Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 879
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant J ; 119(4): 1830-1843, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924220

RESUMEN

Tropospheric ozone [O3] is a secondary air pollutant formed from the photochemical oxidation of volatile organic compounds in the presence of nitrogen oxides, and it is one of the most damaging air pollutants to crops. O3 entry into the plant generates reactive oxygen species leading to cellular damage and oxidative stress, leading to decreased primary production and yield. Increased O3 exposure has also been shown to have secondary impacts on plants by altering the incidence and response to plant pathogens. We used the Capsicum annum (pepper)-Xanthomonas perforans pathosystem to investigate the impact of elevated O3 (eO3) on plants with and without exposure to Xanthomonas, using a disease-susceptible and disease-resistant pepper cultivar. Gas exchange measurements revealed decreases in diurnal photosynthetic rate (A') and stomatal conductance ( g s ' ), and maximum rate of electron transport (Jmax) in the disease-resistant cultivar, but no decrease in the disease-susceptible cultivar in eO3, regardless of Xanthomonas presence. Maximum rates of carboxylation (Vc,max), midday A and gs rates at the middle canopy, and decreases in aboveground biomass were negatively affected by eO3 in both cultivars. We also observed a decrease in stomatal sluggishness as measured through the Ball-Berry-Woodrow model in all treatments in the disease-resistant cultivar. We hypothesize that the mechanism conferring disease resistance to Xanthomonas in pepper also renders the plant less tolerant to eO3 stress through changes in stomatal responsiveness. Findings from this study help expand our understanding of the trade-off of disease resistance with abiotic stresses imposed by future climate change.


Asunto(s)
Capsicum , Ozono , Fotosíntesis , Enfermedades de las Plantas , Xanthomonas , Capsicum/microbiología , Capsicum/fisiología , Capsicum/efectos de los fármacos , Ozono/farmacología , Fotosíntesis/efectos de los fármacos , Xanthomonas/fisiología , Xanthomonas/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad , Estrés Fisiológico
2.
Plant J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072887

RESUMEN

Stomatal pores in plant leaves mediate CO2 uptake for photosynthesis and water loss via transpiration. Altered stomatal density can affect plant photosynthetic capacity, water use efficiency, and growth, potentially providing either benefits or drawbacks depending on the environment. Here we explore, at different air humidity regimes, gas exchange, stomatal anatomy, and growth of Arabidopsis lines designed to combine increased stomatal density (epf1, epf2) with high stomatal sensitivity (ht1-2, cyp707a1/a3). We show that the stomatal density and sensitivity traits combine as expected: higher stomatal density increases stomatal conductance, whereas the effect is smaller in the high stomatal sensitivity mutant backgrounds than in the epf1epf2 double mutant. Growth under low air humidity increases plant stomatal ratio with relatively more stomata allocated to the adaxial epidermis. Low relative air humidity and high stomatal density both independently impair plant growth. Higher evaporative demand did not punish increased stomatal density, nor did inherently low stomatal conductance provide any protection against low relative humidity. We propose that the detrimental effects of high stomatal density on plant growth at a young age are related to the cost of producing stomata; future experiments need to test if high stomatal densities might pay off in later life stages.

3.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36788455

RESUMEN

Energy production and metabolism are intimately linked to ecological and environmental constraints across the tree of life. In plants, which depend on sunlight to produce energy, the link between primary metabolism and the environment is especially strong. By governing CO2 uptake for photosynthesis and transpiration, leaf pores, or stomata, couple energy metabolism to the environment and determine productivity and water-use efficiency (WUE). Although evolution is known to tune physiological traits to the local environment, we lack knowledge of the specific links between molecular and evolutionary mechanisms that shape this process in nature. Here, we investigate the evolution of stomatal conductance and WUE in an Arabidopsis population that colonized an island with a montane cloud scrubland ecosystem characterized by seasonal drought and fog-based precipitation. We find that stomatal conductance increases and WUE decreases in the colonizing population relative to its closest outgroup population from temperate North Africa. Genome-wide association mapping reveals a polygenic basis of trait variation, with a substantial contribution from a nonsynonymous single-nucleotide polymorphism in MAP KINASE 12 (MPK12 G53R), which explains 35% of the phenotypic variance in WUE in the island population. We reconstruct the spatially explicit evolutionary history of MPK12 53R on the island and find that this allele increased in frequency in the population due to positive selection as Arabidopsis expanded into the harsher regions of the island. Overall, these findings show how adaptation shaped quantitative eco-physiological traits in a new precipitation regime defined by low rainfall and high humidity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ecosistema , Estudio de Asociación del Genoma Completo , Proteínas de Arabidopsis/genética , Hojas de la Planta , Fotosíntesis/genética , Agua/metabolismo , Genómica , Sequías
4.
BMC Plant Biol ; 24(1): 809, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198743

RESUMEN

Climate change has become a concern, emphasizing the need for the development of crops tolerant to drought. Therefore, this study is designed to explore the physiological characteristics of quinoa that enable it to thrive under drought and other extreme stress conditions by investigating the combined effects of irrigation water levels (100%, 75%, and 50% of quinoa's water requirements, WR as I1, I2 and I3) and different planting methods (basin, on-ridge, and in-furrow as P1, P2 and P3) on quinoa's physiological traits and gas exchange. Results showed that quinoa's yield is lowest with on-ridge planting and highest in the in-furrow planting method. Notably, the seed protein concentrations in I2 and I3 did not significantly differ but they were 25% higher than those obtained in I1, which highlighted the possibility of using a more effective irrigation method without compromising the seed quality. On the other hand, protein yield (PY) was lowest in P2 (mean of I1 and I2 as 257 kg ha-1) and highest in P3 (mean of I1 and I2 as 394 kg ha-1, 53% higher). Interestingly, PY values were not significantly different in I1 and I2, but they were lower significantly in I3 by 28%, 27% and 20% in P1, P2, and P3, respectively. Essential plant characteristics including plant height, stem diameter, and panicle number were 6.1-16.7%, 6.4-24.5%, and 18.4-36.5% lower, respectively, in I2 and I3 than those in I1. The highest Leaf Area Index (LAI) value (5.34) was recorded in the in-furrow planting and I1, while the lowest value was observed in the on-ridge planting method and I3 (3.47). In I3, leaf temperature increased by an average of 2.5-3 oC, particularly during the anthesis stage. The results also showed that at a similar leaf water potential (LWP) higher yield and dry matter were obtained in the in-furrow planting compared to those obtained in the basin and on-ridge planting methods. The highest stomatal conductance (gs) value was observed within the in-furrow planting method and full irrigation (I1P3), while the lowest values were obtained in the on-ridge and 50%WR (I3P2). Finally, photosynthesis rate (An) reduction with diminishing LWP was mild, providing insights into quinoa's adaptability to drought. In conclusion, considering the thorough evaluation of all the measured parameters, the study suggests using the in-furrow planting method with a 75%WR as the best approach for growing quinoa in arid and semi-arid regions to enhance production and resource efficiency.


Asunto(s)
Riego Agrícola , Chenopodium quinoa , Chenopodium quinoa/fisiología , Chenopodium quinoa/crecimiento & desarrollo , Chenopodium quinoa/metabolismo , Riego Agrícola/métodos , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología , Sequías , Semillas/crecimiento & desarrollo , Semillas/fisiología , Producción de Cultivos/métodos , Agua/metabolismo
5.
BMC Plant Biol ; 24(1): 427, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769501

RESUMEN

BACKGROUND: Our meta-analysis examines the effects of melatonin on wheat under varying abiotic stress conditions, focusing on photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. We initially collected 177 publications addressing the impact of melatonin on wheat. After meticulous screening, 31 published studies were selected, encompassing 170 observations on photosynthetic parameters, 73 on chlorophyll fluorescence, 65 on leaf water status, 240 on photosynthetic pigments. RESULTS: The analysis revealed significant heterogeneity across studies (I² > 99.90%) for the aforementioned parameters and evidence of publication bias, emphasizing the complex interaction between melatonin application and plant physiological responses. Melatonin enhanced the overall response ratio (lnRR) for photosynthetic rates, stomatal conductance, transpiration rates, and fluorescence yields by 20.49, 22.39, 30.96, and 1.09%, respectively, compared to the control (no melatonin). The most notable effects were under controlled environmental conditions. Moreover, melatonin significantly improved leaf water content and reduced water potential, particularly under hydroponic conditions and varied abiotic stresses, highlighting its role in mitigating water stress. The analysis also revealed increases in chlorophyll pigments with soil drenching and foliar spray, and these were considered the effective application methods. Furthermore, melatonin influenced chlorophyll SPAD and intercellular CO2 concentrations, suggesting its capacity to optimize photosynthetic efficiency. CONCLUSIONS: This synthesis of meta-analysis confirms that melatonin significantly enhances wheat's resilience to abiotic stress by improving photosynthetic parameters, chlorophyll fluorescence, leaf water status, and photosynthetic pigments. Despite observed heterogeneity and publication bias, the consistent beneficial effects of melatonin, particularly under controlled conditions with specific application methods e.g. soil drenching and foliar spray, demonstrate its utility as a plant growth regulator for stress management. These findings encourage focused research and application strategies to maximize the benefits of melatonin in wheat farming, and thus contributing to sustainable agricultural practices.


Asunto(s)
Melatonina , Fotosíntesis , Estrés Fisiológico , Triticum , Melatonina/farmacología , Triticum/fisiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Fotosíntesis/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Clorofila/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología
6.
Planta ; 260(4): 90, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256219

RESUMEN

MAIN CONCLUSION: The high intrinsic water-use efficiency of Erianthus may be due to the low abaxial stomatal density and the accumulation of leaf metabolites such as betaine and gamma-aminobutyric acid. Sugarcane is an important crop that is widely cultivated in tropical and subtropical regions of the world. Because drought is among the main impediments limiting sugarcane production in these regions, breeding of drought-tolerant sugarcane varieties is important for sustainable production. Erianthus arundinaceus, a species closely related to sugarcane, exhibits high intrinsic water-use efficiency (iWUE), the underlying mechanisms for which remain unknown. To improve the genetic base for conferring drought tolerance in sugarcane, in the present study, we performed a comprehensive comparative analysis of leaf gas exchange and metabolites in different organs of sugarcane and Erianthus under wet and dry soil-moisture conditions. Erianthus exhibited lower stomatal conductance under both conditions, which resulted in a higher iWUE than in sugarcane. Organ-specific metabolites showed gradations between continuous parts and organs, suggesting linkages between them. Cluster analysis of organ-specific metabolites revealed the effects of the species and treatments in the leaves. Principal component analysis of leaf metabolites confirmed a rough ordering of the factors affecting their accumulations. Compared to sugarcane leaf, Erianthus leaf accumulated more raffinose, betaine, glutamine, gamma-aminobutyric acid, and S-adenosylmethionine, which function as osmolytes and stress-response compounds, under both the conditions. Our extensive analyses reveal that the high iWUE of Erianthus may be due to the specific accumulation of such metabolites in the leaves, in addition to the low stomatal density on the abaxial side of leaves. The identification of drought-tolerance traits of Erianthus will benefit the generation of sugarcane varieties capable of withstanding drought stress.


Asunto(s)
Sequías , Hojas de la Planta , Saccharum , Saccharum/genética , Saccharum/fisiología , Saccharum/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Estomas de Plantas/fisiología , Estrés Fisiológico , Agua/metabolismo , Agua/fisiología , Transpiración de Plantas/fisiología
7.
New Phytol ; 241(3): 1021-1034, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897156

RESUMEN

Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using open-top chambers, we assessed how, over several years, species interactions (monocultures vs mixtures) modulate heat and drought impacts on the hydraulic traits of juvenile European beech and pubescent oak. Using modeling, we estimated species interaction effects on timing to drought-induced mortality and the underlying mechanisms driving these impacts. We show that mixtures mitigate adverse heat and drought impacts for oak (less negative leaf water potential, higher stomatal conductance, and delayed stomatal closure) but enhance them for beech (lower water potential and stomatal conductance, narrower leaf safety margins, faster tree mortality). Potential underlying mechanisms include oak's larger canopy and higher transpiration, allowing for quicker exhaustion of soil water in mixtures. Our findings highlight that diversity has the potential to alter the effects of extreme events, which would ensure that some species persist even if others remain sensitive. Among the many processes driving diversity effects, differences in canopy size and transpiration associated with the stomatal regulation strategy seem the primary mechanisms driving mortality vulnerability in mixed seedling plantations.


Asunto(s)
Fagus , Quercus , Plantones , Calor , Sequías , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Árboles , Agua/fisiología
8.
New Phytol ; 243(2): 648-661, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757766

RESUMEN

Elevated air temperature (Tair) and vapour pressure deficit (VPDair) significantly influence plant functioning, yet their relative impacts are difficult to disentangle. We examined the effects of elevated Tair (+6°C) and VPDair (+0.7 kPa) on the growth and physiology of six tropical tree species. Saplings were grown under well-watered conditions in climate-controlled glasshouses for 6 months under three treatments: (1) low Tair and low VPDair, (2) high Tair and low VPDair, and (3) high Tair and high VPDair. To assess acclimation, physiological parameters were measured at a set temperature. Warm-grown plants grown under elevated VPDair had significantly reduced stomatal conductance and increased instantaneous water use efficiency compared to plants grown under low VPDair. Photosynthetic biochemistry and thermal tolerance (Tcrit) were unaffected by VPDair, but elevated Tair caused Jmax25 to decrease and Tcrit to increase. Sapling biomass accumulation for all species responded positively to an increase in Tair, but elevated VPDair limited growth. This study shows that stomatal limitation caused by even moderate increases in VPDair can decrease productivity and growth rates in tropical species independently from Tair and has important implications for modelling the impacts of climate change on tropical forests.


Asunto(s)
Hojas de la Planta , Estomas de Plantas , Bosque Lluvioso , Temperatura , Árboles , Presión de Vapor , Árboles/fisiología , Árboles/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Estomas de Plantas/fisiología , Clima Tropical , Fotosíntesis , Especificidad de la Especie , Agua/metabolismo , Transpiración de Plantas/fisiología , Biomasa , Gases/metabolismo
9.
New Phytol ; 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736030

RESUMEN

As temperature rises, net carbon uptake in tropical forests decreases, but the underlying mechanisms are not well understood. High temperatures can limit photosynthesis directly, for example by reducing biochemical capacity, or indirectly through rising vapor pressure deficit (VPD) causing stomatal closure. To explore the independent effects of temperature and VPD on photosynthesis we analyzed photosynthesis data from the upper canopies of two tropical forests in Panama with Generalized Additive Models. Stomatal conductance and photosynthesis consistently decreased with increasing VPD, and statistically accounting for VPD increased the optimum temperature of photosynthesis (Topt) of trees from a VPD-confounded apparent Topt of c. 30-31°C to a VPD-independent Topt of c. 33-36°C, while for lianas no VPD-independent Topt was reached within the measured temperature range. Trees and lianas exhibited similar temperature and VPD responses in both forests, despite 1500 mm difference in mean annual rainfall. Over ecologically relevant temperature ranges, photosynthesis in tropical forests is largely limited by indirect effects of warming, through changes in VPD, not by direct warming effects of photosynthetic biochemistry. Failing to account for VPD when determining Topt misattributes the underlying causal mechanism and thereby hinders the advancement of mechanistic understanding of global warming effects on tropical forest carbon dynamics.


A medida que aumenta la temperatura, disminuye la absorción neta de carbono en los bosques tropicales, sin embargo, aún no se conocen bien los mecanismos que la subyacen. Las altas temperaturas pueden limitar la fotosíntesis directamente, por ejemplo, reduciendo la eficiencia de los procesos bioquímicos, pero también de forma indirecta a través del aumento del déficit de presión de vapor (DPV) que resulta en el cierre estomático. Para explorar los efectos independientes de la temperatura y el DPV en la fotosíntesis, analizamos datos de la absorción neta de carbono del dosel de dos bosques tropicales en Panamá utilizando modelos aditivos generalizados. La conductancia estomática y la fotosíntesis disminuyó consistentemente con el aumento de DPV, y considerando el DPV en modelas estadísticas, la temperatura óptima de la fotosíntesis (Topt) aumentó, de un Topt aparente influida por la DVP de c. 30­31°C a un Topt independiente del DPV de c. 33­36°C. Los árboles y las lianas mostraron respuestas similares a la temperatura y a la DVP en ambos bosques, a pesar de la diferencia de 1500 mm en la precipitación media anual. La fotosíntesis en los bosques tropicales está limitada en gran medida por los efectos indirectos del aumento de la temperatura, a través de cambios en el DPV y no por los efectos directos en los procesos bioquímicos. Si no se tiene en cuenta el DPV al determinar el Topt, se atribuye erróneamente el mecanismo causal subyacente y, por lo tanto, se obstaculiza el avance en la comprensión de los efectos del calentamiento global en la dinámica del carbono.

10.
New Phytol ; 242(5): 1944-1956, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575849

RESUMEN

The oxygen isotope composition of cellulose (δ18O values) has been suggested to contain information on stomatal conductance (gs) responses to rising pCO2. The extent by which pCO2 affects leaf water and cellulose δ18O values (δ18OLW and δ18OC) and the isotope processes that determine pCO2 effects on δ18OLW and δ18OC are, however, unknown. We tested the effects of pCO2 on gs, δ18OLW and δ18OC in a glasshouse experiment, where six plant species were grown under pCO2 ranging from 200 to 500 ppm. Increasing pCO2 caused a decline in gs and an increase in δ18OLW, as expected. Importantly, the effects of pCO2 on gs and δ18OLW were small and pCO2 effects on δ18OLW were not directly transferred to δ18OC but were attenuated in grasses and amplified in dicotyledonous herbs and legumes. This is likely because of functional group-specific pCO2 effects on the model parameter pxpex. Our study highlights important uncertainties when using δ18OC as a proxy for gs. Specifically, pCO2-triggered gs effects on δ18OLW and δ18OC are possibly too small to be detected in natural settings and a pCO2 effect on pxpex may render the commonly assumed negative linkage between δ18OC and gs to be incorrect, potentially confounding δ18OC based gs reconstructions.


Asunto(s)
Atmósfera , Dióxido de Carbono , Celulosa , Fabaceae , Isótopos de Oxígeno , Hojas de la Planta , Poaceae , Agua , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , Celulosa/metabolismo , Poaceae/efectos de los fármacos , Poaceae/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Fabaceae/efectos de los fármacos , Fabaceae/fisiología , Fabaceae/metabolismo , Atmósfera/química , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología
11.
New Phytol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238150

RESUMEN

Analyses of leaf gas exchange rely on an Ohmic analogy that arrays single stomatal, internal air space, and mesophyll conductances in series. Such models underlie inferences of mesophyll conductance and the relative humidity of leaf airspaces, reported to fall as low as 80%. An unresolved question is whether such series models are biased with respect to real leaves, whose internal air spaces are chambered at various scales by vasculature. To test whether unsaturation could emerge from modeling artifacts, we compared series model estimates with true parameter values for a chambered leaf with varying distributions and magnitudes of leaf surface conductance ('patchiness'). Distributions of surface conductance can create large biases in gas exchange calculations. Both apparent unsaturation and internal CO2 gradient inversion can be produced by the evolution of broader distributions of stomatal apertures consistent with a decrease in surface conductance, as might occur under increasing vapor pressure deficit. In gas exchange experiments, the behaviors of derived quantities defined by simple series models are highly sensitive to the true partitioning of flux and stomatal apertures across leaf surfaces. New methods are needed to disentangle model artifacts from real biological responses.

12.
New Phytol ; 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370537

RESUMEN

A long-standing debate looks at whether air or soil dryness is more limiting to vegetation water use and productivity. The answer has large implications for future ecosystem functioning, as atmospheric dryness is predicted to increase globally while changes in soil moisture are predicted to be far more variable. Here, I review the complexities that contribute to this debate, including the strong coupling between atmospheric and soil dryness, and the widespread heterogeneity in vegetation hydraulic traits, acclimations, and adaptations to water stress. I discuss solutions to improve understanding and modeling of vegetation sensitivity to dryness, including how different types of observational data can be used together to gain insight into vegetation response to water stress across spatial and temporal scales.

13.
New Phytol ; 243(6): 2115-2129, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39073111

RESUMEN

Current estimates of temperature effects on plants mostly rely on air temperature, although it can significantly deviate from leaf temperature (Tleaf). To address this, some studies have used canopy temperature (Tcan). However, Tcan fails to capture the fine-scale variation in Tleaf among leaves and species in diverse canopies. We used infrared radiometers to study Tleaf and Tcan and how they deviate from air temperature (ΔTleaf and ΔTcan) in multispecies tropical tree plantations at three sites along an elevation and temperature gradient in Rwanda. Our results showed high Tleaf (up to c. 50°C) and ΔTleaf (on average 8-10°C and up to c. 20°C) of sun-exposed leaves during 10:00 h-15:00 h, being close to or exceeding photosynthetic heat tolerance thresholds. These values greatly exceeded simultaneously measured values of Tcan and ΔTcan, respectively, leading to strongly overestimated leaf thermal safety margins if basing those on Tcan data. Stomatal conductance and leaf size affected Tleaf and Tcan in line with their expected influences on leaf energy balance. Our findings highlight the importance of leaf traits for leaf thermoregulation and show that monitoring Tcan is not enough to capture the peak temperatures and heat stress experienced by individual leaves of different species in tropical forest canopies.


Asunto(s)
Hojas de la Planta , Temperatura , Árboles , Clima Tropical , Hojas de la Planta/fisiología , Árboles/fisiología , Estomas de Plantas/fisiología , Fotosíntesis
14.
New Phytol ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360441

RESUMEN

Carbon isotope discrimination (∆) in leaf biomass (∆BL) and tree rings (∆TR) provides important proxies for plant responses to climate change, specifically in terms of intrinsic water-use efficiency (iWUE). However, the nonphotosynthetic 12C/13C fractionation in plant tissues has rarely been quantified and its influence on iWUE estimation remains uncertain. We derived a comprehensive, ∆ based iWUE model (iWUEcom) which includes nonphotosynthetic fractionations (d) and characterized tissue-specific d-values based on global compilations of data of ∆BL, ∆TR and real-time ∆ in leaf photosynthesis (∆online). iWUEcom was further validated with independent datasets. ∆BL was larger than ∆online by 2.53‰, while ∆BL and ∆TR showed a mean offset of 2.76‰, indicating that ∆TR is quantitatively very similar to ∆online. Applying the tissue-specific d-values (dBL = 2.5‰, dTR = 0‰), iWUE estimated from ∆BL aligned well with those estimated from ∆TR or gas exchange. ∆BL and ∆TR showed a consistent iWUE trend with an average CO2 sensitivity of 0.15 ppm ppm-1 during 1975-2015. Accounting for nonphotosynthetic fractionations improves the estimation of iWUE based on isotope records in leaf biomass and tree rings, which is ultimate for inferring changes in carbon and water cycles under historical and future climate.

15.
Photosynth Res ; 160(2-3): 111-124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38700726

RESUMEN

Accurate estimation of photosynthetic parameters is essential for understanding plant physiological limitations and responses to environmental factors from the leaf to the global scale. Gas exchange is a useful tool to measure responses of net CO2 assimilation (A) to internal CO2 concentration (Ci), a necessary step in estimating photosynthetic parameters including the maximum rate of carboxylation (Vcmax) and the electron transport rate (Jmax). However, species and environmental conditions of low stomatal conductance (gsw) reduce the signal-to-noise ratio of gas exchange, challenging estimations of Ci. Previous works showed that not considering cuticular conductance to water (gcw) can lead to significant errors in estimating Ci, because it has a different effect on total conductance to CO2 (gtc) than does gsw. Here we present a systematic assessment of the need for incorporating gcw into Ci estimates. In this study we modeled the effect of gcw and of instrumental noise and quantified these effects on photosynthetic parameters in the cases of four species with varying gsw and gcw, measured using steady-state and constant ramping techniques, like the rapid A/Ci response method. We show that not accounting for gcw quantitatively influences Ci and the resulting Vcmax and Jmax, particularly when gcw exceeds 7% of the total conductance to water. The influence of gcw was not limited to low gsw species, highlighting the importance of species-specific knowledge before assessing A/Ci curves. Furthermore, at low gsw instrumental noise can affect Ci estimation, but the effect of instrumental noise can be minimized using constant-ramping rather than steady-state techniques. By incorporating these considerations, more precise measurements and interpretations of photosynthetic parameters can be obtained in a broader range of species and environmental conditions.


Asunto(s)
Fotosíntesis , Estomas de Plantas , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Dióxido de Carbono/metabolismo , Agua/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo
16.
Plant Cell Environ ; 47(2): 482-496, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37877185

RESUMEN

As heatwave frequency increases, they are more likely to coincide with other disturbances like insect defoliation. But it is unclear if high temperatures after defoliation impact canopy recovery or leaf traits which may affect response to further stressors like drought. To examine these stressor interactions, we subjected defoliated (DEF) and undefoliated (UNDEF) oak saplings to a simulated spring heatwave of +10°C for 25 days. We measured gas exchange, leaf area recovery, carbohydrate storage, turgor loss point (ΨTLP ), and minimum leaf conductance (gmin ). During the heatwave, stem respiration exhibited stronger thermal acclimation in DEF than UNDEF saplings, while stomatal conductance and net photosynthesis increased. The heatwave did not affect leaf area recovery or carbohydrate storage of DEF saplings, but reflush leaves had higher gmin than UNDEF leaves, and this was amplified by the heatwave. Across all treatments, higher gmin was associated with higher daytime stomatal conductance and a lower ΨTLP . The results suggest defoliation stress may not be exacerbated by higher temperatures. However, reflush leaves are less conservative in their water use, limiting their ability to minimise water loss. While lower ΨTLP could help DEF trees maintain gas exchange under mild drought, they may be more vulnerable to dehydration under severe drought.


Asunto(s)
Resistencia a la Sequía , Hojas de la Planta , Hojas de la Planta/fisiología , Árboles/fisiología , Sequías , Agua/fisiología , Carbohidratos , Fotosíntesis/fisiología
17.
Plant Cell Environ ; 47(9): 3478-3493, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38589983

RESUMEN

Stomatal opening in plant leaves is regulated through a balance of carbon and water exchange under different environmental conditions. Accurate estimation of stomatal regulation is crucial for understanding how plants respond to changing environmental conditions, particularly under climate change. A new generation of optimality-based modelling schemes determines instantaneous stomatal responses from a balance of trade-offs between carbon gains and hydraulic costs, but most such schemes do not account for biochemical acclimation in response to drought. Here, we compare the performance of six instantaneous stomatal optimisation models with and without accounting for photosynthetic acclimation. Using experimental data from 37 plant species, we found that accounting for photosynthetic acclimation improves the prediction of carbon assimilation in a majority of the tested models. Photosynthetic acclimation contributed significantly to the reduction of photosynthesis under drought conditions in all tested models. Drought effects on photosynthesis could not accurately be explained by the hydraulic impairment functions embedded in the stomatal models alone, indicating that photosynthetic acclimation must be considered to improve estimates of carbon assimilation during drought.


Asunto(s)
Aclimatación , Sequías , Modelos Biológicos , Fotosíntesis , Estomas de Plantas , Fotosíntesis/fisiología , Estomas de Plantas/fisiología , Aclimatación/fisiología , Agua/metabolismo , Agua/fisiología , Carbono/metabolismo , Hojas de la Planta/fisiología
18.
Plant Cell Environ ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867619

RESUMEN

Modern plant physiological theory stipulates that the resistance to water movement from plants to the atmosphere is overwhelmingly dominated by stomata. This conception necessitates a corollary assumption-that the air spaces in leaves must be nearly saturated with water vapour; that is, with a relative humidity that does not decline materially below unity. As this idea became progressively engrained in scientific discourse and textbooks over the last century, observations inconsistent with this corollary assumption were occasionally reported. Yet, evidence of unsaturation gained little traction, with acceptance of the prevailing framework motivated by three considerations: (1) leaf water potentials measured by either thermocouple psychrometry or the Scholander pressure chamber are largely consistent with the framework; (2) being able to assume near saturation of intercellular air spaces was transformational to leaf gas exchange analysis; and (3) there has been no obvious mechanism to explain a variable, liquid-phase resistance in the leaf mesophyll. Here, we review the evidence that refutes the assumption of universal, near saturation of air spaces in leaves. Refining the prevailing paradigm with respect to this assumption provides opportunities for identifying and developing mechanisms for increased plant productivity in the face of increasing evaporative demand imposed by global climate change.

19.
Plant Cell Environ ; 47(5): 1716-1731, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38305579

RESUMEN

As the leading global grain crop, maize significantly impacts agricultural water usage. Presently, photosynthesis ( A net ${A}_{\text{net}}$ ) in leaves of modern maize crops is saturated with CO 2 ${\text{CO}}_{2}$ , implying that reducing stomatal conductance ( g s ${g}_{{\rm{s}}}$ ) would not affect A net ${A}_{\text{net}}$ but reduce transpiration ( τ $\tau $ ), thereby increasing water use efficiency (WUE). While g s ${g}_{{\rm{s}}}$ reduction benefits upper canopy leaves under optimal conditions, the tradeoffs in low light and nitrogen-deficient leaves under nonoptimal microenvironments remain unexplored. Moreover, g s ${g}_{{\rm{s}}}$ reduction increases leaf temperature ( T leaf ${T}_{\text{leaf}}$ ) and water vapor pressure deficit, partially counteracting transpiratory water savings. Therefore, the overall impact of g s ${g}_{{\rm{s}}}$ reduction on water savings remains unclear. Here, we use a process-based leaf model to investigate the benefits of reduced g s ${g}_{{\rm{s}}}$ in maize leaves under different microenvironments. Our findings show that increases in T leaf ${T}_{\text{leaf}}$ due to g s ${g}_{{\rm{s}}}$ reduction can diminish WUE gains by up to 20%. However, g s ${g}_{{\rm{s}}}$ reduction still results in beneficial WUE tradeoffs, where a 29% decrease in g s ${g}_{{\rm{s}}}$ in upper canopy leaves results in a 28% WUE gain without loss in A net ${A}_{\text{net}}$ . Lower canopy leaves exhibit superior tradeoffs in g s ${g}_{{\rm{s}}}$ reduction with 178% gains in WUE without loss in A net ${A}_{\text{net}}$ . Our simulations show that these WUE benefits are resilient to climate change.


Asunto(s)
Hojas de la Planta , Zea mays , Fotosíntesis , Gases , Modelos Teóricos
20.
Plant Cell Environ ; 47(8): 3063-3075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38660960

RESUMEN

Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.


Asunto(s)
Citrus , Raíces de Plantas , Xilema , Citrus/fisiología , Xilema/fisiología , Raíces de Plantas/fisiología , Agua/metabolismo , Sequías , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Estomas de Plantas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA