Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 151(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770916

RESUMEN

Prolyl hydroxylase domain (PHD) proteins are oxygen sensors that use intracellular oxygen as a substrate to hydroxylate hypoxia-inducible factor (HIF) α proteins, routing them for polyubiquitylation and proteasomal degradation. Typically, HIFα accumulation in hypoxic or PHD-deficient tissues leads to upregulated angiogenesis. Here, we report unexpected retinal phenotypes associated with endothelial cell (EC)-specific gene targeting of Phd2 (Egln1) and Hif2alpha (Epas1). EC-specific Phd2 disruption suppressed retinal angiogenesis, despite HIFα accumulation and VEGFA upregulation. Suppressed retinal angiogenesis was observed both in development and in the oxygen-induced retinopathy (OIR) model. On the other hand, EC-specific deletion of Hif1alpha (Hif1a), Hif2alpha, or both did not affect retinal vascular morphogenesis. Strikingly, retinal angiogenesis appeared normal in mice double-deficient for endothelial PHD2 and HIF2α. In PHD2-deficient retinal vasculature, delta-like 4 (DLL4, a NOTCH ligand) and HEY2 (a NOTCH target) were upregulated by HIF2α-dependent mechanisms. Inhibition of NOTCH signaling by a chemical inhibitor or DLL4 antibody partially rescued retinal angiogenesis. Taken together, our data demonstrate that HIF2α accumulation in retinal ECs inhibits rather than stimulates retinal angiogenesis, in part by upregulating DLL4 expression and NOTCH signaling.


Asunto(s)
Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Endoteliales , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Receptores Notch , Neovascularización Retiniana , Transducción de Señal , Regulación hacia Arriba , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ratones , Receptores Notch/metabolismo , Receptores Notch/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Células Endoteliales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Retina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Vasos Retinianos/metabolismo , Angiogénesis
2.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35723257

RESUMEN

Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.


Asunto(s)
Células Endoteliales , Factores de Transcripción , Animales , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Ratones , Neovascularización Fisiológica/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinas/metabolismo
3.
Mol Ther ; 32(5): 1425-1444, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38504518

RESUMEN

Pathological ocular angiogenesis has long been associated with myeloid cell activation. However, the precise cellular and molecular mechanisms governing the intricate crosstalk between the immune system and vascular changes during ocular neovascularization formation remain elusive. In this study, we demonstrated that the absence of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells led to a substantial accumulation of microglia and macrophage subsets during the neovascularization process. Our single-cell RNA sequencing data analysis revealed a remarkable increase in the expression of the secreted phosphoprotein 1 (Spp1) gene within these microglia and macrophages, identifying subsets of Spp1-expressing microglia and macrophages during neovascularization formation in angiogenesis mouse models. Notably, the number of Spp1-expressing microglia and macrophages exhibited further elevation during neovascularization in mice lacking myeloid SOCS3. Moreover, our investigation unveiled the Spp1 gene as a direct transcriptional target gene of signal transducer and activator of transcription 3. Importantly, pharmaceutical activation of SOCS3 or blocking of SPP1 resulted in a significant reduction in pathological neovascularization. In conclusion, our study highlights the pivotal role of the SOCS3/STAT3/SPP1 axis in the regulation of pathological retinal angiogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Macrófagos , Microglía , Osteopontina , Neovascularización Retiniana , Factor de Transcripción STAT3 , Proteína 3 Supresora de la Señalización de Citocinas , Animales , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Macrófagos/metabolismo , Ratones , Microglía/metabolismo , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Neovascularización Retiniana/genética , Neovascularización Retiniana/etiología , Osteopontina/metabolismo , Osteopontina/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Regulación de la Expresión Génica , Transducción de Señal , Ratones Noqueados , Neovascularización Patológica/metabolismo , Neovascularización Patológica/genética , Angiogénesis
4.
Angiogenesis ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483712

RESUMEN

Pathological retinal angiogenesis profoundly impacts visual function in vascular eye diseases, such as retinopathy of prematurity (ROP) in preterm infants and age-related macular degeneration in the elderly. While the involvement of photoreceptors in these diseases is recognized, the underlying mechanisms remain unclear. This study delved into the pivotal role of photoreceptors in regulating abnormal retinal blood vessel growth using an oxygen-induced retinopathy (OIR) mouse model through the c-Fos/A disintegrin and metalloprotease 17 (Adam17) axis. Our findings revealed a significant induction of c-Fos expression in rod photoreceptors, and c-Fos depletion in these cells inhibited pathological neovascularization and reduced blood vessel leakage in the OIR mouse model. Mechanistically, c-Fos directly regulated the transcription of Adam17 a shedding protease responsible for the production of bioactive molecules involved in inflammation, angiogenesis, and cell adhesion and migration. Furthermore, we demonstrated the therapeutic potential by using an adeno-associated virus carrying a rod photoreceptor-specific short hairpin RNA against c-fos which effectively mitigated abnormal retinal blood vessel overgrowth, restored retinal thickness, and improved electroretinographic (ERG) responses. In conclusion, this study highlights the significance of photoreceptor c-Fos in ROP pathology, offering a novel perspective for the treatment of this disease.

5.
Exp Eye Res ; 239: 109753, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142764

RESUMEN

PURPOSE: The detrimental effects of pathological angiogenesis on the visual function are indisputable. Within a prominent role in chromosome segregation and tumor progression, aurora kinase B (AURKB) assumes a prominent role. However, its role in pathological retinal angiogenesis remains unclear. This study explores this latent mechanism. METHODS: To inhibit AURKB expression, we designed specific small interfering RNAs targeting AURKB and transfected them into vascular endothelial cells. Barasertib was selected as the AURKB inhibitor. The anti-angiogenic effects of both AURKB siRNA and barasertib were assessed in vitro by cell proliferation, transwell migration, and tube formation. To evaluate the angiogentic effects of AURKB in vivo, neonatal mice were exposed to 75% oxygen followed by normoxic repositioning to establish an oxygen-induced retinopathy (OIR) model. Subsequently, phosphate-buffered saline and barasertib were administered into OIR mice via intravitreal injection. The effects of AURKB on cell cycle proteins were determined by western blot analysis. RESULTS: We found that AURKB was overexpressed during pathological angiogenesis. AURKB siRNA and barasertib significantly inhibited endothelial cell proliferation, migration, and tube formation in vitro. Furthermore, AURKB inhibition attenuated retinal angiogenesis in the OIR model. A possible mechanism is the disruption of cell cycle by AURKB inhibition. CONCLUSION: In conclusion, AURKB significantly influenced pathological retinal angiogenesis, thereby presenting a promising therapeutic target in ocular neovascular diseases.


Asunto(s)
Organofosfatos , Quinazolinas , Enfermedades de la Retina , Neovascularización Retiniana , Animales , Ratones , Angiogénesis , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/metabolismo , División Celular , Proliferación Celular , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Neovascularización Patológica , Oxígeno , Neovascularización Retiniana/metabolismo , ARN Interferente Pequeño/uso terapéutico
6.
Cell Biol Int ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39001618

RESUMEN

Transfer RNA-derived fragments (tRFs) represent a novel class of non-coding RNA transcripts that possess specific biological functions. However, the involvement of tRFs in retinal microvascular diseases remains poorly understood. In this study, we aimed to reveal whether modulation of tRF-30 expression could attenuate pathological retinal neovascular diseases. Our findings demonstrate a significant upregulation of tRF-30 expression levels in both in vivo models of diabetic retinopathy (DR) and in vitro endothelial sprouting models. Conversely, inhibition of tRF-30 expression suppressed the formation of abnormal neovascularization in the retina in vivo, while reducing the proliferation and migration activity of retinal vascular endothelial cells in vitro. We also found that tRF-30 modulates retinal neovascularization through the tRF-30/TRIB3/signal transducer and activated transcription 3 signaling pathway. Furthermore, we validated a significant upregulation of tRF-30 expression levels in the vitreous humor of DR patients, with high levels of both validity and specificity in diagnostic testing. Collectively, our findings highlight a pro-angiogenic role for tRF-30 in DR. Intervening in the tRF-30 signaling pathway may represent a promising prevention and treatment strategy for retinal angiogenesis.

7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33836603

RESUMEN

Retinal neovascularization is a leading cause of severe visual loss in humans, and molecular mechanisms of microglial activation-driven angiogenesis remain unknown. Using single-cell RNA sequencing, we identified a subpopulation of microglia named sMG2, which highly expressed necroptosis-related genes Rip3 and Mlkl. Genetic and pharmacological loss of function demonstrated that hypoxia-induced microglial activation committed to necroptosis through the RIP1/RIP3-mediated pathway. Specific deletion of Rip3 gene in microglia markedly decreased retinal neovascularization. Furthermore, hypoxia induced explosive release of abundant FGF2 in microglia through RIP3-mediated necroptosis. Importantly, blocking signaling components of the microglia necropotosis-FGF2 axis largely ablated retinal angiogenesis and combination therapy with simultaneously blocking VEGF produced synergistic antiangiogenic effects. Together, our data demonstrate that targeting the microglia necroptosis axis is an antiangiogenesis therapy for retinal neovascular diseases.


Asunto(s)
Microglía/patología , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Enfermedades de la Retina/patología , Animales , Quimioterapia Combinada , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Hipoxia/patología , Ratones , Microglía/metabolismo , Necroptosis/efectos de los fármacos , Neovascularización Patológica , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/metabolismo , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Exp Eye Res ; 233: 109551, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356537

RESUMEN

The study aimed to investigate the role of microRNA (miR)-124-3p in retinal angiogenesis in a mouse model. An intravitreal injection of miR-124-3p antagomir was used to knockdown the expression of miR-124-3p in the mouse retina at postnatal day (P)3. Immunofluorescent staining of both retinal frozen sections and whole retina were used to observe retinal vascular development in the P6, P9 and P12 mice, as well as the changes in retinal ganglion cells, astrocytes, Müller cells and microglia. Whole retinal RNA extracted from P9 mice was used for transcriptome sequencing. Following gene set enrichment analysis, the enriched genes caused by miR-124-3p inhibition were analyzed by immunofluorescent staining and western blot. Results indicated that deep vascular development was significantly inhibited by the activation of M1 phenotype microglia. Moreover, there were no notable effects on superficial retinal vascular development, the retinal ganglion cells, astrocytes, and Müller cells. The expression of the Stat1/Irf9/Eif2ak2/Ripk1 axis in the miR-124-3p knockdown group was significantly increased. The microglia penetrated deep into the retina and the activation of Ripk1(+) microglia significantly increased, which was accompanied by an increased level of apoptosis to inhibit the deep vascular sprout. Downregulation of miR-124-3p during the early retinal development can suppress the development of the deep retinal blood vessels by enhancing the expression level of the Stat1/Irf9/Eif2ak2/Ripk1 axis and inducing the cell apoptosis of the activation of Ripk1(+) microglia.


Asunto(s)
MicroARNs , Microglía , Ratones , Animales , Regulación hacia Abajo , Microglía/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Retina/metabolismo , Vasos Retinianos/metabolismo , Apoptosis/genética , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores
9.
Angiogenesis ; 25(2): 159-179, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34524600

RESUMEN

Chemerin is a multifunctional protein initially characterized in our laboratory as a chemoattractant factor for leukocyte populations. Its main functional receptor is CMKLR1. We identified previously chemerin as an anti-tumoral factor inhibiting the vascularization of tumor grafts. We show here that overexpression of bioactive chemerin in mice results in a reduction of the density of the retinal vascular network during its development and in adults. Chemerin did not affect vascular sprouting during the post-natal development of the network, but rather promoted endothelial cell apoptosis and vessel pruning. This phenotype was reversed to normal in CMKLR1-deficient mice, demonstrating the role of this receptor. Chemerin inhibited also neoangiogenesis in a model of pathological proliferative retinopathy, and in response to hind-limb ischemia. Mechanistically, PTEN and FOXO1 antagonists could almost completely restore the density of the retinal vasculature, suggesting the involvement of the PI3-kinase/AKT pathway in the chemerin-induced vessel regression process.


Asunto(s)
Quimiocinas , Péptidos y Proteínas de Señalización Intercelular , Animales , Apoptosis , Quimiocinas/metabolismo , Hipoxia , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones
10.
Exp Eye Res ; 218: 108984, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35202706

RESUMEN

Diabetic retinopathy (DR) is one of the most serious microvascular complications of diabetes and an important cause of blindness in adults. In previous study, we found that miR-320a alleviated the damage of muller cells in DR. In this study, we mainly explored the mechanism of lncRNA MALAT1 on retinal angiogenesis in DR by regulating miR-320a/HIF-1α. The expression of MALAT1 and miR-320a was detected by RT-qPCR, and the expression of HIF-1α was detected by Western blot. The superoxide anion level, invasion, angiogenesis, and vascular permeability of mouse retinal microvascular endothelial cells (MRMECs) co-cultured with muller cells were evaluated by dihydroethidium, transwell, angiogenesis and immunofluorescence assay. In order to analyze the targeting relationship between miR-320a and MALAT1 or HIF-1α, we performed dual luciferase reporter gene, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pulldown experiments. The results should that MALAT1 and HIF-1α were highly expressed and miR-320a was low expressed in high glucose (HG)-induced muller cells, and MALAT1 could competitively bind with HIF-1α. Knocking down miR-320a inhibited MRMECs invasion angiogenesis, and vascular permeability by targeting miR-320a. Overexpression of miR-320a down regulated HIF-1α and inhibited the invasion, angiogenesis, and vascular permeability of MRMECs. In conclusion, MALAT1 inhibits HIF-1α expression and MRMECs angiogenesis in DR through spongy miR-320a.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , MicroARNs , ARN Largo no Codificante , Animales , Diabetes Mellitus/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Hibridación Fluorescente in Situ , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Neovascularización Patológica/metabolismo , ARN Largo no Codificante/genética
11.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269788

RESUMEN

Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.


Asunto(s)
Astrocitos , Células Endoteliales , Astrocitos/metabolismo , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/genética , Retina/metabolismo
12.
Exp Eye Res ; 205: 108507, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609510

RESUMEN

Proliferative retinopathies, such as proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP) are major causes of visual impairment and blindness in industrialized countries. Prostaglandin E2 (PGE2) is implicated in cellular proliferation and migration via E-prostanoid receptor (EP4R). The aim of this study was to investigate the role of PGE2/EP4R signaling in the promotion of retinal neovascularisation. In a streptozotocin (STZ)-induced diabetic model and an oxygen-induced retinopathy (OIR) model, rats received an intravitreal injection of PGE2, cay10598 (an EP4R agonist) or AH23848 (an EP4R antagonist). Optical coherence tomography, retinal histology and biochemical markers were assessed. Treatment with PGE2 or cay10598 accelerated pathological retinal angiogenesis in STZ and OIR-induced rat retina, which was ameliorated in rats pretreated with AH23848. Serum VEGF-A was upregulated in the PGE2-treated diabetic rats vs non-treated diabetic rats and significantly downregulated in AH23848-treated diabetic rats. PGE2 or cay10598 treatment also significantly accelerated endothelial tip-cell formation in new-born rat retina. In addition, AH23848 treatment attenuated PGE2-or cay10598-induced proliferation and migration by repressing the EGF receptor (EGFR)/Growth factor receptor bound protein 2-associated binder protein 1 (Gab1)/Akt/NF-κB/VEGF-A signaling network in human retinal microvascular endothelial cells (hRMECs). PGE2/EP4R signaling network is thus a potential therapeutic target for pathological intraocular angiogenesis.


Asunto(s)
Dinoprostona/fisiología , Receptores ErbB/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Neovascularización Retiniana/fisiopatología , Animales , Animales Recién Nacidos , Compuestos de Bifenilo/farmacología , Western Blotting , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Ensayo de Cambio de Movilidad Electroforética , Endotelio Vascular/metabolismo , Inyecciones Intravítreas , Masculino , FN-kappa B/metabolismo , Oxígeno/toxicidad , Fosforilación , Pirrolidinonas/farmacología , Ratas Sprague-Dawley , Subtipo EP4 de Receptores de Prostaglandina E/agonistas , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Neovascularización Retiniana/metabolismo , Vasos Retinianos/metabolismo , Transducción de Señal/fisiología , Tetrazoles/farmacología , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Graefes Arch Clin Exp Ophthalmol ; 259(9): 2707-2716, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34328550

RESUMEN

BACKGROUND: Excessive angiogenesis of the retina is a key component of irreversible causes of blindness in many ocular diseases. Pitavastatin is a cholesterol-lowering drug used to reduce the risk of cardiovascular diseases. Various studies have shown the effects of pitavastatin on angiogenesis but the conclusions are contradictory. The effects of pitavastatin on retinal angiogenesis have not been revealed. This study investigated the effects of pitavastatin at clinically relevant concentrations on retinal angiogenesis and its underlying mechanisms using retinal microvascular endothelial cells (RMECs). METHODS: The effects of pitavastatin on retinal angiogenesis were determined using in vitro model of retinal angiogenesis, endothelial cell migration, adhesion, proliferation, and apoptosis assays. The mechanism studies were conducted using immunoblotting and stress fiber staining. RESULTS: Pitavastatin stimulated capillary network formation of RMECs in a similar manner as vascular endothelial growth factor (VEGF) and lipopolysaccharide (LPS). Pitavastatin also increased RMEC migration, adhesion to Matrigel, growth, and survival. The combination of pitavastatin with VEGF or LPS was more effective than VEGF or LPS alone in stimulating biological activities of RMECs, suggesting that pitavastatin can enhance the stimulatory effects of VEGF and LPS on retinal angiogenesis. Pitavastatin acted on RMECs in a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase-independent manner. In contrast, pitavastatin activated pro-angiogenic microenvironment via promoting the secretion of VEGF and stimulated retinal angiogenesis via multiple mechanisms including activation of RhoA-mediated pathways, induction of focal adhesion complex formation, and activation of ERK pathway. CONCLUSION: Our work provides a preclinical evidence on the pro-angiogenic effect of pitavastatin in retina via multiple mechanisms that are irrelevant to mevalonate pathway.


Asunto(s)
Células Endoteliales , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Células Cultivadas , Coenzima A , Adhesiones Focales , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Oxidorreductasas , Quinolinas , Retina , Factor A de Crecimiento Endotelial Vascular
14.
Angiogenesis ; 23(2): 179-192, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31754927

RESUMEN

Angiogenesis is largely driven by motile endothelial tip-cells capable of invading avascular tissue domains and enabling new vessel formation. Highly responsive to Vascular Endothelial Growth-Factor-A (VEGFA), endothelial tip-cells also suppress angiogenic sprouting in adjacent stalk cells, and thus have been a primary therapeutic focus in addressing neovascular pathologies. Surprisingly, however, there remains a paucity of specific endothelial tip-cell markers. Here, we employ transcriptional profiling and a lacZ reporter allele to identify Kcne3 as an early and selective endothelial tip-cell marker in multiple angiogenic contexts. In development, Kcne3 expression initiates during early phases of angiogenesis (E9) and remains specific to endothelial tip-cells, often adjacent to regions expressing VEGFA. Consistently, Kcne3 activation is highly responsive to exogenous VEGFA but maintains tip-cell specificity throughout normal retinal angiogenesis. We also demonstrate endothelial tip-cell selectivity of Kcne3 in several injury and tumor models. Together, our data show that Kcne3 is a unique marker of sprouting angiogenic tip-cells and offers new opportunities for investigating and targeting this cell type.


Asunto(s)
Células Endoteliales/fisiología , Neovascularización Patológica/genética , Neovascularización Fisiológica/genética , Canales de Potasio con Entrada de Voltaje/genética , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Células Cultivadas , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Embrión de Mamíferos , Células Endoteliales/patología , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis/genética , Neovascularización Patológica/metabolismo , Embarazo , Retina/metabolismo , Retina/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
15.
Angiogenesis ; 23(4): 559-566, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32506200

RESUMEN

INTRODUCTION: Endoglin (ENG) forms a receptor complex with ALK1 in endothelial cells (ECs) to promote BMP9/10 signalling. Loss of function mutations in either ENG or ALK1 genes lead to the inherited vascular disorder hereditary haemorrhagic telangiectasia (HHT), characterised by arteriovenous malformations (AVMs). However, the vessel-specific role of ENG and ALK1 proteins in protecting against AVMs is unclear. For example, AVMs have been described to initiate in arterioles, whereas ENG is predominantly expressed in venous ECs. To investigate whether ENG has any arterial involvement in protecting against AVM formation, we specifically depleted the Eng gene in venous and capillary endothelium whilst maintaining arterial expression, and investigated how this affected the incidence and location of AVMs in comparison with pan-endothelial Eng knockdown. METHODS: Using the mouse neonatal retinal model of angiogenesis, we first established the earliest time point at which Apj-Cre-ERT2 activity was present in venous and capillary ECs but absent from arterial ECs. We then compared the incidence of AVMs following pan-endothelial or venous/capillary-specific ENG knockout. RESULTS: Activation of Apj-Cre-ERT2 with tamoxifen from postnatal day (P) 5 ensured preservation of arterial ENG protein expression. Specific loss of ENG expression in ECs of veins and capillaries led to retinal AVMs at a similar frequency to pan-endothelial loss of ENG. AVMs occurred in the proximal as well as the distal part of the retina consistent with a defect in vascular remodelling during maturation of the vasculature. CONCLUSION: Expression of ENG is not required in arterial ECs to protect against AVM formation.


Asunto(s)
Arterias/metabolismo , Malformaciones Arteriovenosas/sangre , Endoglina/sangre , Animales , Capilares/metabolismo , Endotelio/metabolismo , Ratones Noqueados , Retina/metabolismo , Retina/patología , Venas/metabolismo
16.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785018

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) belong to the family of ligand-activated nuclear receptors. The PPAR family consists of three subtypes encoded by three separate genes: PPARα (NR1C1), PPARß/δ (NR1C2), and PPARγ (NR1C3). PPARs are critical regulators of metabolism and exhibit tissue and cell type-specific expression patterns and functions. Specific PPAR ligands have been proposed as potential therapies for a variety of diseases such as metabolic syndrome, cancer, neurogenerative disorders, diabetes, cardiovascular diseases, endometriosis, and retinopathies. In this review, we focus on the knowledge of PPAR function in angiogenesis, a complex process that plays important roles in numerous pathological conditions for which therapeutic use of PPAR modulation has been suggested.


Asunto(s)
Artritis Reumatoide/metabolismo , Enfermedades Cardiovasculares/metabolismo , Endometriosis/metabolismo , Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Enfermedades Placentarias/metabolismo , Enfermedades de la Retina/metabolismo , Animales , Células Endoteliales/metabolismo , Femenino , Humanos , Ligandos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/antagonistas & inhibidores , Embarazo , Transducción de Señal
17.
Biochem Cell Biol ; 97(4): 423-430, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30571142

RESUMEN

Pathological angiogenesis in the retina is one of the main ocular diseases closely associated with vision loss. This work investigated the roles of microRNA-34a (miR-34a) and its potential target Notch1, in retinal angiogenesis. For this we used oxygen-induced retinopathy (OIR) rats and human retinal microvascular endothelial cells (HRMECs) stimulated with vascular endothelial growth factor (VEGF). We performed hematoxylin-eosin staining, Western blot for VEGF, and immunofluorescence staining for CD31 to verify the establishment of our OIR model. We observed down-regulation of miR-34a, and up-regulation of Notch1 and Hey1 in retinas from OIR rats. We found similar results with the VEGF-stimulated HRMECs. By performing MTT assay, cell scratch assay, tube formation assay, and by detecting the expression of matrix-metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitors of metalloproteinases-1 (TIMP-1), and TIMP-2, we found that transfection of miR-34a ameliorated VEGF-mediated angiogenesis of HRMECs. We further observed that siRNA-induced gene silencing of Notch1 prevented VEGF-induced angiogenesis via regulating cell proliferation, cell migration, and tube formation of HRMECs. Additionally, activation of Notch1 by transfection of Notch1 plasmid attenuated the inhibitory effects of miR-34a on tube formation, in the present of VEGF. Results from our dual-luciferase reporter gene assay suggested that miR-34a targets Notch1. In summary, our data demonstrate that miR-34a attenuates retinal angiogenesis via targeting Notch1.


Asunto(s)
MicroARNs/genética , Receptor Notch1/antagonistas & inhibidores , Neovascularización Retiniana/tratamiento farmacológico , Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , MicroARNs/metabolismo , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Notch1/genética , Receptor Notch1/metabolismo , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología
18.
Development ; 142(13): 2364-74, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26002917

RESUMEN

Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.


Asunto(s)
Proteína 61 Rica en Cisteína/metabolismo , Neovascularización Fisiológica , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Recuento de Células , Movimiento Celular , Proliferación Celular , Forma de la Célula , Proteína 61 Rica en Cisteína/deficiencia , Proteína 61 Rica en Cisteína/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Silenciador del Gen , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Especificidad de Órganos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Dominios Homologos src
19.
Prostaglandins Other Lipid Mediat ; 133: 93-102, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28442442

RESUMEN

Polyunsaturated fatty acids (PUFA) and their cytochrome P450 (CYP450) metabolites have been linked to angiogenesis and vessel homeostasis. However, the role of individual CYP isoforms and their endogenous metabolites in those processes are not clear. Here, we focused on the role of Cyp2c44 in postnatal retinal angiogenesis and report that Cyp2c44 is highly expressed in Müller glial cells in the retina. The constitutive as well as inducible postnatal genetic deletion of Cyp2c44 resulted in an increased vessel network density without affecting vessel radial expansion during the first postnatal week. This phenotype was associated with an increased endothelial cell proliferation and attenuated Notch signaling. LC-MS/MS analyses revealed that levels of hydroxydocosahexaenoic acids (HDHA), i.e., 10-, 17- and 20-HDHA were significantly elevated in retinas from 5day old Cyp2c44-/- mice compared to their wild-type littermates. Enzymatic activity assays revealed that HDHAs were potential substrates for Cyp2c44 which could account for the increased levels of HDHAs in retinas from Cyp2c44-/- mice. These data indicate that Cyp2c44 is expressed in the murine retina and, like the soluble epoxide hydrolase, is expressed in Müller glia cells. The enhanced endothelial cell proliferation and Notch inhibition seen in retinas from Cyp2c44-deficient mice indicate a role for Cyp2c44-derived lipid mediators in physiological angiogenesis.


Asunto(s)
Familia 2 del Citocromo P450/metabolismo , Células Ependimogliales/enzimología , Neovascularización Fisiológica , Retina/fisiología , Animales , Proliferación Celular , Familia 2 del Citocromo P450/deficiencia , Familia 2 del Citocromo P450/genética , Ácidos Docosahexaenoicos/metabolismo , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Retina/citología
20.
Artículo en Inglés | MEDLINE | ID: mdl-26673555

RESUMEN

The pathophysiology of diabetic retinopathy is highly complex and encompasses the detrimental roles of numerous factors/mediators in inducing various molecular pathological alterations. Although the roles of many inflammatory mediators, involved in the progression of this complication, have been thoroughly researched and studied, the part played by leukotrienes remains widely neglected. This review focuses on leukotrienes-induced mediation and aggravation of the pathological pathways, such as inflammation, oxidative stress and retinal angiogenesis, responsible for exhibition of various characteristic events including leukostasis, macular edema, retinal neovascularization and vitreous hemorrhages, hence, marking the advent of diabetic retinopathy. Acknowledging these roles, it might be possible to potentially utilize leukotrienes antagonists for suppressing or reducing the intensity of the mentioned pathological alterations. Hence, leukotrienes antagonists may act as an effective adjuvant therapy either along with other developing novel therapies (such as anti-VEGF or anti-TNF-α therapy), or with the established conventional laser photocoagulation treatment, to provide additional symptomatic relief or, possibly prevent the progression of diabetic retinopathy.


Asunto(s)
Retinopatía Diabética/fisiopatología , Inflamación/fisiopatología , Leucotrienos/fisiología , Estrés Oxidativo/fisiología , Neovascularización Retiniana/fisiopatología , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Antagonistas de Leucotrieno/uso terapéutico , Leucotrienos/metabolismo , Modelos Biológicos , Terapia Molecular Dirigida , Estrés Oxidativo/efectos de los fármacos , Neovascularización Retiniana/tratamiento farmacológico , Neovascularización Retiniana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA