Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094570

RESUMEN

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Heterocromatina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética
2.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38554706

RESUMEN

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Asunto(s)
Adenosina Trifosfatasas , Replicación del ADN , Inestabilidad Genómica , Proteostasis , Humanos , Adenosina Trifosfatasas/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética
3.
Cell ; 178(3): 600-611.e16, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348887

RESUMEN

The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/química , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Annu Rev Biochem ; 86: 417-438, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301743

RESUMEN

This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa II/genética , Replicación del ADN , ADN/genética , Células Eucariotas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/citología , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo
5.
Mol Cell ; 84(18): 3469-3481.e7, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39236719

RESUMEN

Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.


Asunto(s)
Replicación del ADN , ADN-Topoisomerasas de Tipo I , Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Microscopía por Crioelectrón , ADN de Hongos/metabolismo , ADN de Hongos/genética , Roturas del ADN de Cadena Simple , Humanos
6.
Annu Rev Genet ; 57: 157-179, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37552891

RESUMEN

Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.


Asunto(s)
Replicación del ADN , Transcripción Genética , Animales , Replicación del ADN/genética , Inestabilidad Genómica/genética , Eucariontes/genética , Daño del ADN/genética , Mamíferos
7.
Mol Cell ; 83(16): 2911-2924.e16, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37506699

RESUMEN

During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.


Asunto(s)
ADN Primasa , Replicación del ADN , Humanos , ADN Primasa/genética , ADN Primasa/metabolismo , Microscopía por Crioelectrón , ADN Helicasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN de Cadena Simple/metabolismo
8.
Annu Rev Biochem ; 84: 1-34, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26034887

RESUMEN

I spent my childhood and adolescence in North and South Carolina, attended Duke University, and then entered Duke Medical School. One year in the laboratory of George Schwert in the biochemistry department kindled my interest in biochemistry. After one year of residency on the medical service of Duke Hospital, chaired by Eugene Stead, I joined the group of Arthur Kornberg at Stanford Medical School as a postdoctoral fellow. Two years later I accepted a faculty position at Harvard Medical School, where I remain today. During these 50 years, together with an outstanding group of students, postdoctoral fellows, and collaborators, I have pursued studies on DNA replication. I have experienced the excitement of discovering a number of important enzymes in DNA replication that, in turn, triggered an interest in the dynamics of a replisome. My associations with industry have been stimulating and fostered new friendships. I could not have chosen a better career.


Asunto(s)
Bioquímica/historia , Bacteriófago T7/enzimología , Bacteriófago T7/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/historia , Historia del Siglo XX , Historia del Siglo XXI , Jubilación , Facultades de Medicina/historia , Estados Unidos
9.
Mol Cell ; 82(7): 1372-1382.e4, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35240057

RESUMEN

Fundamental aspects of DNA replication, such as the anatomy of replication stall sites, how replisomes are influenced by gene transcription, and whether the progression of sister replisomes is coordinated, are poorly understood. Available techniques do not allow the precise mapping of the positions of individual replisomes on chromatin. We have developed a method called Replicon-seq that entails the excision of full-length replicons by controlled nuclease cleavage at replication forks. Replicons are sequenced using Nanopore, which provides a single-molecule readout of long DNA. Using Replicon-seq, we found that sister replisomes function autonomously and yet progress through chromatin with remarkable consistency. Replication forks that encounter obstacles pause for a short duration but rapidly resume synthesis. The helicase Rrm3 plays a critical role both in mitigating the effect of protein barriers and with facilitating efficient termination. Replicon-seq provides a high-resolution means of defining how individual replisomes move across the genome.


Asunto(s)
ADN Helicasas , Replicación del ADN , Cromatina/genética , Cromosomas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo
10.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932350

RESUMEN

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Asunto(s)
ADN Polimerasa II/química , Exonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Hongos/biosíntesis , ADN de Hongos/química , ADN de Hongos/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Mutación Missense , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 77(1): 17-25.e5, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31704183

RESUMEN

Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.


Asunto(s)
ADN Polimerasa III/genética , Replicación del ADN/genética , ADN/genética , Células Eucariotas/fisiología , ADN Polimerasa I/genética , ADN Primasa/genética , Saccharomyces cerevisiae/genética
12.
Mol Cell ; 80(1): 114-126.e8, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916094

RESUMEN

DNA replication is carried out by a multi-protein machine called the replisome. In Saccharomyces cerevisiae, the replisome is composed of over 30 different proteins arranged into multiple subassemblies, each performing distinct activities. Synchrony of these activities is required for efficient replication and preservation of genomic integrity. How this is achieved is particularly puzzling at the lagging strand, where current models of the replisome architecture propose turnover of the canonical lagging strand polymerase, Pol δ, at every cycle of Okazaki fragment synthesis. Here, we established single-molecule fluorescence microscopy protocols to study the binding kinetics of individual replisome subunits in live S. cerevisiae. Our results show long residence times for most subunits at the active replisome, supporting a model where all subassemblies bind tightly and work in a coordinated manner for extended periods, including Pol δ, redefining the architecture of the active eukaryotic replisome.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Células Eucariotas/metabolismo , Complejos Multienzimáticos/metabolismo , Núcleo Celular/metabolismo , Cinética , Modelos Biológicos , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula , Factores de Tiempo
13.
Mol Cell ; 78(5): 926-940.e13, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32369734

RESUMEN

The eukaryotic replisome, organized around the Cdc45-MCM-GINS (CMG) helicase, orchestrates chromosome replication. Multiple factors associate directly with CMG, including Ctf4 and the heterotrimeric fork protection complex (Csm3/Tof1 and Mrc1), which has important roles including aiding normal replication rates and stabilizing stalled forks. How these proteins interface with CMG to execute these functions is poorly understood. Here we present 3 to 3.5 Å resolution electron cryomicroscopy (cryo-EM) structures comprising CMG, Ctf4, and the fork protection complex at a replication fork. The structures provide high-resolution views of CMG-DNA interactions, revealing a mechanism for strand separation, and show Csm3/Tof1 "grip" duplex DNA ahead of CMG via a network of interactions important for efficient replication fork pausing. Although Mrc1 was not resolved in our structures, we determine its topology in the replisome by cross-linking mass spectrometry. Collectively, our work reveals how four highly conserved replisome components collaborate with CMG to facilitate replisome progression and maintain genome stability.


Asunto(s)
Proteínas de Unión al ADN/ultraestructura , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Proteínas Nucleares/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón/métodos , ADN Helicasas/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN de Hongos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Genes Dev ; 34(1-2): 1-3, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896687

RESUMEN

Programmed fork pausing is a complex process allowing cells to arrest replication forks at specific loci in a polar manner. Studies in budding yeast and other model organisms indicate that such replication fork barriers do not act as roadblocks passively impeding fork progression but rather elicit complex interactions between fork and barrier components. In this issue of Genes & Development, Shyian and colleagues (pp. 87-98) show that in budding yeast, the fork protection complex Tof1-Csm3 interacts physically with DNA topoisomerase I (Top1) at replication forks through the C-terminal domain of Tof1. Fork pausing at the ribosomal DNA (rDNA) replication fork barrier (RFB) is impaired in the absence of Top1 or in a tof1 mutant that does not bind Top1, but the function of Top1 can be partially compensated for by Top2. Together, these data indicate that topoisomerases play an unexpected role in the regulation of programmed fork pausing in Saccharomyces cerevisiae.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular , Replicación del ADN , Proteínas de Unión al ADN
15.
Genes Dev ; 34(1-2): 87-98, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805522

RESUMEN

Replication forks temporarily or terminally pause at hundreds of hard-to-replicate regions around the genome. A conserved pair of budding yeast replisome components Tof1-Csm3 (fission yeast Swi1-Swi3 and human TIMELESS-TIPIN) act as a "molecular brake" and promote fork slowdown at proteinaceous replication fork barriers (RFBs), while the accessory helicase Rrm3 assists the replisome in removing protein obstacles. Here we show that the Tof1-Csm3 complex promotes fork pausing independently of Rrm3 helicase by recruiting topoisomerase I (Top1) to the replisome. Topoisomerase II (Top2) partially compensates for the pausing decrease in cells when Top1 is lost from the replisome. The C terminus of Tof1 is specifically required for Top1 recruitment to the replisome and fork pausing but not for DNA replication checkpoint (DRC) activation. We propose that forks pause at proteinaceous RFBs through a "sTOP" mechanism ("slowing down with topoisomerases I-II"), which we show also contributes to protecting cells from topoisomerase-blocking agents.


Asunto(s)
Replicación del ADN/genética , ADN-Topoisomerasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/metabolismo , Mutación , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
EMBO J ; 42(17): e114131, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37458194

RESUMEN

CMG (Cdc45-MCM-GINS) helicase assembly at the replication origin is the culmination of eukaryotic DNA replication initiation. This process can be reconstructed in vitro using defined factors in Saccharomyces cerevisiae; however, in vertebrates, origin-dependent CMG formation has not yet been achieved partly due to the lack of a complete set of known initiator proteins. Since a microcephaly gene product, DONSON, was reported to remodel the CMG helicase under replication stress, we analyzed its role in DNA replication using a Xenopus cell-free system. We found that DONSON was essential for the replisome assembly. In vertebrates, DONSON physically interacted with GINS and Polε via its conserved N-terminal PGY and NPF motifs, and the DONSON-GINS interaction contributed to the replisome assembly. DONSON's chromatin association during replication initiation required the pre-replicative complex, TopBP1, and kinase activities of S-CDK and DDK. Both S-CDK and DDK required DONSON to trigger replication initiation. Moreover, human DONSON could substitute for the Xenopus protein in a cell-free system. These findings indicate that vertebrate DONSON is a novel initiator protein essential for CMG helicase assembly.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Saccharomyces cerevisiae/metabolismo , Vertebrados
17.
Mol Cell ; 73(3): 562-573.e3, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595439

RESUMEN

Across eukaryotes, disruption of DNA replication causes an S phase checkpoint response, which regulates multiple processes, including inhibition of replication initiation and fork stabilization. How these events are coordinated remains poorly understood. Here, we show that the replicative helicase component Cdc45 targets the checkpoint kinase Rad53 to distinct replication complexes in the budding yeast Saccharomyces cerevisiae. Rad53 binds to forkhead-associated (FHA) interaction motifs in an unstructured loop region of Cdc45, which is phosphorylated by Rad53 itself, and this interaction is necessary for the inhibition of origin firing through Sld3. Cdc45 also recruits Rad53 to stalled replication forks, which we demonstrate is important for the response to replication stress. Finally, we show that a Cdc45 mutation found in patients with Meier-Gorlin syndrome disrupts the functional interaction with Rad53 in yeast. Together, we present a single mechanism by which a checkpoint kinase targets replication initiation and elongation complexes, which may be relevant to human disease.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN de Hongos/biosíntesis , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2/genética , Microtia Congénita/enzimología , Microtia Congénita/genética , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Trastornos del Crecimiento/enzimología , Trastornos del Crecimiento/genética , Humanos , Micrognatismo/enzimología , Micrognatismo/genética , Mutación , Proteínas Nucleares/genética , Rótula/anomalías , Rótula/enzimología , Fosforilación , Unión Proteica , Puntos de Control de la Fase S del Ciclo Celular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
18.
Mol Cell ; 74(2): 231-244.e9, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30850330

RESUMEN

The convergence of two DNA replication forks creates unique problems during DNA replication termination. In E. coli and SV40, the release of torsional strain by type II topoisomerases is critical for converging replisomes to complete DNA synthesis, but the pathways that mediate fork convergence in eukaryotes are unknown. We studied the convergence of reconstituted yeast replication forks that include all core replisome components and both type I and type II topoisomerases. We found that most converging forks stall at a very late stage, indicating a role for additional factors. We showed that the Pif1 and Rrm3 DNA helicases promote efficient fork convergence and completion of DNA synthesis, even in the absence of type II topoisomerase. Furthermore, Rrm3 and Pif1 are also important for termination of plasmid DNA replication in vivo. These findings identify a eukaryotic pathway for DNA replication termination that is distinct from previously characterized prokaryotic mechanisms.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ADN-Topoisomerasas/genética , Escherichia coli/genética , Eucariontes/genética , Inestabilidad Genómica , Plásmidos/genética
19.
Mol Cell ; 70(6): 1067-1080.e12, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29944888

RESUMEN

The replisome must overcome DNA damage to ensure complete chromosome replication. Here, we describe the earliest events in this process by reconstituting collisions between a eukaryotic replisome, assembled with purified proteins, and DNA damage. Lagging-strand lesions are bypassed without delay, leaving daughter-strand gaps roughly the size of an Okazaki fragment. In contrast, leading-strand polymerase stalling significantly impacts replication fork progression. We reveal that the core replisome itself can bypass leading-strand damage by re-priming synthesis beyond it. Surprisingly, this restart activity is rare, mainly due to inefficient leading-strand re-priming, rather than single-stranded DNA exposure or primer extension. We find several unanticipated mechanistic distinctions between leading- and lagging-strand priming that we propose control the replisome's initial response to DNA damage. Notably, leading-strand restart was specifically stimulated by RPA depletion, which can occur under conditions of replication stress. Our results have implications for pathway choice at stalled forks and priming at DNA replication origins.


Asunto(s)
Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN/metabolismo , Daño del ADN/fisiología , ADN Primasa/metabolismo , Reparación del ADN/genética , ADN de Cadena Simple/metabolismo , Eucariontes/genética , Células Eucariotas/metabolismo , Origen de Réplica/genética , Origen de Réplica/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Mol Cell ; 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30451148

RESUMEN

DNA replication commences at eukaryotic replication origins following assembly and activation of bidirectional CMG helicases. Once activated, CMG unwinds the parental DNA duplex and DNA polymerase α-primase initiates synthesis on both template strands. By utilizing an origin-dependent replication system using purified yeast proteins, we have mapped start sites for leading-strand replication. Synthesis is mostly initiated outside the origin sequence. Strikingly, rightward leading strands are primed left of the origin and vice versa. We show that each leading strand is established from a lagging-strand primer synthesized by the replisome on the opposite side of the origin. Preventing elongation of primers synthesized left of the origin blocked rightward leading strands, demonstrating that replisomes are interdependent for leading-strand synthesis establishment. The mechanism we reveal negates the need for dedicated leading-strand priming and necessitates a crucial role for the lagging-strand polymerase Pol δ in connecting the nascent leading strand with the advancing replisome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA