Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39137184

RESUMEN

Segmented RNA viruses are a complex group of RNA viruses with multisegment genomes. Reconstructing complete segmented viruses is crucial for advancing our understanding of viral diversity, evolution, and public health impact. Using metatranscriptomic data to identify known and novel segmented viruses has sped up the survey of segmented viruses in various ecosystems. However, the high genetic diversity and the difficulty in binning complete segmented genomes present significant challenges in segmented virus reconstruction. Current virus detection tools are primarily used to identify nonsegmented viral genomes. This study presents SegVir, a novel tool designed to identify segmented RNA viruses and reconstruct their complete genomes from complex metatranscriptomes. SegVir leverages both close and remote homology searches to accurately detect conserved and divergent viral segments. Additionally, we introduce a new method that can evaluate the genome completeness and conservation based on gene content. Our evaluations on simulated datasets demonstrate SegVir's superior sensitivity and precision compared to existing tools. Moreover, in experiments using real data, we identified some virus segments missing in the NCBI database, underscoring SegVir's potential to enhance viral metagenome analysis. The source code and supporting data of SegVir are available via https://github.com/HubertTang/SegVir.


Asunto(s)
Genoma Viral , Virus ARN , Virus ARN/genética , Transcriptoma , ARN Viral/genética , Programas Informáticos , Metagenoma , Metagenómica/métodos
2.
J Neurovirol ; 26(6): 929-940, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33057966

RESUMEN

The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing global health crises. Children can be infected, but are less likely to develop severe neurological abnormalities compared with adults. However, whether SARS-CoV-2 can directly cause neurological impairments in pediatric patients is not known. The possible evolutionary and molecular relationship between SARS-CoV-2 and non-segmented RNA viruses were examined with reference to neurological disorders in pediatric patients. SARS-CoV-2 shares similar functional domains with neuroinvasive and neurotropic RNA viruses. The Spike 1 (S1) receptor binding domain and the cleavage sites at S1/S2 boundary are less conserved compared with the S2 among coronaviruses.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso/virología , Virus ARN/genética , SARS-CoV-2/genética , Niño , Preescolar , Biología Computacional , Femenino , Humanos , Lactante , Masculino , Filogenia , Virus ARN/patogenicidad , Glicoproteína de la Espiga del Coronavirus , Virulencia
3.
Viruses ; 13(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34452516

RESUMEN

Bacteriophages (phages) are predicted to be the most ubiquitous biological entity on earth, and yet, there are still vast knowledge gaps in our understanding of phage diversity and phage-host interactions. Approximately one hundred Acinetobacter-infecting DNA viruses have been identified, and in this report, we describe eight more. We isolated two typical dsDNA lytic podoviruses (CAP1-2), five unique dsRNA lytic cystoviruses (CAP3-7), and one dsDNA lysogenic siphovirus (SLAP1), all capable of infecting the multidrug resistant isolate Acinetobacter radioresistens LH6. Using transmission electron microscopy, bacterial mutagenesis, phage infectivity assays, carbohydrate staining, mass-spectrometry, genomic sequencing, and comparative studies, we further characterized these phages. Mutation of the LH6 initiating glycosyltransferase homolog, PglC, necessary for both O-linked glycoprotein and capsular polysaccharide (CPS) biosynthesis, prevented infection by the lytic podovirus CAP1, while mutation of the pilin protein, PilA, prevented infection by CAP3, representing the lytic cystoviruses. Genome sequencing of the three dsRNA segments of the isolated cystoviruses revealed low levels of homology, but conserved synteny with the only other reported cystoviruses that infect Pseudomonas species. In Pseudomonas, the cystoviruses are known to be enveloped phages surrounding their capsids with the inner membrane from the infected host. To characterize any membrane-associated glycoconjugates in the CAP3 cystovirus, carbohydrate staining was used to identify a low molecular weight lipid-linked glycoconjugate subsequently identified by mutagenesis and mass-spectrometry as bacterial lipooligosaccharide. Together, this study demonstrates the isolation of new Acinetobacter-infecting phages and the determination of their cell receptors. Further, we describe the genomes of a new genus of Cystoviruses and perform an initial characterization of membrane-associated glycoconjugates.


Asunto(s)
Acinetobacter/virología , Bacteriófagos/química , Bacteriófagos/genética , Cystoviridae/química , Cystoviridae/genética , Podoviridae/química , Podoviridae/genética , ARN Viral/genética , Acinetobacter/efectos de los fármacos , Antibacterianos/farmacología , Bacteriófagos/clasificación , Bacteriófagos/metabolismo , Cystoviridae/clasificación , Cystoviridae/metabolismo , Farmacorresistencia Bacteriana Múltiple , Cromatografía de Gases y Espectrometría de Masas , Genoma Viral , Filogenia , Podoviridae/clasificación , Podoviridae/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , ARN Viral/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
4.
Virus Res ; 303: 198500, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34331991

RESUMEN

Following Kobayashi and colleagues' seminal paper in 20171, in the past four years the rotavirus (RV) field has witnessed a burst in research and publications based on the use of a fully plasmid-based RV reverse genetics systems and subsequent modifications2,3. However, in most cases, the rotaviral strain under interrogation has been the prototypic simian RV SA11-L2 strain (G3P[2]). Of note, a variety of other weakly-to-modestly replication-competent animal and human RV strains, bioluminescent and fluorescent reporter viruses, and clinical isolates of human RVs have proved hard or impossible to rescue using the original reverse genetics system2,4, highlighting a critical need to further enhance the recovery efficiency and expand the rescue tool kit. A number of further modifications of the initial reverse genetics system have enabled the rescue of other RV strains such as the human RV KU and CDC-9 strains, and a murine RV D6/2-like strain4,5. Here, we discuss future possible modifications of existing RV reverse genetics systems to further increase efficiency based on past experience with the improvement of influenza A virus recovery. The development of RV to accommodate the insertion and expression of heterologous sequences has substantial potential in the design of next-generation RV vaccine candidates and enteric viral vectors.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Animales , Ratones , Genética Inversa , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA