Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602742

RESUMEN

Prior investigations have established that the manipulation of neural activity has the potential to influence both rapid eye movement and non-rapid eye movement sleep. Low-intensity retinal ultrasound stimulation has shown effectiveness in the modulation of neural activity. Nevertheless, the specific effects of retinal ultrasound stimulation on rapid eye movement and non-rapid eye movement sleep, as well as its potential to enhance overall sleep quality, remain to be elucidated. Here, we found that: In healthy mice, retinal ultrasound stimulation: (i) reduced total sleep time and non-rapid eye movement sleep ratio; (ii) changed relative power and sample entropy of the delta (0.5-4 Hz) in non-rapid eye movement sleep; and (iii) enhanced relative power of the theta (4-8 Hz) and reduced theta-gamma coupling strength in rapid eye movement sleep. In Alzheimer's disease mice with sleep disturbances, retinal ultrasound stimulation: (i) reduced the total sleep time; (ii) altered the relative power of the gamma band during rapid eye movement sleep; and (iii) enhanced the coupling strength of delta-gamma in non-rapid eye movement sleep and weakened the coupling strength of theta-fast gamma. The results indicate that retinal ultrasound stimulation can modulate rapid eye movement and non-rapid eye movement-related neural activity; however, it is not beneficial to the sleep quality of healthy and Alzheimer's disease mice.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Entropía , Estado de Salud , Luz , Calidad del Sueño
2.
Proc Natl Acad Sci U S A ; 119(28): e2107797119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867767

RESUMEN

Declarative memory encoding, consolidation, and retrieval require the integration of elements encoded in widespread cortical locations. The mechanism whereby such "binding" of different components of mental events into unified representations occurs is unknown. The "binding-by-synchrony" theory proposes that distributed encoding areas are bound by synchronous oscillations enabling enhanced communication. However, evidence for such oscillations is sparse. Brief high-frequency oscillations ("ripples") occur in the hippocampus and cortex and help organize memory recall and consolidation. Here, using intracranial recordings in humans, we report that these ∼70-ms-duration, 90-Hz ripples often couple (within ±500 ms), co-occur (≥ 25-ms overlap), and, crucially, phase-lock (have consistent phase lags) between widely distributed focal cortical locations during both sleep and waking, even between hemispheres. Cortical ripple co-occurrence is facilitated through activation across multiple sites, and phase locking increases with more cortical sites corippling. Ripples in all cortical areas co-occur with hippocampal ripples but do not phase-lock with them, further suggesting that cortico-cortical synchrony is mediated by cortico-cortical connections. Ripple phase lags vary across sleep nights, consistent with participation in different networks. During waking, we show that hippocampo-cortical and cortico-cortical coripples increase preceding successful delayed memory recall, when binding between the cue and response is essential. Ripples increase and phase-modulate unit firing, and coripples increase high-frequency correlations between areas, suggesting synchronized unit spiking facilitating information exchange. co-occurrence, phase synchrony, and high-frequency correlation are maintained with little decrement over very long distances (25 cm). Hippocampo-cortico-cortical coripples appear to possess the essential properties necessary to support binding by synchrony during memory retrieval and perhaps generally in cognition.


Asunto(s)
Corteza Cerebral , Hipocampo , Consolidación de la Memoria , Recuerdo Mental , Sueño , Vigilia , Corteza Cerebral/fisiología , Electrocorticografía , Hipocampo/fisiología , Humanos , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Sueño/fisiología , Vigilia/fisiología
3.
Neurobiol Dis ; 194: 106472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479482

RESUMEN

BACKGROUND: Whether there is hypothalamic degeneration in Parkinson's disease (PD) and its association with clinical symptoms and pathophysiological changes remains controversial. OBJECTIVES: We aimed to quantify microstructural changes in hypothalamus using a novel deep learning-based tool in patients with PD and those with probable rapid-eye-movement sleep behavior disorder (pRBD). We further assessed whether these microstructural changes associated with clinical symptoms and free thyroxine (FT4) levels. METHODS: This study included 186 PD, 67 pRBD, and 179 healthy controls. Multi-shell diffusion MRI were scanned and mean kurtosis (MK) in hypothalamic subunits were calculated. Participants were assessed using Unified Parkinson's Disease Rating Scale (UPDRS), RBD Questionnaire-Hong Kong (RBDQ-HK), Hamilton Depression Rating Scale (HAMD), and Activity of Daily Living (ADL) Scale. Additionally, a subgroup of PD (n = 31) underwent assessment of FT4. RESULTS: PD showed significant decreases of MK in anterior-superior (a-sHyp), anterior-inferior (a-iHyp), superior tubular (supTub), and inferior tubular hypothalamus when compared with healthy controls. Similarly, pRBD exhibited decreases of MK in a-iHyp and supTub. In PD group, MK in above four subunits were significantly correlated with UPDRS-I, HAMD, and ADL. Moreover, MK in a-iHyp and a-sHyp were significantly correlated with FT4 level. In pRBD group, correlations were observed between MK in a-iHyp and UPDRS-I. CONCLUSIONS: Our study reveals that microstructural changes in the hypothalamus are already significant at the early neurodegenerative stage. These changes are associated with emotional alterations, daily activity levels, and thyroid hormone levels.


Asunto(s)
Enfermedad de Parkinson , Pindolol/análogos & derivados , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/complicaciones , Encuestas y Cuestionarios
4.
J Neurosci Res ; 102(4): e25325, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562056

RESUMEN

Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.


Asunto(s)
Electroencefalografía , Sueño de Onda Lenta , Humanos , Electroencefalografía/métodos , Sueño de Onda Lenta/fisiología , Sueño/fisiología , Fases del Sueño/fisiología , Polisomnografía
5.
Mov Disord ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962883

RESUMEN

BACKGROUND: Isolated rapid eye movement sleep behavioral disorder (iRBD) can precede neurodegenerative diseases. There is an urgent need for biomarkers to aid early intervention and neuroprotection. OBJECTIVE: The aim is to assess quantitative motor, cognitive, and brain magnetic resonance imaging (MRI) characteristics in iRBD patients. METHODS: Thirty-eight polysomnography-confirmed iRBD patients and 28 age- and sex-matched healthy controls underwent clinical, cognitive, and motor functional evaluations, along with brain MRI. Motor tasks included nine-hole peg test, five-times-sit-to-stand test, timed-up-and-go test, and 4-meter walking test with and without cognitive dual task. Quantitative spatiotemporal gait parameters were obtained using an optoelectronic system. Brain MRI analysis included functional connectivity (FC) of the main resting-state networks, gray matter (GM) volume using voxel-based morphometry, cortical thickness, and deep GM and brainstem volumes using FMRIB's Integrated Registration and Segmentation Tool and FreeSurfer. RESULTS: iRBD patients relative to healthy subjects exhibited a poorer performance during the nine-hole peg test and five-times-sit-to-stand test, and greater asymmetry of arm-swing amplitude and stride length variability during dual-task gait. Dual task significantly worsened the walking performance of iRBD patients more than healthy controls. iRBD patients exhibited nonmotor symptoms, and memory, abstract reasoning, and visuospatial deficits. iRBD patients exhibited decreased FC of pallidum and putamen within the basal ganglia network and occipital and temporal areas within the visuo-associative network, and a reduced volume of the supramarginal gyrus. Brain functional alterations correlated with gait changes. CONCLUSIONS: Subtle motor and nonmotor alterations were identified in iRBD patients, alongside brain structural and functional MRI changes. These findings may represent early signs of neurodegeneration and contribute to the development of predictive models for progression to parkinsonism. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

6.
Mov Disord ; 39(5): 814-824, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38456361

RESUMEN

BACKGROUND: Evidence regarding cortical atrophy patterns in Parkinson's disease (PD) with probable rapid eye movement sleep behavior disorder (RBD) (PD-pRBD) remains scarce. Cortical mean diffusivity (cMD), as a novel imaging biomarker highly sensitive to detecting cortical microstructural changes in different neurodegenerative diseases, has not been investigated in PD-pRBD yet. OBJECTIVES: The aim was to investigate cMD as a sensitive measure to identify subtle cortical microstructural changes in PD-pRBD and its relationship with cortical thickness (CTh). METHODS: Twenty-two PD-pRBD, 31 PD without probable RBD (PD-nonpRBD), and 28 healthy controls (HC) were assessed using 3D T1-weighted and diffusion-weighted magnetic resonance imaging on a 3-T scanner and neuropsychological testing. Measures of cortical brain changes were obtained through cMD and CTh. Two-class group comparisons of a general linear model were performed (P < 0.05). Cohen's d effect size for both approaches was computed. RESULTS: PD-pRBD patients showed higher cMD than PD-nonpRBD patients in the left superior temporal, superior frontal, and precentral gyri, precuneus cortex, as well as in the right middle frontal and postcentral gyri and paracentral lobule (d > 0.8), whereas CTh did not detect significant differences. PD-pRBD patients also showed increased bilateral posterior cMD in comparison with HCs (d > 0.8). These results partially overlapped with CTh results (0.5 < d < 0.8). PD-nonpRBD patients showed no differences in cMD when compared with HCs but showed cortical thinning in the left fusiform gyrus and lateral occipital cortex bilaterally (d > 0.5). CONCLUSIONS: cMD may be more sensitive than CTh displaying significant cortico-structural differences between PD subgroups, indicating this imaging biomarker's utility in studying early cortical changes in PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corteza Cerebral , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/fisiopatología , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Trastorno de la Conducta del Sueño REM/patología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos , Atrofia/patología , Pruebas Neuropsicológicas
7.
Mov Disord ; 39(1): 53-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37955157

RESUMEN

BACKGROUND: Reduced gastric motility in Parkinson's disease (PD) has been reported, but hardly any study exists in subjects with isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD), a specific prodrome of α-synucleinopathies. OBJECTIVES: We compared the gastric motility of 17 iRBD subjects with that of 18 PD subjects (15 drug naive, 3 early treated in defined off) and 15 healthy controls (HC) with real-time magnetic resonance imaging (rtMRI). METHODS: After overnight fasting, participants consumed a standardized breakfast and underwent a 3-T rtMRI of the stomach. Amplitude and velocity of the peristaltic waves were analyzed under blinded conditions. Gastric motility index (GMI) was calculated. The procedure was repeated in 12 of 17 iRBD subjects ~2.5 years later. Nine of these 12 iRBD subjects were hyposmic. RESULTS: In iRBD and PD subjects the amplitude of the peristaltic waves was significantly reduced compared with HCs (iRBD vs. HC: 8.7 ± 3.7 vs. 11.9 ± 4.1 mm, P = 0.0097; PD vs. HC: 6.8 ± 2.2 vs. 11.9 ± 4.1 mm, P = 0.0001). The amplitude in iRBD and PD subjects was decreased to the same extent. The GMI was reduced in only PD subjects (PD vs. HC: P = 0.0027; PD vs. iRBD: P = 0.0203). After ~2.5 years the amplitude in iRBD subjects did not significantly decrease further. CONCLUSION: The amplitude of the peristaltic waves was markedly reduced in iRBD, a prodrome of α-synucleinopathies. This reduction was similar to the extent observed already in manifest early PD. This finding implies that the α-synuclein pathology affects the innervation of the stomach already in the prodromal stage. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Trastorno de la Conducta del Sueño REM/patología , Estómago/patología , Sueño
8.
J Neural Transm (Vienna) ; 131(2): 141-148, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38110521

RESUMEN

Visuoperceptual dysfunction is common in Parkinson's disease (PD) and is also reported in its prodromal phase, isolated REM sleep behavior disorder (iRBD). We aimed to investigate color discrimination ability and complex visual illusions known as pareidolias in patients with iRBD and PD compared to healthy controls, and their associating clinical factors. 46 iRBD, 43 PD, and 64 healthy controls performed the Farnsworth-Munsell 100 hue test and noise pareidolia tests. Any relationship between those two visual functions and associations with prodromal motor and non-motor manifestations were evaluated, including MDS-UPDRS part I to III, Cross-Cultural Smell Identification Test, sleep questionnaires, and comprehensive neuropsychological assessment. iRBD and PD patients both performed worse on the Farnsworth-Munsell 100 hue test and had greater number of pareidolias compared to healthy controls. No correlations were found between the extent of impaired color discrimination and pareidolia scores in either group. In iRBD patients, pareidolias were associated with frontal executive dysfunction, while impaired color discrimination was associated with visuospatial dysfunction, hyposmia, and higher MDS-UPDRS-III scores. Pareidolias in PD patients correlated with worse global cognition, whereas color discrimination deficits were associated with frontal executive dysfunction. Color discrimination deficits and pareidolias are frequent but does not correlate with each other from prodromal to clinically established stage of PD. The different pattern of clinical associates with the two visual symptoms suggests that evaluation of both color and pareidolias may aid in revealing the course of neurodegeneration in iRBD and PD patients.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/complicaciones , Trastorno de la Conducta del Sueño REM/diagnóstico , Disfunción Cognitiva/complicaciones , Cognición , Pruebas Neuropsicológicas
9.
J Sleep Res ; : e14223, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650539

RESUMEN

Rapid eye movement sleep is associated with distinct changes in various biomedical signals that can be easily captured during sleep, lending themselves to automated sleep staging using machine learning systems. Here, we provide a perspective on the critical characteristics of biomedical signals associated with rapid eye movement sleep and how they can be exploited for automated sleep assessment. We summarise key historical developments in automated sleep staging systems, having now achieved classification accuracy on par with human expert scorers and their role in the clinical setting. We also discuss rapid eye movement sleep assessment with consumer sleep trackers and its potential for unprecedented sleep assessment on a global scale. We conclude by providing a future outlook of computerised rapid eye movement sleep assessment and the role AI systems may play.

10.
J Sleep Res ; : e14208, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606675

RESUMEN

While commonly treated as a uniform state in practice, rapid eye movement sleep contains two distinct microstructures-phasic (presence of rapid eye movement) and tonic (no rapid eye movement). This study aims to identify technical challenges during rapid eye movement sleep microstructure visual classification in patients with rapid eye movement sleep behaviour disorder, and to propose solutions to enhance reliability between scorers. Fifty-seven sleep recordings were randomly allocated into three subsequent batches (n = 10, 13 and 34) for scoring. To reduce single-centre bias, we recruited three raters/scorers, with each trained from a different institution. Two raters independently scored each 30-s rapid eye movement sleep into 10â€…× fSEM3-s phasic/tonic microstructures based on the AASM guidelines. The third rater acted as an "arbitrator" to resolve opposite opinions persisting during the revision between batches. Besides interrater differences in artefact rejection rate, interrater variance frequently occurred due to transitioning between microstructures and moderate-to-severe muscular/electrode artefact interference. To enhance interrater agreement, a rapid eye movement scoring schematic graph was developed, incorporating proxy electrode use, filters and cut-offs for microstructure transitioning. To assess potential effectiveness of the schematic graph proposed, raters were instructed to systematically apply it in scoring for the third batch. Of the 34 recordings, 27 reached a Cohen's kappa score above 0.8 (i.e. almost perfect agreement between raters), significantly improved from the prior batches (p = 0.0003, Kruskal-Wallis test). Our study illustrated potential solutions and guidance for challenges that may be encountered during rapid eye movement sleep microstructure classification.

11.
J Sleep Res ; : e14270, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960862

RESUMEN

Breathing and sleep state are tightly linked. The traditional approach to evaluation of breathing in rapid eye movement sleep has been to focus on apneas and hypopneas, and associated hypoxia or hypercapnia. However, rapid eye movement sleep breathing offers novel insights into sleep physiology and pathology, secondary to complex interactions of rapid eye movement state and cardiorespiratory biology. In this review, morphological analysis of clinical polysomnogram data to assess respiratory patterns and associations across a range of health and disease is presented. There are several relatively unique insights that may be evident by assessment of breathing during rapid eye movement sleep. These include the original discovery of rapid eye movement sleep and scoring of neonatal sleep, control of breathing in rapid eye movement sleep, rapid eye movement sleep homeostasis, sleep apnea endotyping and pharmacotherapy, rapid eye movement sleep stability, non-electroencephalogram sleep staging, influences on cataplexy, mimics of rapid eye movement behaviour disorder, a reflection of autonomic health, and insights into cardiac arrhythmogenesis. In summary, there is rich clinically actionable information beyond sleep apnea encoded in the respiratory patterns of rapid eye movement sleep.

12.
J Sleep Res ; : e14263, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867555

RESUMEN

Several brainstem, subcortical and cortical areas are involved in the generation of rapid eye movement (REM) sleep. The alteration of these structures as a result of a neurodegenerative process may therefore lead to REM sleep anomalies. REM sleep behaviour disorder is associated with nightmares, dream-enacting behaviours and increased electromyographic activity in REM sleep. Its isolated form is a harbinger of synucleinopathies such as Parkinson's disease or dementia with Lewy bodies, and neuroprotective interventions are advocated. This link might also be present in patients taking antidepressants, with post-traumatic stress disorder, or with a history of repeated traumatic head injury. REM sleep likely contributes to normal memory processes. Its alteration has also been proposed to be part of the neuropathological changes occurring in Alzheimer's disease.

13.
J Sleep Res ; 33(1): e13982, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37730206

RESUMEN

Rapid eye movement sleep fragmentation is hypothesised to be a reliable feature of insomnia, which may contribute to emotion dysregulation. Sleep restriction therapy, an effective intervention for insomnia, has the potential to reduce rapid eye movement sleep fragmentation through its manipulation of basic sleep-wake processes. We performed secondary data analysis of a randomised controlled trial to examine whether sleep restriction therapy reduces rapid eye movement sleep fragmentation in comparison to a matched control arm. Participants (n = 56; 39 female, mean age = 40.78 ± 9.08 years) were randomly allocated to 4 weeks of sleep restriction therapy or 4 weeks of time in bed regularisation. Ambulatory polysomnographic recordings were performed at baseline, week 1 and week 4. Arousals during rapid eye movement and non-rapid eye movement sleep were scored blind to group allocation. The following rapid eye movement sleep fragmentation index was the primary outcome: index 1 = (rapid eye movement arousals + rapid eye movement awakenings + non-rapid eye movement intrusions)/rapid eye movement duration in hours. Secondary outcomes were two further indices of rapid eye movement sleep fragmentation: index 2 = (rapid eye movement arousals + rapid eye movement awakenings)/rapid eye movement duration in hours; and index 3 = rapid eye movement arousals/rapid eye movement duration in hours. A non-rapid eye movement fragmentation index was also calculated (non-rapid eye movement arousals/non-rapid eye movement duration in hours). Linear-mixed models were fitted to assess between-group differences. There was no significant group difference for the primary rapid eye movement fragmentation index at week 1 (p = 0.097, d = -0.31) or week 4 (p = 0.741, d = -0.06). There was some indication that secondary indices of rapid eye movement fragmentation decreased more in the sleep restriction therapy group relative to control at week 1 (index 2: p = 0.023, d = -0.46; index 3: p = 0.051, d = -0.39), but not at week 4 (d ≤ 0.13). No group effects were found for arousals during non-rapid eye movement sleep. We did not find clear evidence that sleep restriction therapy modifies rapid eye movement sleep fragmentation. Small-to-medium effect sizes in the hypothesised direction, across several indices of rapid eye movement fragmentation during early treatment, demand further investigation in future studies.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Sueño REM , Humanos , Femenino , Adulto , Persona de Mediana Edad , Privación de Sueño/complicaciones , Privación de Sueño/terapia , Trastornos del Inicio y del Mantenimiento del Sueño/terapia , Sueño
14.
J Sleep Res ; : e14251, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842061

RESUMEN

While research interest in the relationship between sleep and epilepsy is growing, it primarily centres on the effects of non-rapid eye movement (NREM) sleep in favouring seizures. Nonetheless, a noteworthy aspect is the observation that, in the lives of patients with epilepsy, REM sleep represents the moment with the least epileptic activity and the lowest probability of having a seizure. Studies demonstrate a suppressive effect of phasic REM sleep on interictal epileptiform discharges, potentially offering insights into epilepsy localisation and management. Furthermore, epilepsy impacts REM sleep, with successful treatment correlating with improved REM sleep quality. Novel therapeutic strategies aim to harness REM's anti-epileptic effects, including pharmacological approaches targeting orexinergic systems and neuromodulation techniques promoting cortical desynchronisation. These findings underscore the intricate relationship between REM sleep and epilepsy, highlighting avenues for further research and therapeutic innovation in epilepsy management.

15.
J Sleep Res ; : e14252, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811745

RESUMEN

The world-wide prevalence of insomnia disorder reaches up to 10% of the adult population. Women are more often afflicted than men, and insomnia disorder is a risk factor for somatic and mental illness, especially depression and anxiety disorders. Persistent hyperarousals at the cognitive, emotional, cortical and/or physiological levels are central to most theories regarding the pathophysiology of insomnia. Of the defining features of insomnia disorder, the discrepancy between minor objective polysomnographic alterations of sleep continuity and substantive subjective impairment in insomnia disorder remains enigmatic. Microstructural alterations, especially in rapid eye movement sleep ("rapid eye movement sleep instability"), might explain this mismatch between subjective and objective findings. As rapid eye movement sleep represents the most highly aroused brain state during sleep, it might be particularly prone to fragmentation in individuals with persistent hyperarousal. In consequence, mentation during rapid eye movement sleep may be toned more as conscious-like wake experience, reflecting pre-sleep concerns. It is suggested that this instability of rapid eye movement sleep is involved in the mismatch between subjective and objective measures of sleep in insomnia disorder. Furthermore, as rapid eye movement sleep has been linked in previous works to emotional processing, rapid eye movement sleep instability could play a central role in the close association between insomnia and depressive and anxiety disorders.

16.
J Sleep Res ; : e14177, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369938

RESUMEN

How memory representations are shaped during and after their encoding is a central question in the study of human memory. Recognition responses to stimuli that are similar to those observed previously can hint at the fidelity of the memories or point to processes of generalization at the expense of precise memory representations. Experimental studies utilizing this approach showed that emotions and sleep both influence these responses. Sleep, and more specifically rapid eye movement sleep, is assumed to facilitate the generalization of emotional memories. We studied mnemonic discrimination by the emotional variant of the Mnemonic Separation Task in participants (N = 113) who spent a daytime nap between learning and testing compared with another group that spent an equivalent time awake between the two sessions. Our findings indicate that the discrimination of similar but previously not seen items from previously seen ones is enhanced in case of negative compared with neutral and positive stimuli. Moreover, whereas the sleep and the wake groups did not differ in memory performance, participants entering rapid eye movement sleep exhibited increased generalization of emotional memories. Our findings indicate that entering into rapid eye movement sleep during a daytime nap shapes emotional memories in a way that enhances recognition at the expense of detailed memory representations.

17.
J Sleep Res ; 33(1): e14046, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37718942

RESUMEN

The present literature points to an alteration of the human K-complex during non-rapid eye movement sleep in Alzheimer's disease. Nevertheless, the few findings on the K-complex changes in mild cognitive impairment and their possible predictive role on the Alzheimer's disease conversion show mixed findings, lack of replication, and a main interest for the frontal region. The aim of the present study was to assess K-complex measures in amnesic mild cognitive impairment subsequently converted in Alzheimer's disease over different cortical regions, comparing them with healthy controls and stable amnesic mild cognitive impairment. We assessed baseline K-complex density, amplitude, area under the curve and overnight changes in frontal, central and parietal midline derivations of 12 amnesic mild cognitive impairment subsequently converted in Alzheimer's disease, 12 stable amnesic mild cognitive impairment and 12 healthy controls. We also assessed delta electroencephalogram power, to determine if K-complex alterations in amnesic mild cognitive impairment occur with modification of the electroencephalogram power in the frequency range of the slow-wave activity. We found a reduced parietal K-complex density in amnesic mild cognitive impairment subsequently converted in Alzheimer's disease compared with stable amnesic mild cognitive impairment and healthy controls, without changes in K-complex morphology and overnight modulation. Both amnesic mild cognitive impairment groups showed decreased slow-wave sleep percentage compared with healthy controls. No differences between groups were observed in slow-wave activity power. Our findings suggest that K-complex alterations in mild cognitive impairment may be observed earlier in parietal regions, likely mirroring the topographical progression of Alzheimer's disease-related brain pathology, and express a frontal predominance only in a full-blown phase of Alzheimer's disease. Consistently with previous results, such K-complex modification occurs in the absence of significant electroencephalogram power changes in the slow oscillations range.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Pruebas Neuropsicológicas , Disfunción Cognitiva/etiología , Disfunción Cognitiva/psicología , Sueño , Electroencefalografía
18.
J Sleep Res ; : e14228, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782758

RESUMEN

The formal identification and naming of rapid eye movement (REM) sleep behaviour disorder (RBD) in 1985-1987 is described; the historical background of RBD from 1966 to 1985 is briefly discussed; and RBD milestones are presented. Current knowledge on RBD is identified with reference to recent comprehensive reviews, allowing for a focus on research priorities for RBD: factors and predictors of neurodegenerative phenoconversion from isolated RBD and patient enrolment in neuroprotective trials; isolated RBD clinical research cohorts; epidemiology of RBD; traumatic brain injury, post-traumatic stress disorder, RBD and neurodegeneration; depression, RBD and synucleinopathy; evolution of prodromal RBD to neurodegeneration; gut microbiome dysbiosis and colonic synuclein histopathology in isolated RBD; other alpha-synuclein research in isolated RBD; narcolepsy-RBD; dreams and nightmares in RBD; phasic REM sleep in isolated RBD; RBD, periodic limb movements, periodic limb movement disorder pseudo-RBD; other neurophysiology research in RBD; cardiac scintigraphy (123I-MIBG) in isolated RBD; brain magnetic resonance imaging biomarkers in isolated RBD; microRNAs as biomarkers in isolated RBD; actigraphic, other automated digital monitoring and machine learning research in RBD; prognostic counselling and ethical considerations in isolated RBD; and REM sleep basic science research. RBD research is flourishing, and is strategically situated at an ever-expanding crossroads of clinical (sleep) medicine, neurology, psychiatry and neuroscience.

19.
J Neuropsychiatry Clin Neurosci ; : appineuropsych20230106, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38650465

RESUMEN

OBJECTIVE: Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI), which are prevalent conditions among post-9/11 veterans, increase risks of rapid eye movement (REM) sleep behavior disorder (RBD) and degenerative synucleinopathy. Rates and predictors of RBD symptoms were investigated by screening post-9/11 veterans for RBD with a validated questionnaire. METHODS: In this cross-sectional analysis, consecutive patients in the Houston Translational Research Center for TBI and Stress Disorders (TRACTS) were screened with the English translation of the RBD Questionnaire-Hong Kong (RBDQ-HK). In addition to data from the standard TRACTS battery, systematic chart review was used to identify known sleep disorders mimicking or manifesting RBD. RESULTS: Of the 119 patients with available RBDQ-HK scores, 71 (60%) and 65 (55%) screened positive for RBD, when a total score ≥21 and a factor 2 score ≥8 were used as cutoff scores, respectively. Univariable analyses with both cutoffs showed consistent associations between a positive RBDQ-HK screen and global sleep quality, number of TBI exposures, and PTSD severity. Multivariable logistic regression with total score ≥21 as a cutoff indicated that PTSD severity (odds ratio=1.06, 95% CI=1.02-1.10) and number of TBIs (odds ratio=1.63, 95% CI=1.16-2.41) were independent predictors of a positive screen, whereas global sleep quality was no longer significant. Multivariable logistic regression with factor 2 score ≥8 as a cutoff showed similar results. CONCLUSIONS: Interdisciplinary parasomnia assessment, further validation of RBD screens, and standardized reporting of REM sleep without atonia could provide necessary information on the pathophysiological relationships linking PTSD, TBI, RBD symptoms, and ultimately synucleinopathy risk among post-9/11 veterans.

20.
Neurol Sci ; 45(6): 2697-2703, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38190083

RESUMEN

OBJECTIVES: Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is characterized by vocalizations, jerks, and motor behaviors during REM sleep, often associated with REM-related dream content, which is considered a prodromal stage of α-synucleinopathy. The results of the Reading the Mind in the Eyes (RME) reflecting affective Theory of Mind (ToM) are inconsistent in α-synucleinopathy. The present study tried to investigate the RME in patients with iRBD. METHODS: A total of 35 patients with iRBD and 26 healthy controls were included in the study. All participants were administered the RME and the cognitive assessments according to a standard procedure. The patients with iRBD were further divided into two groups (high or low RME) according to the scores of the RME (> 21, or ≤ 20). RESULTS: The patients with iRBD had worse scores on cognitive tests compared with healthy controls involving global cognitive screening, memory, and visuospatial abilities (p < 0.05), but the scores of the RME were similar between the two groups (20.83 ± 3.38, 20.58 ± 3.43) (p ˃ 0.05). Patients with low RME had more obvious cognitive impairments than healthy controls. After applying Bonferroni correction for multiple tests, the low REM group only performed worse on the Sum of trials 1 to 5 and delayed recall of the RAVLT compared with the healthy control group (p < 0.001, = 0.002). The RME correlated with the scores of cognitive tests involving executive function, attention, memory, and visuospatial function. CONCLUSIONS: The changes in RME had a relationship with cognitive impairments, especially memory, in patients with iRBD.


Asunto(s)
Trastorno de la Conducta del Sueño REM , Teoría de la Mente , Humanos , Trastorno de la Conducta del Sueño REM/fisiopatología , Trastorno de la Conducta del Sueño REM/psicología , Masculino , Femenino , Anciano , Teoría de la Mente/fisiología , Persona de Mediana Edad , Pruebas Neuropsicológicas , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA