluoro-ß-á´ -mannopyranose. In solution and in the solid-state, all analogues adopt standard 4 C 1-like conformations despite 1,3-diaxial repulsion between the F2 and the C4 halogen. Moreover, the solid-state conformational analysis of halogenated pyrans reveals deviation in the intra-annular torsion angles arising from repulsion between the axial fluorine at C2 and the axial halogen at C4, which increases with the size of the halogen at C4 (F < Cl < Br < I). Crystal packing arrangements of pyran inter-halides show hydrogen bond acceptor and nonbonding interactions for the halogen at C4. Finally, density functional theory (DFT) calculations corroborate the preference of talose analogues to adopt a 4 C 1-like conformation and a natural bonding orbital (NBO) analysis demonstrates the effects of hyperconjugation from C-F antibonding orbitals.
RESUMEN
A one-pot synthesis of 3-alkoxycarbonyl-3,4-dihydro-2H-pyran-2-ones from intermolecular hetero-Diels-Alder reaction between vinylidene Melderum's acids and dialkyl acetylenedicarboxylates, in the presence of simple alcohols at room temperature, is described. The advantages of this procedure are good yields, short reaction time, and easy workup. Antioxidant properties of four derivatives of these 3,4-dihydro-2H-pyran-2-ones, together with their antimicrobial activities, are investigated.
Asunto(s)
Antioxidantes , Piranos , Reacción de CicloadiciónRESUMEN
Clarireedia spp. is a destructive phytopathogenic fungus that causes turf dollar spot of bent-grass, leading to widespread lawn death. In this study, we explored the antifungal capability of 6-pentyl-2H-pyran-2-one (6PP), a natural metabolite volatilized by microorganisms, which plays an important role in the biological control of turfgrass dollar spot. However, the mechanisms by which 6PP inhibits Clarireedia jacksonii remain unknown. In the present study, C. jacksonii mycelial growth was inhibited by the 6PP treatment and the 6PP treatment damaged cell membrane integrity, causing an increase in relative conduc-tivity. Furthermore, physiological and biochemistry assay showed that 6PP treatment can enhance reactive oxygen species (ROS) levels, malondialdehyde (MDA) content obviously increased with 6PP exposure, increased alchohol dehydrogenase (ADH) and depleted acetalde-hyde dehydrogenase (ALDH), and activated the activities of many antioxidant enzymes in C. jacksonii. Gen Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that some genes in C. jacksonii after 6PP treatment related to integrity of the cell wall and membrane, and oxidative stress were significantly downregulated. It is worth mentioning that the fatty acid degradation pathway is significantly upregulated, with an increase in ATP content and ATP synthase activity, which may promote fungal cell apoptosis. Moreover, we found that the expression of ABC transporters, and glutathione metabolism encoding genes were increased to respond to external stimuli. Taken together, these findings revealed the potential antifungal mechanism of 6PP against Clarireedia spp., which also provides a theoretical basis for the commercial utilization of 6PP as a green pesticide in the future.
Asunto(s)
Antifúngicos , Perfilación de la Expresión Génica , Antifúngicos/farmacología , Oxidorreductasas , Adenosina Trifosfato , TranscriptomaRESUMEN
Three new compounds, (8S)-2,2,7,7-tetramethyl-8-hydroxymethyl-6H-indanone-(2,3-b)-2H-pyran-9-O-ß-d-glucopyranoside (1), (7S,8S)-2,2,7-trimethyl-7-hydroxymethyl-8-hydroxy-2,7,8,9-tetrahydro-6H-naphtho-(2,3-b)-pyran-10-O-ß-d-glucopyranoside (2), 1-deoxy-1-(3,4-dihydro-7-methyl-2,3-dioxo-1(2H)-quinoxalinyl)pentitol-6-carboxylic acid (3), as well as six known compounds (4-9), were obtained. Their structures were determined by spectroscopy and comparison with NMR data of related compounds. Absolute configurations were determined by ECD spectroscopy. The hepatoprotective effects of these compounds were investigated on HepG2 and LO2 cells lines; compounds 1, 2, and 4 displayed moderate activity.
Asunto(s)
Glicósidos , Estructura Molecular , Glicósidos/química , Línea Celular , Espectroscopía de Resonancia MagnéticaRESUMEN
Pyran is a heterocyclic group containing oxygen that possesses a variety of pharmacological effects. Pyran is also one of the most prevalent structural subunits in natural products, such as xanthones, coumarins, flavonoids, benzopyrans, etc. Additionally demonstrating the neuroprotective properties of pyrans is the fact that this heterocycle has recently attracted the attention of scientists worldwide. Alzheimer's Disease (AD) treatment and diagnosis are two of the most critical research objectives worldwide. Increased amounts of extracellular senile plaques, intracellular neurofibrillary tangles, and a progressive shutdown of cholinergic basal forebrain neuron transmission are often related with cognitive impairment. This review highlights the various pyran scaffolds of natural and synthetic origin that are effective in the treatment of AD. For better understanding synthetic compounds are categorized as different types of pyran derivatives like chromene, flavone, xanthone, xanthene, etc. The discussion encompasses both the structure-activity correlations of these compounds as well as their activity against AD. Because of the intriguing actions that were uncovered by these pyran-based scaffolds, there is no question that they are at the forefront of the search for potential medication candidates that could treat Alzheimer's disease.
RESUMEN
BACKGROUND: Patients with heart failure (HF) and reduced ejection fraction will experience multiple hospitalizations for heart failure during the course of their disease. We assessed the efficacy of dapagliflozin on reducing the rate of total (ie, first and repeat) hospitalizations for heart failure in the DAPA-HF trial (Dapagliflozin and Prevention of Adverse-Outcomes in Heart Failure). METHODS: The total number of HF hospitalizations and cardiovascular deaths was examined by using the proportional-rates approach of Lei-Wei-Yang-Ying and a joint frailty model for each of recurrent HF hospitalizations and time to cardiovascular death. Variables associated with the risk of recurrent hospitalizations were explored in a multivariable Lei-Wei-Yang-Ying model. RESULTS: Of 2371 participants randomly assigned to placebo, 318 experienced 469 hospitalizations for HF; of 2373 assigned to dapagliflozin, 230 patients experienced 340 admissions. In a multivariable model, factors associated with a higher risk of recurrent HF hospitalizations included higher heart rate, higher N-terminal pro-B-type natriuretic peptide, and New York Heart Association class. In the Lei-Wei-Yang-Ying model, the rate ratio for the effect of dapagliflozin on recurrent HF hospitalizations or cardiovascular death was 0.75 (95% CI, 0.65-0.88), P=0.0002. In the joint frailty model, the rate ratio for total HF hospitalizations was 0.71 (95% CI, 0.61-0.82), P<0.0001, whereas, for cardiovascular death, the hazard ratio was 0.81 (95% CI, 0.67-0.98), P=0.0282. CONCLUSIONS: Dapagliflozin reduced the risk of total (first and repeat) HF hospitalizations and cardiovascular death. Time-to-first event analysis underestimated the benefit of dapagliflozin in HF and reduced ejection fraction. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03036124.
Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Glucósidos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Anciano , Compuestos de Bencidrilo/farmacología , Femenino , Glucósidos/farmacología , Hospitalización , Humanos , Masculino , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacologíaRESUMEN
Glucocorticoid induced osteoporosis (GIOP) is the second most leading cause of osteoporosis. We have identified a compound, a benzofuran pyran hybrid compound 4e that has osteogenic potential and we wanted to assess its efficacy in GIOP in male mice. We assessed the effect of dexamethasone and compound 4e on primary osteoblasts using various cell based and immunofluorescence assays. For in vivo studies we administered methylprednisolone and compound 4e as a prophylactic measure in male Balb/c mice for 28 days and then evaluated the effect on bone microarchitecture by microCT, bone formation by histology along with clinically relevant bone markers. Compound 4e preserved osteoblast differentiation as evident by higher ALP positive cells and mineralization in compound treated groups. Compound 4e also increased the expression of osteogenic genes. This compound guarded ß-catenin expression both in vitro and in vivo as confirmed by western blot and immunofluorescence assays. This led to the preservation of bone microarchitecture and cortical thickness at 2.5 mg kg-1 and 5 mg kg-1 doses. Further compound 4e enhanced bone formation rate and regulated osteocyte death. The osteogenic potential of compound 4e was reflected by an increased level of serum marker osteocalcin and decreased levels of SOST and CTX-I. Overall, Compound 4e is able to overcome the catabolic effect of dexamethasone on bone by targeting the canonical WNT/ß-catenin signaling as evidenced by both in vitro and in vivo studies.
Asunto(s)
Benzofuranos , Osteoporosis , Animales , Apoptosis , Benzofuranos/farmacología , Diferenciación Celular , Glucocorticoides/metabolismo , Masculino , Ratones , Osteoblastos , Osteogénesis , Osteoporosis/inducido químicamente , Osteoporosis/diagnóstico por imagen , Osteoporosis/tratamiento farmacológico , Piranos/farmacología , Vía de Señalización Wnt , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
BACKGROUND: The promotion of plant growth and suppression of plant disease using beneficial microorganisms is considered an alternative to the application of chemical fertilizers or pesticides in the field. RESULTS: A coconut-scented antagonistic Trichoderma strain LZ42, previously isolated from Ganoderma lucidum-cultivated soil, was investigated for biostimulatory and biocontrol functions in tomato seedlings. Morphological and phylogenetic analyses suggested that strain LZ42 is closely related to T. atroviride. Tomato seedlings showed increased aerial and root dry weights in greenhouse trials after treatment with T. atroviride LZ42 formulated in talc, indicating the biostimulatory function of this fungus. T. atroviride LZ42 effectively suppressed Fusarium wilt disease in tomato seedlings, with an 82.69% control efficiency, which is similar to that of the carbendazim treatment. The volatile organic compounds (VOCs) emitted by T. atroviride LZ42 were found to affect the primary root growth direction and promote the root growth of tomato seedlings in root Y-tube olfactometer assays. The fungal VOCs from T. atroviride LZ42 were observed to significantly inhibit F. oxysporum in a sandwiched Petri dish assay. SPME-GC-MS analysis revealed several VOCs emitted by T. atroviride LZ42; the dominant compound was tentatively identified as 6-pentyl-2H-pyran-2-one (6-PP). The VOC 6-PP exhibited a stronger ability to influence the direction of the primary roots of tomato seedlings but not the length of the primary roots. The inhibitory effect of 6-PP on F. oxysporum was the highest among the tested pure VOCs, showing a 50% effective concentration (EC50) of 5.76 µL mL-1 headspace. CONCLUSIONS: Trichoderma atroviride LZ42, which emits VOCs with multiple functions, is a promising agent for the biostimulation of vegetable plants and integrated management of Fusarium wilt disease.
Asunto(s)
Fusarium , Solanum lycopersicum , Trichoderma , Compuestos Orgánicos Volátiles , Hypocreales , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Plantones/microbiología , Compuestos Orgánicos Volátiles/farmacologíaRESUMEN
Regioselective [3+3] annulation of alkynyl ketimines with α-cyano ketones for the synthesis of polysubstituted 4H-pyran derivatives with a quaternary CF3 -containing center has been realized by using Cu(OAc)2 as the catalyst. The novel strategy tolerates a wide range of α-CF3 alkynyl ketimines and α-cyano ketones with both aryl and alkyl substitutents. A preliminary asymmetric synthesis of chiral product 3 has been attempted by using copper and chiral thiourea as the cocatalyst with excellent yields (86-99 %) and good enantioselectivities (71-78 % ee). Furthermore, product 3 aa could be obtained on a gram-scale reaction with 75 % yield and 99 % ee after recrystallization. Several products were also transformed readily. Control experiments indicate that the reaction involves a process with a base-catalyzed or chiral thiourea-catalyzed Mannich-type reaction followed by a highly regioselective copper-catalyzed ring-closing reaction on the alkynyl moiety in a 6-endo-dig fashion.
Asunto(s)
Cobre , Cetonas , Catálisis , Cobre/química , Cetonas/química , Estructura Molecular , Piranos/química , Estereoisomerismo , Tiourea/químicaRESUMEN
A synthetic method is described to produce some chromenone-pyrazole derivatives through a one-pot multicomponent reaction using SrFe12O19 as a magnetic catalyst. This method provides quite a few merits, including the use of an effective and easy separable nanocatalyst, high yields of products, short reaction time, and easy work-up. Two of the products showed fluorescence properties, which have detected mercury ions without any interference with other ions. They can detect a tiny amount of mercury ions, which were comparable with other chemosensors. The detection limit is 4 × 10-7 and 3 × 10-8 M, respectively, for the compound I and II, respectively, which were considered very low amounts. The effect of mercury on health and environmental pollution is essential in medical science.
Asunto(s)
Fluorescencia , Mercurio/análisis , Pirazoles/síntesis química , Catálisis , Colorantes Fluorescentes , Iones , Hierro/química , Límite de Detección , Magnetismo , Nanopartículas , Pirazoles/química , Espectrometría de FluorescenciaRESUMEN
Fifteen derivatives of spirooxindole-4H-pyran (A1-A15) were subjected to evaluate through intravenous infusion of pentylenetetrazole (PTZ)-induced epilepsy mouse models. Four doses of the compounds (20, 40, 60 and 80 mg/kg) were tested in comparison with diazepam as positive control. The resulted revealed that compounds A3 and A12 were the most active compounds and indicated significant anticonvulsant activity in the PTZ test. The tested compounds were prepared via a multicomponent reaction using graphene oxide (GO) based on the 1-(2-aminoethyl) piperazine as a novel heterogeneous organocatalyst. The prepared catalyst (GO-A.P.) was characterized using some diverse microscopic and spectroscopic procedures as well. The results showed high catalytic activity of the catalyst in the synthesis of spirooxindole-4H-pyran derivatives. The GO-A.P. catalyst was reusable at least for 5 times with no significant decrease in its catalytic action. In silico assessment of physicochemical activity of all compounds also were done which represented appropriate properties. Finally, molecular docking study was performed to achieve their binding affinities as γ-aminobutyric acid-A (GABA-A) receptor agonists as a plausible mechanism of their anticonvulsant action. Binding free energy values of the compounds represented strongly matched with biological activity.
Asunto(s)
Anticonvulsivantes , Convulsiones , Animales , Ratones , Anticonvulsivantes/química , Convulsiones/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Piranos , Pentilenotetrazol/efectos adversosRESUMEN
This review traces the road leading to the demonstration of a variety of kojic acid chemical and biological properties. It illustrates the biological effects of several synthetic kojic acid derivatives. Besides the main capability of kojic acid to inhibit the activity of tyrosinase in melanin synthesis, the focus is also on antibacterial, antifungal, antiproliferative, anti-inflammatory, and other biological activities of kojic acid derivatives, which may be applicable in medicine. Kojic acid derivatives manifest antiparasitic effects and its metal complexes may serve as potential radioprotective agents. Several kojic acid derivatives exert antidiabetic therapeutic potential as nuclear peroxisome proliferator-activated receptor alpha/gamma dual agonists. Kojic acid derivatives show pancreatic lipase inhibitor properties and some of its derivatives are cognate ligands for the histamine H3 receptor. Recently, "KojoTacrines" were reported as novel perspective preparations for the therapy of Alzheimer's disease. Kojic acid derivatives possess insecticidal or pesticidal activity, and they are powerful chelators, able to form iron(III) containing nanocomposites, as well. Toxicology and health aspects of products containing kojic acid produced by the cosmetic, health care, or food industry are summarized. Kojic acid thus represents a highly attractive molecule containing a skeleton that allows the synthesis of new kojic acid derivatives to create a novel class of effective and specific pharmaceutical preparations.