Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.691
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 38(17-20): 823-842, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293862

RESUMEN

Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.


Asunto(s)
Envejecimiento , Plasticidad de la Célula , Rejuvenecimiento , Humanos , Envejecimiento/fisiología , Animales , Rejuvenecimiento/fisiología , Diferenciación Celular , Senescencia Celular/fisiología
2.
Annu Rev Genet ; 56: 89-112, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35878627

RESUMEN

Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.


Asunto(s)
Gametogénesis , Rejuvenecimiento , Humanos , Gametogénesis/genética , Senescencia Celular , Control de Calidad , Haploidia
3.
EMBO J ; 43(16): 3312-3326, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39009672

RESUMEN

Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.


Asunto(s)
Envejecimiento , Encéfalo , Epigénesis Genética , Epigenoma , Neuronas , Humanos , Encéfalo/metabolismo , Animales , Neuronas/metabolismo , Envejecimiento/genética , Rejuvenecimiento/fisiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo
4.
Semin Immunol ; 70: 101840, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37729825

RESUMEN

Population aging, a pervasive global demographic trend, is anticipated to challenge health and social systems worldwide. This phenomenon is due to medical advancements enabling longer lifespans, with 20% of the US population soon to be over 65 years old. Consequently, there will be a surge in age-related diseases. Senescence, characterized by the loss of biological maintenance and homeostasis at molecular and cellular levels, either correlates with or directly causes age-related phenotypic changes. Decline of the immune system is a critical factor in the senescence process, with cancer being a primary cause of death in elderly populations. Chimeric antigen receptor (CAR) T cell therapy, an innovative approach, has demonstrated success mainly in pediatric and young adult hematological malignancies but remains largely ineffective for diseases affecting older populations, such as late-in-life B cell malignancies and most solid tumor indications. This limitation arises because CAR T cell efficacy heavily relies on the fitness of the patient-derived starting T cell material. Numerous studies suggest that T cell senescence may be a key driver of CAR T cell deficiency. This review examines correlates and underlying factors associated with favorable CAR T cell outcomes and explores potential experimental and clinically actionable strategies for T cell rejuvenation.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Adolescente , Humanos , Niño , Anciano , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T , Inmunoterapia Adoptiva , Envejecimiento
5.
Trends Biochem Sci ; 47(4): 328-341, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063340

RESUMEN

The rRNA genes [ribosomal DNA (rDNA)] are organized in a prominent nuclear compartment, the nucleolus. It is now well established that the nucleolus functions beyond ribosome biosynthesis, regulating several physiological cellular responses. The nucleoli constitute dynamic genomic/nuclear hubs and demonstrate unique inherent characteristics, rendering them ideal to sense, signal, and respond to various intrinsic and environmental insults. Here, we discuss emerging findings supporting direct links between rDNA/nucleolar instability and cellular senescence/organismal aging from yeast to mammals. Moreover, we highlight evidence that nucleolar functionality and rDNA architecture impact on meiotic/transgenerational rejuvenation, thus revealing causality underlying connections between rDNA/nucleolar instability and aging.


Asunto(s)
Envejecimiento , Nucléolo Celular , Envejecimiento/genética , Animales , Nucléolo Celular/genética , Senescencia Celular , ADN Ribosómico/genética , Mamíferos , ARN Ribosómico/genética , Saccharomyces cerevisiae/genética
6.
Annu Rev Genet ; 52: 271-293, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30208291

RESUMEN

Age-associated neurological diseases represent a profound challenge in biomedical research as we are still struggling to understand the interface between the aging process and the manifestation of disease. Various pathologies in the elderly do not directly result from genetic mutations, toxins, or infectious agents but are primarily driven by the many manifestations of biological aging. Therefore, the generation of appropriate model systems to study human aging in the nervous system demands new concepts that lie beyond transgenic and drug-induced models. Although access to viable human brain specimens is limited and induced pluripotent stem cell models face limitations due to reprogramming-associated cellular rejuvenation, the direct conversion of somatic cells into induced neurons allows for the generation of human neurons that capture many aspects of aging. Here, we review advances in exploring age-associated neurodegenerative diseases using human cell reprogramming models, and we discuss general concepts, promises, and limitations of the field.


Asunto(s)
Envejecimiento/genética , Células Madre Pluripotentes Inducidas/patología , Enfermedades Neurodegenerativas/genética , Neuronas/metabolismo , Envejecimiento/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Reprogramación Celular/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/patología
7.
Development ; 149(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36383700

RESUMEN

'Age reprogramming' refers to the process by which the molecular and cellular pathways of a cell that are subject to age-related decline are rejuvenated without passage through an embryonic stage. This process differs from the rejuvenation observed in differentiated derivatives of induced pluripotent stem cells, which involves passage through an embryonic stage and loss of cellular identity. Accordingly, the study of age reprogramming can provide an understanding of how ageing can be reversed while retaining cellular identity and the specialised function(s) of a cell, which will be of benefit to regenerative medicine. Here, we highlight recent work that has provided a more nuanced understanding of age reprogramming and point to some open questions in the field that might be explored in the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Rejuvenecimiento , Reprogramación Celular/genética , Epigénesis Genética , Medicina Regenerativa
8.
Bioessays ; 45(4): e2200208, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871150

RESUMEN

Rejuvenation of cells by reprogramming toward the pluripotent state raises increasing attention. In fact, generation of induced pluripotent stem cells (iPSCs) completely reverses age-associated molecular features, including elongation of telomeres, resetting of epigenetic clocks and age-associated transcriptomic changes, and even evasion of replicative senescence. However, reprogramming into iPSCs also entails complete de-differentiation with loss of cellular identity, as well as the risk of teratoma formation in anti-ageing treatment paradigms. Recent studies indicate that partial reprogramming by limited exposure to reprogramming factors can reset epigenetic ageing clocks while maintaining cellular identity. So far, there is no commonly accepted definition of partial reprogramming, which is alternatively called interrupted reprogramming, and it remains to be elucidated how the process can be controlled and if it resembles a stable intermediate state. In this review, we discuss if the rejuvenation program can be uncoupled from the pluripotency program or if ageing and cell fate determination are inextricably linked. Alternative rejuvenation approaches with reprogramming into a pluripotent state, partial reprogramming, transdifferentiation, and the possibility of selective resetting of cellular clocks are also discussed.


Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Reprogramación Celular/genética , Rejuvenecimiento , Diferenciación Celular , Epigénesis Genética
9.
J Neurophysiol ; 132(1): 308-315, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865216

RESUMEN

Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets. Out of the box, each probe arrived with an electrodeposited polymer coating on 64 gold contacts and an impedance of around 50 kΩ. With repeated use, the impedance increased and there was a corresponding decrease in the number of well-isolated neurons. Imaging of the probes suggested that the reduction in signal quality was due to a gradual loss of the polymer coating. To rejuvenate the probes, we first stripped the contacts, completely removing their polymer coating, and then recoated them in a solution of 10 mM 3,4-Ethylenedioxythiophene (EDOT) monomer with 11 mM Poly(sodium 4-styrenesulfonate) (PSS) using a current density of about 3 mA/cm2 for 30 s. This recoating process not only returned probe impedance to around 50 kΩ but also yielded significantly improved signal quality during neurophysiological recordings. Thus, insertion into the brain promoted the loss of the polymer that coated the contacts of the silicon probes. This led to degradation of signal quality, but recoating rejuvenated the probes.NEW & NOTEWORTHY With repeated use, a silicon probe's ability to isolate neurons degrades. As a result, the probe is often discarded after only a handful of uses. Here, we demonstrate a major source of this problem and then produce a solution to rejuvenate the probes.


Asunto(s)
Callithrix , Neuronas , Silicio , Animales , Silicio/farmacología , Neuronas/fisiología , Neuronas/efectos de los fármacos , Impedancia Eléctrica , Electrodos Implantados , Encéfalo/fisiología , Encéfalo/efectos de los fármacos , Polímeros/farmacología , Masculino , Neurofisiología/instrumentación , Neurofisiología/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Microelectrodos
10.
Annu Rev Biomed Eng ; 25: 363-385, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37289554

RESUMEN

The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.


Asunto(s)
Envejecimiento , Longevidad , Humanos , Modelos Biológicos , Modelos Teóricos , Rejuvenecimiento
11.
Hum Reprod ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725194

RESUMEN

STUDY QUESTION: Does intraovarian platelet-rich plasma (PRP) injection increase the number of mature oocytes obtained after controlled ovarian stimulation (COS) in young women with poor ovarian response (POR) undergoing IVF? SUMMARY ANSWER: Intraovarian PRP injection procedure does not improve mature oocyte yield after COS in women less than 38 years old with an established IVF history of POR. WHAT IS KNOWN ALREADY: POR is frequently encountered among the infertile population and the number of women seeking infertility treatment related to POR is increasing. Effective treatment options for this patient population to conceive with autologous oocytes are lacking. Case series and cohort studies suggest that intraovarian PRP injection may improve follicular recruitment in women with premature ovarian insufficiency (POI) and POR, yet robust randomized studies have not been performed to date to determine the clinical utility of this intervention. STUDY DESIGN, SIZE, DURATION: This was a multi-center randomized controlled trial (RCT) conducted at university-affiliated reproductive centers in the USA and Turkey, between January 2020 and November 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: Patients who met inclusion criteria (<38 years old, two or more prior cycles with <3 oocytes retrieved; and without single gene disorders, prior ovarian surgery, endometriomas, BMI >35 kg/m2, or severe male factor infertility) were randomized to either the PRP or control group. Patients in both groups subsequently underwent COS, oocyte retrieval, ICSI, preimplantation genetic testing for aneuploidy (PGT-A), and single euploid embryo transfer. Number of metaphase II (MII) oocytes obtained was the primary outcome. Secondary outcomes included ovarian reserve tests (antral follicle count [AFC] and anti-Müllerian hormone [AMH]), blastocyst and euploid blastocyst yields, and sustained implantation. The study was powered to detect a difference of one mature oocyte obtained at oocyte retrieval. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 83 patients met inclusion criteria and were randomized to receive autologous intraovarian PRP injection (n = 41) or to no intervention (n = 42). No significant differences were observed in number of MII oocytes retrieved per cycle (2.8 ± 2.4 vs 3.1 ± 3.3 in PRP vs control, respectively; P = 0.9), blastocysts (1.0 ± 1.3 vs 1.3 ± 2.1, P = 0.8), or euploid blastocysts (0.8 ± 1.1 vs 0.9 ± 1.6; P = 0.5). Similarly, no differences were observed in the likelihood of obtaining at least one euploid blastocyst (45% vs 37%, P = 0.4; relative risk [RR], 95% CI = 0.9, 0.6-1.2) or the rate of sustained implantation (31% vs 29%, P = 0.9; RR 1.0, 0.7-1.3). Posttreatment AFC (7.9 ± 4.5 vs 6.8 ± 4.8, P = 0.3) and AMH (0.99 ± 0.98 vs 0.7 ± 0.6, P = 0.2) were also not different between the groups. LIMITATIONS, REASONS FOR CAUTION: Results from this RCT may not be generalizable to other PRP preparations owing to heterogeneity and lack of standardization. The control groups did not undergo a sham ovarian injection, which would have been relevant had the results shown benefit of PRP injection. Only patients with POR were included in this study, and these results may not be generalizable to more severe diminution of ovarian reserve, as seen with POI. WIDER IMPLICATIONS OF THE FINDINGS: The intraovarian PRP injection procedure does not improve mature oocyte yield or other parameters of IVF outcome in women less than 38 years old with an established IVF history of POR. The results from this study do not support the use of intraovarian PRP injection in this population. STUDY FUNDING/COMPETING INTEREST(S): Departmental funds were used and no external funding was requested for this study. ES is a consultant for and receives grant funding from the Foundation for Embryonic Competence. All other authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER: Clinicaltrials.gov Registry Identifier: NCT04163640. TRIAL REGISTRATION DATE: 15 November 2019. DATE OF FIRST PATIENT'S ENROLMENT: 24 February 2020.

12.
Hum Reprod ; 39(4): 760-769, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38423539

RESUMEN

STUDY QUESTION: Does platelet-rich plasma (PRP) intraovarian injection increase the number of retrieved oocytes in successive ovarian punctions among patients with poor ovarian reserve (POR)? SUMMARY ANSWER: The injection of PRP increases the number of retrieved oocytes without increasing the quality of developed blastocysts. WHAT IS KNOWN ALREADY: Management of women with reduced ovarian response to stimulation is one of the significant challenges in reproductive medicine. Recently, PRP treatment has been proposed as an adjunct in assisted reproduction technology, with controversial results. STUDY DESIGN, SIZE, DURATION: This placebo-controlled, double-blind, randomized trial included 60 patients with POR stratified according to the POSEIDON classification groups 3 and 4. It was conducted to explore the efficacy and safety of intraovarian PRP injection. Patients were proposed to undergo three consecutive ovarian stimulations to accumulate oocytes and were randomized to receive either PRP or placebo during their first oocyte retrieval. Randomization was performed using computer-generated randomization codes. Double blinding was ensured so that neither the participant nor the investigators knew of the treatment allotted. All patients underwent three ovarian stimulations and egg retrieval procedures. ICSI was performed after a third ovarian puncture. The primary endpoint was the number of mature oocytes retrieved after PRP or placebo injection in successive ovarian punctures. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sixty women (30-42 years) fulfilling inclusion criteria were randomized in equal proportions to the treatment or control groups. MAIN RESULTS AND THE ROLE OF CHANCE: The baseline demographic and clinical characteristics [age, BMI, anti-Müllerian hormone (AMH) levels] were comparable between the groups. Regarding the primary endpoint, the cumulative number (mean ± SEM) of retrieved mature oocytes was slightly higher in the treatment group: 10.45 ± 0.41 versus 8.91 ± 0.39 in the control group, respectively (95% CI of the difference 0.42-2.66; P = 0,008). The number of mature oocytes obtained among all patients increased in successive egg retrievals: 2.61 ± 0.33 (mean ± SEM) in punction 1 (P1), 3.85 ± 0.42 in P2, and 4.73 ± 0.44 in P3. However, the increase was higher among patients receiving the assessed PRP treatment. In P2, the number of retrieved mature oocytes was 4.18 ± 0.58 versus 3.27 ± 0.61 in controls (95% CI of the difference: -0.30 to 2.12; P = 0.138) and in P3, 5.27 ± 0.73 versus 4.15 ± 0.45 (95% CI of the difference: 0.12-2.12; P = 0.029). The mean ± SEM number of developed and biopsied blastocysts was 2.43 ± 0.60 in the control group and 1.90 ± 0.32 in the treatment group, respectively (P = 0.449). The mean number of euploid blastocysts was 0.81 ± 0.24 and 0.81 ± 0.25 in the control and treatment groups, respectively (P = 1.000). The percentages of patients with euploid blastocysts were 53.33% (16 out of 30) and 43.33% (13 out of 30) for patients in the control and treatment groups, respectively (Fisher's exact test P = 0.606). The overall pregnancy rate per ITT was 43% (26 out of 60 patients). However, the percentage of clinical pregnancies was higher in the control group (18 out of 30, 60%) than in the treatment group (8 out of 30, 27%) (P = 0.018). There was also a trend toward poorer outcomes in the treatment group when considering full-term pregnancies (P = 0.170). There were no differences between control and treatment groups regarding type of delivery, and sex of newborns. LIMITATIONS, REASONS FOR CAUTION: The mechanism of the potential beneficial effect of PRP injection on the number of retrieved oocytes is unknown. Either delivered platelet factors or a mechanical effect could be implicated. Further studies will be needed to confirm or refute the data presented in this trial and to specify the exact mechanism of action, if any, of PRP preparations. WIDER IMPLICATIONS OF THE FINDINGS: The increasing number of women with a poor response to ovarian stimulation supports the exploration of new areas of research to know the potential benefits of therapies capable of increasing the number of oocytes available for fertilization and improving the quality of developed blastocysts. An increase in the retrieved oocytes in both arms of the trial suggests that, beyond the release of growth factor from platelets, a mechanical effect can play a role. However, neither improvement in euploid blastocyst development nor pregnancy rates have been demonstrated. STUDY FUNDING/COMPETING INTEREST(S): This trial was supported by Basque Government and included in HAZITEK program, framed in the new Euskadi 2030 Science and Technology Plan (PCTI 2030). These aids are co-financed by the European Regional Development Fund (FEDER). The study funders had no role in the study design, implementation, analysis, manuscript preparation, or decision to submit this article for publication. No competing interests are declared by all the authors. TRIAL REGISTRATION NUMBER: Clinical Trial Number EudraCT 2020-000247-32. TRIAL REGISTRATION DATE: 3 November 2020. DATE OF FIRST PATIENT'S ENROLLMENT: 16 January 2021.


Asunto(s)
Fertilización In Vitro , Técnicas Reproductivas Asistidas , Recién Nacido , Embarazo , Humanos , Femenino , Fertilización In Vitro/métodos , Resultado del Tratamiento , Ovario , Índice de Embarazo , Inducción de la Ovulación/métodos
13.
J Exp Bot ; 75(3): 733-745, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37930766

RESUMEN

Reversal of plant developmental status from the mature to the juvenile phase, thus leading to the restoration of the developmental potential, is referred to as plant rejuvenation. It involves multilayer regulation, including resetting gene expression patterns, chromatin remodeling, and histone modifications, eventually resulting in the restoration of juvenile characteristics. Although plants can be successfully rejuvenated using some forestry practices to restore juvenile morphology, physiology, and reproductive capabilities, studies on the epigenetic mechanisms underlying this process are in the nascent stage. This review provides an overview of the plant rejuvenation process and discusses the key epigenetic mechanisms involved in DNA methylation, histone modification, and chromatin remodeling in the process of rejuvenation, as well as the roles of small RNAs in this process. Additionally, we present new inquiries regarding the epigenetic regulation of plant rejuvenation, aiming to advance our understanding of rejuvenation in sexually and asexually propagated plants. Overall, we highlight the importance of epigenetic mechanisms in the regulation of plant rejuvenation, providing valuable insights into the complexity of this process.


Asunto(s)
Epigénesis Genética , Memoria Epigenética , Rejuvenecimiento , Plantas/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas
14.
Cytotherapy ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39207345

RESUMEN

BACKGROUND AIMS: The immunomodulatory capacity of mesenchymal stem/stromal cells (MSCs) is a key feature that makes them particularly valuable for regenerative medicine. However, this potential is affected by the chronological aging of the donors and the cell expansion procedures in culture. We have demonstrated that GATA binding protein 6 (GATA6) plays a pivotal role in the aging of MSCs and inhibiting GATA6 rejuvenates the characteristics of MSCs. METHODS: In this study, we compared the immunomodulatory capabilities of young and old MSC models, using induced pluripotent stem cells-derived rejuvenated MSCs (rMSCs) and their parental MSCs (pMSCs), respectively, to identify a key mechanism involved in the differential regulation of these capabilities. Additionally, we explored the role of GATA6 in mediating the mechanism. RESULTS: Our results demonstrated that rMSCs exhibited downregulated aging-associated regulators, including p53, p21 and GATA6, and showed enhanced suppression of T cell proliferation compared to pMSCs. Through analyzing our previous RNA-seq data and employing target gene knockdown, we determined both suppressors of cytokine signaling 3 (SOCS3) and interleukin 6 were involved in GATA6-induced regulation, collectively affecting the expression of programmed death ligand 1 (PDL1) in both pMSCs and rMSCs. CONCLUSIONS: Our findings underline the significance of the GATA6/SOCS3/PDL1 pathway in regulating aging-associated changes in MSC immunomodulatory activity, providing valuable insights into the potential use of rMSCs in the treatment of immune diseases and regenerative medicine.

15.
Exp Dermatol ; 33(10): e70005, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39440959

RESUMEN

Skin aging is driven by a complex set of cellular pathways. Among these, epigenetic mechanisms have garnered particular attention, because of their sensitivity to environmental and lifestyle factors. DNA methylation represents the longest known and best understood epigenetic mechanism. We explain how DNA methylation might function as an interface between the environment and the genome of human skin. Exposures to different environmental factors and lifestyles are known to modulate age-related methylation patterns, as illustrated by their effect on DNA methylation clocks. Human skin provides a particularly well-suited tissue for understanding age-related methylation changes and it has been shown recently that modulation of DNA methylation can induce skin rejuvenation. We explain how the use of mildly demethylating agents can be safeguarded to ensure the specific removal of age-related DNA methylation changes. We also identify important areas of future research, leading to a deeper understanding of the mechanisms that drive epigenetic aging and to the development of further refined intervention strategies.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Rejuvenecimiento , Envejecimiento de la Piel , Piel , Humanos , Envejecimiento de la Piel/genética , Rejuvenecimiento/fisiología , Piel/metabolismo
16.
Exp Dermatol ; 33(1): e14955, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897068

RESUMEN

Preclinical human skin ageing research has been limited by the paucity of instructive and clinically relevant models. In this pilot study, we report that healthy human skin of different age groups undergoes extremely accelerated ageing within only 3 days, if organ-cultured in a defined serum-free medium. Quantitative (immuno-)histomorphometry documented this unexpected ex vivo phenotype on the basis of ageing-associated biomarkers: the epidermis showed significantly reduced rete ridges and keratinocyte proliferation, sirtuin-1, MTCO1 and collagen 17a1 protein levels; this contrasted with significantly increased expression of the DNA-damage marker, γH2A.X. In the dermis, collagen 1 and 3 and hyaluronic acid content were significantly reduced compared to Day 0 skin. qRT-PCR of whole skin RNA extracts also showed up-regulated mRNA levels of several (inflamm-) ageing biomarkers (MMP-1, -2, -3, -9; IL6, IL8, CXCL10 and CDKN1). Caffeine, a methylxanthine with recognized anti-ageing properties, counteracted the dermal collagen 1 and 3 reduction, the epidermal accumulation of γH2A.X, and the up-regulation of CXCL10, IL6, IL8, MMP2 and CDKN1. Finally, we present novel anti-ageing effects of topical 2,5-dimethylpyrazine, a natural pheromone TRPM5 ion channel activator. Thus, this instructive, clinically relevant "speed-ageing" assay provides a simple, but powerful new research tool for dissecting skin ageing and rejuvenation, and is well-suited to identify novel anti-ageing actives directly in the human target organ.


Asunto(s)
Cafeína , Pirazinas , Envejecimiento de la Piel , Humanos , Recién Nacido , Cafeína/farmacología , Senoterapéuticos , Técnicas de Cultivo de Órganos , Proyectos Piloto , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Piel/metabolismo , Envejecimiento , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Biomarcadores/metabolismo
17.
FASEB J ; 37(12): e23294, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37966425

RESUMEN

Despite promising results in myocardial infarction (MI), mesenchymal stem cell (MSC)-based therapy is limited by cell senescence. N6-methyladenosine (m6A) messenger RNA methylation has been reported to be closely associated with cell senescence. Nonetheless, its role in the regulation of MSC senescence remains unclear. We examined the role of ALKB homolog 5 (ALKBH5) in regulating MSC senescence and determined whether ALKBH5 downregulation could rejuvenate aged MSCs (AMSCs) to improve their therapeutic efficacy for MI. RNA methylation was determined by m6A dot blotting assay. MSC senescence was evaluated by senescence-associated ß-galactosidase (SA-ß-gal) staining. A mouse model of acute MI was established by ligation of the left anterior decedent coronary artery (LAD). Compared with young MSCs (YMSCs), m6A level was significantly reduced but ALKBH5 was greatly increased in AMSCs. Overexpression of ALKBH5 reduced m6A modification and accelerated YMSC senescence. Conversely, ALKBH5 knockdown increased m6A modifications and alleviated AMSC senescence. Mechanistically, ALKBH5 regulated the m6A modification and stability of CDKN1C mRNA, which further upregulated CDKN1C expression, leading to MSC senescence. CDKN1C overexpression ameliorated the inhibition of cellular senescence of ALKBH5 siRNA-treated AMSCs. More importantly, compared with AMSCs, shALKBH5-AMSCs transplantation provided a superior cardioprotective effect against MI in mice by improving MSC survival and angiogenesis. We determined that ALKBH5 accelerated MSC senescence through m6A modification-dependent stabilization of the CDKN1C transcript, providing a potential target for MSC rejuvenation. ALKBH5 knockdown rejuvenated AMSCs and enhanced cardiac function when transplanted into the mouse heart following infarction.


Asunto(s)
Células Madre Mesenquimatosas , Infarto del Miocardio , Humanos , Animales , Ratones , Anciano , Regulación hacia Abajo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Adenosina , Senescencia Celular , Factores Inmunológicos , ARN Mensajero , Desmetilasa de ARN, Homólogo 5 de AlkB/genética
18.
J Biomed Sci ; 31(1): 15, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263133

RESUMEN

BACKGROUND: CDGSH iron-sulfur domain-containing protein 2 (CISD2), a pro-longevity gene, mediates healthspan in mammals. CISD2 is down-regulated during aging. Furthermore, a persistently high level of CISD2 promotes longevity and ameliorates an age-related skin phenotype in transgenic mice. Here we translate the genetic evidence into a pharmaceutical application using a potent CISD2 activator, hesperetin, which enhances CISD2 expression in HEK001 human keratinocytes from an older person. We also treated naturally aged mice in order to study the activator's anti-aging efficacy. METHODS: We studied the biological effects of hesperetin on aging skin using, firstly, a cell-based platform, namely a HEK001 human keratinocyte cell line established from an older person. Secondly, we used a mouse model, namely old mice at 21-month old. In the latter case, we investigate the anti-aging efficacy of hesperetin on ultraviolet B (UVB)-induced photoaging and naturally aged skin. Furthermore, to identify the underlying mechanisms and potential biological pathways involved in this process we carried out transcriptomic analysis. Finally, CISD2 knockdown HEK001 keratinocytes and Cisd2 knockout mice were used to study the Cisd2-dependent effects of hesperetin on skin aging. RESULTS: Four findings are pinpointed. Firstly, in human skin, CISD2 is mainly expressed in proliferating keratinocytes from the epidermal basal layer and, furthermore, CISD2 is down-regulated in the sun-exposed epidermis. Secondly, in HEK001 human keratinocytes from an older person, hesperetin enhances mitochondrial function and protects against reactive oxygen species-induced oxidative stress via increased CISD2 expression; this enhancement is CISD2-dependent. Additionally, hesperetin alleviates UVB-induced damage and suppresses matrix metalloproteinase-1 expression, the latter being a major indicator of UVB-induced damage in keratinocytes. Thirdly, transcriptomic analysis revealed that hesperetin modulates a panel of differentially expressed genes that are associated with mitochondrial function, redox homeostasis, keratinocyte function, and inflammation in order to attenuate senescence. Intriguingly, hesperetin activates two known longevity-associated regulators, namely FOXO3a and FOXM1, in order to suppress the senescence-associated secretory phenotype. Finally, in mouse skin, hesperetin enhances CISD2 expression to ameliorate UVB-induced photoaging and this occurs via a mechanism involving CISD2. Most strikingly, late-life treatment with hesperetin started at 21-month old and lasting for 5 months, is able to retard skin aging and rejuvenate naturally aged skin in mice. CONCLUSIONS: Our results reveal that a pharmacological elevation of CISD2 expression at a late-life stage using hesperetin treatment is a feasible approach to effectively mitigating both intrinsic and extrinsic skin aging and that hesperetin could act as a functional food or as a skincare product for fighting skin aging.


Asunto(s)
Hesperidina , Envejecimiento de la Piel , Anciano , Animales , Humanos , Ratones , Queratinocitos , Mamíferos , Ratones Transgénicos
19.
Cells Tissues Organs ; : 1-13, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768583

RESUMEN

BACKGROUND: With the elderly population projected to double by 2050, there is an urgent need to address the increasing prevalence of age-related debilitating diseases and ultimately minimize discrepancies between the rising lifespan and stagnant health span. Cellular reprogramming by overexpression of Oct3/4, Klf4, Sox2, and cMyc (OKSM) transcription factors is gaining attention in this context thanks to demonstrated rejuvenating effects in human cell cultures and live mice, many of which can be uncoupled from dedifferentiation and loss of cell identity. SUMMARY: Here, we review current evidence of the impact of cell reprogramming on established aging hallmarks and the underlying mechanisms that mediate these effects. We also provide a critical assessment of the challenges in translating these findings and, overall, cell reprogramming technologies into clinically translatable antiaging interventions. KEY MESSAGES: Cellular reprogramming has the potential to reverse at least partially some key hallmarks of aging. However, further research is necessary to determine the biological significance and duration of such changes and to ensure the safety of cell reprogramming as a rejuvenation approach. With this review, we hope to stimulate new research directions in the quest to extend health span effectively.

20.
Reprod Biomed Online ; 49(2): 103813, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852205

RESUMEN

Platelet-rich plasma (PRP) has gained popularity as an experimental tool in regenerative medicine, with potential applications in reproductive medicine. This review will assess the existing literature on the role of PRP in female fertility enhancement, focusing on ovarian rejuvenation and increased endometrial thickness. PRP is being explored as a treatment for recurrent implantation failure, primary ovarian insufficiency and poor ovarian response. While the influence of PRP on endometrial thickness and implantation success is postulated, its effectiveness remains the subject of debate due to protocol variability and unclear patient selection criteria. This narrative review includes 36 articles published before December 2022, and highlights the lack of comprehensive molecular studies examining the impact of PRP on reproductive capacity. This review underscores the importance of standardizing PRP preparation protocols in reproductive medicine. However, challenges persist, and there is a need for well-planned randomized controlled trials and a deeper understanding of the patient population that would gain the greatest benefit from PRP treatment. Clarifying these aspects is crucial to improve outcomes for low-prognosis patients undergoing assisted reproductive technology.


Asunto(s)
Plasma Rico en Plaquetas , Humanos , Femenino , Fertilidad , Técnicas Reproductivas Asistidas , Infertilidad Femenina/terapia , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA