Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Trends Biochem Sci ; 46(8): 661-672, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33653632

RESUMEN

The inability to make broad, minimally biased measurements of a cell's proteome stands as a major bottleneck for understanding how gene expression translates into cellular phenotype. Unlike sequencing for nucleic acids, there is no dominant method for making single-cell proteomic measurements. Instead, methods typically focus on either absolute quantification of a small number of proteins or highly multiplexed protein measurements. Advances in microfluidics and output encoding have led to major improvements in both aspects. Here, we review the most recent progress that has enabled hundreds of protein measurements and ultrahigh-sensitivity quantification. We also highlight emerging technologies such as single-cell mass spectrometry that may enable unbiased measurement of cellular proteomes.


Asunto(s)
Proteoma , Proteómica , Espectrometría de Masas
2.
Mol Cell ; 65(2): 361-370, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-28065596

RESUMEN

Targeted mass spectrometry assays for protein quantitation monitor peptide surrogates, which are easily multiplexed to target many peptides in a single assay. However, these assays have generally not taken advantage of sample multiplexing, which allows up to ten analyses to occur in parallel. We present a two-dimensional multiplexing workflow that utilizes synthetic peptides for each protein to prompt the simultaneous quantification of >100 peptides from up to ten mixed sample conditions. We demonstrate that targeted analysis of unfractionated lysates (2 hr) accurately reproduces the quantification of fractionated lysates (72 hr analysis) while obviating the need for peptide detection prior to quantification. We targeted 131 peptides corresponding to 69 proteins across all 60 National Cancer Institute cell lines in biological triplicate, analyzing 180 samples in only 48 hr (the equivalent of 16 min/sample). These data further elucidated a correlation between the expression of key proteins and their cellular response to drug treatment.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Espectrometría de Masas , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteoma , Proteómica/métodos , Antibióticos Antineoplásicos/farmacología , Biomarcadores/metabolismo , Línea Celular Tumoral , Doxorrubicina/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Factores de Tiempo , Factores de Transcripción/metabolismo , Flujo de Trabajo
3.
Mol Cell Proteomics ; 22(11): 100647, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716475

RESUMEN

The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/metabolismo , Factor 2 Relacionado con NF-E2 , Proteómica , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/metabolismo , Biomarcadores de Tumor/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/uso terapéutico , Formaldehído
4.
Mol Cell Proteomics ; 22(11): 100648, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730181

RESUMEN

The evaluation of biopsied solid organ tissue has long relied on visual examination using a microscope. Immunohistochemistry is critical in this process, labeling and detecting cell lineage markers and therapeutic targets. However, while the practice of immunohistochemistry has reshaped diagnostic pathology and facilitated improvements in cancer treatment, it has also been subject to pervasive challenges with respect to standardization and reproducibility. Efforts are ongoing to improve immunohistochemistry, but for some applications, the benefit of such initiatives could be impeded by its reliance on monospecific antibody-protein reagents and limited multiplexing capacity. This perspective surveys the relevant challenges facing traditional immunohistochemistry and describes how mass spectrometry, particularly liquid chromatography-tandem mass spectrometry, could help alleviate problems. In particular, targeted mass spectrometry assays could facilitate measurements of individual proteins or analyte panels, using internal standards for more robust quantification and improved interlaboratory reproducibility. Meanwhile, untargeted mass spectrometry, showcased to date clinically in the form of amyloid typing, is inherently multiplexed, facilitating the detection and crude quantification of 100s to 1000s of proteins in a single analysis. Further, data-independent acquisition has yet to be applied in clinical practice, but offers particular strengths that could appeal to clinical users. Finally, we discuss the guidance that is needed to facilitate broader utilization in clinical environments and achieve standardization.


Asunto(s)
Proteínas , Proteómica , Proteómica/métodos , Reproducibilidad de los Resultados , Espectrometría de Masas , Anticuerpos
5.
Mol Cell Proteomics ; 22(6): 100556, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37087050

RESUMEN

Non-obstructive azoospermia (NOA), the most severe form of male infertility, could be treated with intracytoplasmic sperm injection, providing spermatozoa were retrieved with the microdissection testicular sperm extraction (mTESE). We hypothesized that testis-specific and germ cell-specific proteins would facilitate flow cytometry-assisted identification of rare spermatozoa in semen cell pellets of NOA patients, thus enabling non-invasive diagnostics prior to mTESE. Data mining, targeted proteomics, and immunofluorescent microscopy identified and verified a panel of highly testis-specific proteins expressed at the continuum of germ cell differentiation. Late germ cell-specific proteins AKAP4_HUMAN and ASPX_HUMAN (ACRV1 gene) revealed exclusive localization in spermatozoa tails and acrosomes, respectively. A multiplex imaging flow cytometry assay facilitated fast and unambiguous identification of rare but morphologically intact AKAP4+/ASPX+/Hoechst+ spermatozoa within debris-laden semen pellets of NOA patients. While the previously suggested markers for spermatozoa retrieval suffered from low diagnostic specificity, the multistep gating strategy and visualization of AKAP4+/ASPX+/Hoechst+ cells with elongated tails and acrosome-capped nuclei facilitated fast and unambiguous identification of the mature intact spermatozoa. AKAP4+/ASPX+/Hoechst+ assay may emerge as a noninvasive test to predict retrieval of morphologically intact spermatozoa by mTESE, thus improving diagnostics and treatment of severe forms of male infertility.


Asunto(s)
Azoospermia , Infertilidad Masculina , Masculino , Humanos , Azoospermia/genética , Azoospermia/metabolismo , Azoospermia/terapia , Semen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Infertilidad Masculina/metabolismo , Estudios Retrospectivos , Proteínas de Anclaje a la Quinasa A/metabolismo
6.
Proteomics ; 24(6): e2300242, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171885

RESUMEN

Clear cell ovarian carcinoma (CCOC) is a relatively rare subtype of ovarian cancer (OC) with high degree of resistance to standard chemotherapy. Little is known about the underlying molecular mechanisms, and it remains a challenge to predict its prognosis after chemotherapy. Here, we first analyzed the proteome of 35 formalin-fixed paraffin-embedded (FFPE) CCOC tissue specimens from a cohort of 32 patients with CCOC (H1 cohort) and characterized 8697 proteins using data-independent acquisition mass spectrometry (DIA-MS). We then performed proteomic analysis of 28 fresh frozen (FF) CCOC tissue specimens from an independent cohort of 24 patients with CCOC (H2 cohort), leading to the identification of 9409 proteins with DIA-MS. After bioinformatics analysis, we narrowed our focus to 15 proteins significantly correlated with the recurrence free survival (RFS) in both cohorts. These proteins are mainly involved in DNA damage response, extracellular matrix (ECM), and mitochondrial metabolism. Parallel reaction monitoring (PRM)-MS was adopted to validate the prognostic potential of the 15 proteins in the H1 cohort and an independent confirmation cohort (H3 cohort). Interferon-inducible transmembrane protein 1 (IFITM1) was observed as a robust prognostic marker for CCOC in both PRM data and immunohistochemistry (IHC) data. Taken together, this study presents a CCOC proteomic data resource and a single promising protein, IFITM1, which could potentially predict the recurrence and survival of CCOC.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Pronóstico , Proteómica/métodos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Proteoma/análisis , Biomarcadores , Biomarcadores de Tumor
7.
J Proteome Res ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533909

RESUMEN

Quantitation of proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is complex, with a multiplicity of options ranging from label-free techniques to chemically and metabolically labeling proteins. Increasingly, for clinically relevant analyses, stable isotope-labeled (SIL) internal standards (ISs) represent the "gold standard" for quantitation due to their similar physiochemical properties to the analyte, wide availability, and ability to multiplex to several peptides. However, the purchase of SIL-ISs is a resource-intensive step in terms of cost and time, particularly for screening putative biomarker panels of hundreds of proteins. We demonstrate an alternative strategy utilizing nonhuman sera as the IS for quantitation of multiple human proteins. We demonstrate the effectiveness of this strategy using two high abundance clinically relevant analytes, vitamin D binding protein [Gc globulin] (DBP) and albumin (ALB). We extend this to three putative risk markers for cardiovascular disease: plasma protease C1 inhibitor (SERPING1), annexin A1 (ANXA1), and protein kinase, DNA-activated catalytic subunit (PRKDC). The results show highly specific, reproducible, and linear measurement of the proteins of interest with comparable precision and accuracy to the gold standard SIL-IS technique. This approach may not be applicable to every protein, but for many proteins it can offer a cost-effective solution to LC-MS/MS protein quantitation.

8.
J Proteome Res ; 23(2): 749-759, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266179

RESUMEN

High-grade serous ovarian carcinoma (HGSC) is the most prevalent subtype of epithelial ovarian cancer. The combination of a high rate of recurrence and novel therapies in HGSC necessitates an accurate assessment of the disease. Currently, HGSC response to treatment and recurrence are monitored via immunoassay of serum levels of the glycoprotein CA125. CA125 levels predictably rise at HGSC recurrence; however, it is likely that the disease is progressing even before it is detectable through CA125. This may explain why treating solely based on CA125 increase has not been associated with improved outcomes. Thus, additional biomarkers that monitor HGSC progression and cancer recurrence are needed. For this purpose, we developed a scheduled parallel reaction monitoring mass spectrometry (PRM-MS) assay for the quantification of four previously identified HGSC-derived glycopeptides (from proteins FGL2, LGALS3BP, LTBP1, and TIMP1). We applied the assay to quantify their longitudinal expression profiles in 212 serum samples taken from 34 HGSC patients during disease progression. Analyses revealed that LTBP1 best-mirrored tumor load, dropping as a result of cancer treatment in 31 out of 34 patients and rising at HGSC recurrence in 28 patients. Additionally, LTBP1 rose earlier during remission than CA125 in 11 out of 25 platinum-sensitive patients with an average lead time of 116.4 days, making LTBP1 a promising candidate for monitoring of HGSC recurrence.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/metabolismo , Biomarcadores de Tumor , Cistadenocarcinoma Seroso/patología , Recurrencia Local de Neoplasia , Glicoproteínas , Espectrometría de Masas , Fibrinógeno , Proteínas de Unión a TGF-beta Latente
9.
J Proteome Res ; 23(5): 1834-1843, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38594897

RESUMEN

GoDig, a platform for targeted pathway proteomics without the need for manual assay scheduling or synthetic standards, is a powerful, flexible, and easy-to-use method that uses tandem mass tags to increase sample throughput up to 18-fold relative to label-free methods. Though the protein-level success rates of GoDig are high, the peptide-level success rates are more limited, hampering assays of harder-to-quantify proteins and site-specific phenomena. To guide the optimization of GoDig assays as well as improvements to the GoDig platform, we created GoDigViewer, a new stand-alone software that provides detailed visualizations of GoDig runs. GoDigViewer guided the implementation of "priming runs," an acquisition mode with significantly higher success rates. In this mode, two or more chromatographic priming runs are automatically performed to improve the accuracy and precision of target elution orders, followed by analytical runs which quantify targets. Using priming runs, success rates exceeded 97% for a list of 400 peptide targets and 95% for a list of 200 targets that are usually not quantified using untargeted mass spectrometry. We used priming runs to establish a quantitative assay of 125 macroautophagy proteins that had a >95% success rate and revealed differences in macroautophagy expression profiles across four human cell lines.


Asunto(s)
Proteómica , Programas Informáticos , Espectrometría de Masas en Tándem , Proteómica/métodos , Humanos , Espectrometría de Masas en Tándem/métodos , Péptidos/análisis , Cromatografía Liquida/métodos , Autofagia
10.
J Proteome Res ; 23(6): 2013-2027, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38739617

RESUMEN

The human relaxins belong to the Insulin/IGF/Relaxin superfamily of peptide hormones, and their physiological function is primarily associated with reproduction. In this study, we focused on a prostate tissue-specific relaxin RLN1 (REL1_HUMAN protein) and a broader tissue specificity RLN2 (REL2_HUMAN protein). Due to their structural similarity, REL1 and REL2 proteins were collectively named a 'human relaxin protein' in previous studies and were exclusively measured by immunoassays. We hypothesized that the highly selective and sensitive immunoaffinity-selected reaction monitoring (IA-SRM) assays would reveal the identity and abundance of the endogenous REL1 and REL2 in biological samples and facilitate the evaluation of these proteins for diagnostic applications. High levels of RLN1 and RLN2 transcripts were found in prostate and breast cancer cell lines by RT-PCR. However, no endogenous prorelaxin-1 or mature REL1 were detected by IA-SRM in cell lines, seminal plasma, or blood serum. The IA-SRM assay of REL2 demonstrated its undetectable levels (<9.4 pg/mL) in healthy control female and male sera and relatively high levels of REL2 in maternal sera across different gestational weeks (median 331 pg/mL; N = 120). IA-SRM assays uncovered potential cross-reactivity and nonspecific binding for relaxin immunoassays. The developed IA-SRM assays will facilitate the investigation of the physiological and pathological roles of REL1 and REL2 proteins.


Asunto(s)
Relaxina , Humanos , Relaxina/metabolismo , Relaxina/genética , Masculino , Femenino , Línea Celular Tumoral , Inmunoensayo/métodos , Espectrometría de Masas/métodos , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/diagnóstico , Semen/química , Semen/metabolismo
11.
Mol Med ; 30(1): 51, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632526

RESUMEN

BACKGROUND: The Multi-System Inflammatory Syndrome in Children (MIS-C) can develop several weeks after SARS-CoV-2 infection and requires a distinct treatment protocol. Distinguishing MIS-C from SARS-CoV-2 negative sepsis (SCNS) patients is important to quickly institute the correct therapies. We performed targeted proteomics and machine learning analysis to identify novel plasma proteins of MIS-C for early disease recognition. METHODS: A case-control study comparing the expression of 2,870 unique blood proteins in MIS-C versus SCNS patients, measured using proximity extension assays. The 2,870 proteins were reduced in number with either feature selection alone or with a prior COMBAT-Seq batch effect adjustment. The leading proteins were correlated with demographic and clinical variables. Organ system and cell type expression patterns were analyzed with Natural Language Processing (NLP). RESULTS: The cohorts were well-balanced for age and sex. Of the 2,870 unique blood proteins, 58 proteins were identified with feature selection (FDR-adjusted P < 0.005, P < 0.0001; accuracy = 0.96, AUC = 1.00, F1 = 0.95), and 15 proteins were identified with a COMBAT-Seq batch effect adjusted feature selection (FDR-adjusted P < 0.05, P < 0.0001; accuracy = 0.92, AUC = 1.00, F1 = 0.89). All of the latter 15 proteins were present in the former 58-protein model. Several proteins were correlated with illness severity scores, length of stay, and interventions (LTA4H, PTN, PPBP, and EGF; P < 0.001). NLP analysis highlighted the multi-system nature of MIS-C, with the 58-protein set expressed in all organ systems; the highest levels of expression were found in the digestive system. The cell types most involved included leukocytes not yet determined, lymphocytes, macrophages, and platelets. CONCLUSIONS: The plasma proteome of MIS-C patients was distinct from that of SCNS. The key proteins demonstrated expression in all organ systems and most cell types. The unique proteomic signature identified in MIS-C patients could aid future diagnostic and therapeutic advancements, as well as predict hospital length of stays, interventions, and mortality risks.


Asunto(s)
COVID-19/complicaciones , Sepsis , Niño , Humanos , Proteoma , SARS-CoV-2 , Estudios de Casos y Controles , Proteómica , Síndrome de Respuesta Inflamatoria Sistémica , Proteínas Sanguíneas
12.
Mass Spectrom Rev ; 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36789499

RESUMEN

Tyrosine phosphorylation is a crucial posttranslational modification that is involved in various aspects of cell biology and often has functions in cancers. It is necessary not only to identify the specific phosphorylation sites but also to quantify their phosphorylation levels under specific pathophysiological conditions. Because of its high sensitivity and accuracy, mass spectrometry (MS) has been widely used to identify endogenous and synthetic phosphotyrosine proteins/peptides across a range of biological systems. However, phosphotyrosine-containing proteins occur in extremely low abundance and they degrade easily, severely challenging the application of MS. This review highlights the advances in both quantitative analysis procedures and enrichment approaches to tyrosine phosphorylation before MS analysis and reviews the differences among phosphorylation, sulfation, and nitration of tyrosine residues in proteins. In-depth insights into tyrosine phosphorylation in a wide variety of biological systems will offer a deep understanding of how signal transduction regulates cellular physiology and the development of tyrosine phosphorylation-related drugs as cancer therapeutics.

13.
Mass Spectrom Rev ; 42(2): 796-821, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34719806

RESUMEN

Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.


Asunto(s)
Proteínas , Proteómica , Humanos , Espectrometría de Masas , Péptidos/química , Mutación
14.
Clin Proteomics ; 21(1): 33, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760690

RESUMEN

BACKGROUND: COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS: A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS: Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS: The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.

15.
Clin Proteomics ; 21(1): 6, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38287260

RESUMEN

Routine measurement of cancer biomarkers is performed for early detection, risk classification, and treatment monitoring, among other applications, and has substantially contributed to better clinical outcomes for patients. However, there remains an unmet need for clinically validated assays of cancer protein biomarkers. Protein tumor markers are of particular interest since proteins carry out the majority of biological processes and thus dynamically reflect changes in cancer pathophysiology. Mass spectrometry-based targeted proteomics is a powerful tool for absolute peptide and protein quantification in biological matrices with numerous advantages that make it attractive for clinical applications in oncology. The use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) based methodologies has allowed laboratories to overcome challenges associated with immunoassays that are more widely used for tumor marker measurements. Yet, clinical implementation of targeted proteomics methodologies has so far been limited to a few cancer markers. This is due to numerous challenges associated with paucity of robust validation studies of new biomarkers and the labor-intensive and operationally complex nature of LC-MS/MS workflows. The purpose of this review is to provide an overview of targeted proteomics applications in cancer, workflows used in targeted proteomics, and requirements for clinical validation and implementation of targeted proteomics assays. We will also discuss advantages and challenges of targeted MS-based proteomics assays for clinical cancer biomarker analysis and highlight some recent developments that will positively contribute to the implementation of this technique into clinical laboratories.

16.
Clin Proteomics ; 21(1): 8, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311768

RESUMEN

BACKGROUND: Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue. METHODS: In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix. RESULTS: This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue. CONCLUSIONS: The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.

17.
J Mol Cell Cardiol ; 176: 33-40, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657638

RESUMEN

The neonatal swine heart possesses an endogenous ability to regenerate injured myocardium through the proliferation of pre-existing cardiomyocyte (CM) populations. However, this regenerative capacity is lost shortly after birth. Normal postnatal developmental processes and the regenerative capacity of mammalian hearts are tightly linked, but not much is known about how the swine cardiac proteome changes throughout postnatal development. Herein, we integrated robust and quantitative targeted "top-down" and global "bottom-up" proteomic workflows to comprehensively define the dynamic landscape of the swine cardiac proteome throughout postnatal maturation. Using targeted top-down proteomics, we were able to identify significant alterations in sarcomere composition, providing new insight into the proteoform landscape of sarcomeres that can disassemble, a process necessary for productive CM proliferation. Furthermore, we quantified global changes in protein abundance using bottom-up proteomics, identified over 700 differentially expressed proteins throughout postnatal development, and mapped these proteins to changes in developmental and metabolic processes. We envision these results will help guide future investigations to comprehensively understand endogenous cardiac regeneration toward the development of novel therapeutic strategies for heart failure.


Asunto(s)
Proteoma , Sarcómeros , Animales , Porcinos , Sarcómeros/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Corazón , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Mamíferos/metabolismo
18.
J Proteome Res ; 22(2): 539-545, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36480281

RESUMEN

The selection of a suitable proteotypic peptide remains a challenge for designing a targeted quantitative proteomics assay. Although the criteria are well-established in the literature, the selection of these peptides is often performed in a subjective and time-consuming manner. Here, we have developed a practical and semiautomated workflow implemented in an open-source program named Typic. Typic is designed to run in a command line and a graphical interface to help selecting a list of proteotypic peptides for targeted quantitation. The tool combines the input data and downloads additional data from public repositories to produce a file per protein as output. Each output file includes relevant information to the selection of proteotypic peptides organized in a table, a colored ranking of peptides according to their potential value as targets for quantitation and auxiliary plots to assist users in the task of proteotypic peptides selection. Taken together, Typic leads to a practical and straightforward data extraction from multiple data sets, allowing the identification of most suitable proteotypic peptides based on established criteria, in an unbiased and standardized manner, ultimately leading to a more robust targeted proteomics assay.


Asunto(s)
Proteoma , Proteómica , Péptidos
19.
J Proteome Res ; 22(6): 2055-2066, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37171072

RESUMEN

Liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) has widespread clinical use for detection of inborn errors of metabolism, therapeutic drug monitoring, and numerous other applications. This technique detects proteolytic peptides as surrogates for protein biomarker expression, mutation, and post-translational modification in individual clinical assays and in cancer research with highly multiplexed quantitation across biological pathways. LC-MRM for protein biomarkers must be translated from multiplexed research-grade panels to clinical use. LC-MRM panels provide the capability to quantify clinical biomarkers and emerging protein markers to establish the context of tumor phenotypes that provide highly relevant supporting information. An application to visualize and communicate targeted proteomics data will empower translational researchers to move protein biomarker panels from discovery to clinical use. Therefore, we have developed a web-based tool for targeted proteomics that provides pathway-level evaluations of key biological drivers (e.g., EGFR signaling), signature scores (representing phenotypes) (e.g., EMT), and the ability to quantify specific drug targets across a sample cohort. This tool represents a framework for integrating summary information, decision algorithms, and risk scores to support Physician-Interpretable Phenotypic Evaluation in R (PIPER) that can be reused or repurposed by other labs to communicate and interpret their own biomarker panels.


Asunto(s)
Proteínas , Investigación Biomédica Traslacional , Proteínas/análisis , Péptidos/metabolismo , Biomarcadores/análisis , Fenotipo
20.
J Proteome Res ; 22(7): 2179-2185, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37348120

RESUMEN

Osteogenesis is modulated by multiple regulatory networks. Recent studies showed that RNA modifications and their reader, writer, and eraser (RWE) proteins are involved in regulating various biological processes. Few studies, however, were conducted to investigate the functions of RNA modifications and their RWE proteins in osteogenesis. By using LC-MS/MS in parallel-reaction monitoring (PRM) mode, we performed a comprehensive quantitative assessment of 154 epitranscriptomic RWE proteins throughout the entire time course of osteogenic differentiation in H9 human embryonic stem cells (ESCs). We found that approximately half of the 127 detected RWE proteins were down-regulated during osteogenic differentiation, and they included mainly proteins involved in RNA methylation and pseudouridylation. Protein-protein interaction (PPI) network analysis unveiled significant associations between the down-regulated epitranscriptomic RWE proteins and osteogenesis-related proteins. Gene set enrichment analysis (GSEA) of publicly available RNA-seq data obtained from osteogenesis imperfecta patients suggested a potential role of METTL1 in osteogenesis through the cytokine network. Together, this is the first targeted profiling of epitranscriptomic RWE proteins during osteogenic differentiation of human ESCs, and our work unveiled potential regulatory roles of these proteins in osteogenesis. LC-MS/MS data were deposited on ProteomeXchange (PXD039249).


Asunto(s)
Células Madre Embrionarias Humanas , Osteogénesis , Humanos , Osteogénesis/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , Diferenciación Celular/genética , ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA