Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 588
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Prostate ; 84(9): 823-831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606933

RESUMEN

BACKGROUND: There are limited preclinical orthotopic prostate cancer models due to the technical complexity of surgical engraftment and tracking the tumor growth in the mouse prostate gland. Orthotopic xenografts recapitulate the tumor microenvironment, tumor stromal interactions, and clinical behavior to a greater extent than xenografts grown at subcutaneous or intramuscular sites. METHODS: This study describes a novel micro-surgical technique for orthotopically implanting intact tumors pieces from cell line derived (transgenic adenocarcinoma mouse prostate [TRAMP]-C2) or patient derived (neuroendocrine prostate cancer [NEPC]) tumors in the mouse prostate gland and monitoring tumor growth using magnetic resonance (MR) imaging. RESULTS: The TRAMP-C2 tumors grew rapidly to a predetermined endpoint size of 10 mm within 3 weeks, whereas the NEPC tumors grew at a slower rate over 7 weeks. The tumors were readily detected by MR and confidently identified when they were approximately 2-3 mm in size. The tumors were less well-defined on CT. The TRAMP-C2 tumors were characterized by amorphous sheets of poorly differentiated cells similar to a high-grade prostatic adenocarcinoma and frequent macroscopic peritoneal and lymph node metastases. In contrast, the NEPC's displayed a neuroendocrine morphology with polygonal cells arranged in nests and solid sheets and high count. There was a local invasion of the bladder and other adjacent tissues but no identifiable metastases. The TRAMP-C2 tumors were more hypoxic than the NEPC tumors. CONCLUSIONS: This novel preclinical orthotopic prostate cancer mouse model is suitable for either syngeneic or patient derived tumors and will be effective in developing and advancing the current selection of treatments for patients with prostate cancer.


Asunto(s)
Adenocarcinoma , Modelos Animales de Enfermedad , Neoplasias de la Próstata , Animales , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/diagnóstico por imagen , Ratones , Humanos , Adenocarcinoma/patología , Adenocarcinoma/terapia , Línea Celular Tumoral , Ratones Transgénicos , Trasplante de Neoplasias/métodos , Imagen por Resonancia Magnética , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/diagnóstico por imagen , Carcinoma Neuroendocrino/terapia
2.
Nanotechnology ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39353465

RESUMEN

Many studies have been conducted on the use of ultra-small iron oxide nanoparticles (USIONs) (d < 3 nm) as potential positive magnetic resonance imaging (MRI)-contrast agents (CAs); however, there is dearth of research on clustered USIONs. In this study, nearly monodispersed clustered USIONs were synthesized using a simple two-step one-pot polyol method. First, USIONs (d = 2.7 nm) were synthesized, and clustered USIONs (d = 27.9 nm) were subsequently synthesized through multiple cross-linking of USIONs with poly(acrylic acid-co-maleic acid) (PAAMA) polymers with many -COOH groups. The clustered PAAMA-USIONs exhibited very weak ferromagnetism owing to the magnetic interaction between superparamagnetic USIONs; this was evidenced by their appreciable r1= 3.9 s‒1mM‒1and high r2/r1ratio of 14.6. Their ability to function as a dual-modal T1/T2MRI-CA in T1-weighted MRI was demonstrated when they simultaneously exhibited positive and negative contrasts in T1-weighted MRI of tumor model mice after intravenous injection. They displayed positive contrasts at the kidneys, bladder, heart, and aorta and negative contrasts at the liver and tumor. .

3.
Immunol Invest ; 53(1): 70-89, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981469

RESUMEN

INTRODUCTION: Research in tumor treatment has shown promising results using extracellular vesicles (EVs) derived from immune cells. EVs derived from M1 macrophages (proinflammatory), known as M1-EVs, have properties that suppress tumor growth, making them a promising treatment tool for immune susceptible tumors such as melanoma. Here, small unaltered M1-EVs (M1-sEVs) were employed in a 3D mouse melanoma model (melanospheres) to evaluate such activity. METHODS: Macrophages were polarized and EVs were isolated by ultracentrifugation. The EVs obtained were characterized based on size, with measurements performed by dynamic light scattering and electron microscopy, and the expression profiles of microRNAs were analyzed by microarray and PCR. Melanospheres were used to evaluate the cytotoxicity of M1-sEVs. Pondering a possible future transposition from the animal model to the human, human melanoma cells were transfected with a specific miRNA, and the impact on cell proliferation was evaluated. RESULTS: The isolated EVs showed a size distribution between 50-400 nm in diameter, but preeminently in a range of 70-90 nm. M1-sEVs demonstrated a remarkable ability to reduce cell proliferation and viability in the melanospheres, leading to a decrease in their volume. M1-sEVs contained unique miRNAs, including miR-29a-3p, which exhibited significant antitumor activities according to bioinformatics analysis. Validation of the antitumor effects of miR-29a-3p was obtained by a functional evaluation, i.e., by inducing miRNA overexpression in human melanoma cells (SK-MEL-28). CONCLUSION: Although further research would be advisable, the study provides evidence supporting the potential of M1-sEVs and their miRNA load as a possible targeted immune therapy for melanoma.


Asunto(s)
Vesículas Extracelulares , Melanoma , MicroARNs , Animales , Humanos , Ratones , Melanoma/terapia , Modelos Animales de Enfermedad , Macrófagos , MicroARNs/genética
4.
Mol Biol Rep ; 51(1): 988, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285089

RESUMEN

BACKGROUND: Nod2 is involved in innate immune responses to bacteria, regulation of metabolism, and sensitivity to cancer. A Nod2 polymorphism is associated with breast cancer, but the role of Nod2 in the development and progression of breast cancer is unknown. METHODS: Here, we tested the hypothesis that Nod2 protects mice from breast cancer using the 4T1 orthotopic model of mammary tumorigenesis. WT and Nod2-/- mice were injected with 4T1 mammary carcinoma cells and the development of tumors was monitored. A detailed analysis of the tumor transcriptome was performed and genes that were differentially expressed and pathways that were predicted to be altered between WT and Nod2-/- mice were identified. The activation of key signaling molecules involved in metabolism and development of cancer was studied. RESULTS: Our data demonstrate that Nod2-/- mice had a higher incidence and larger tumors than WT mice. Nod2-/- mice had increased expression of genes that promote DNA replication and cell division, and decreased expression of genes required for lipolysis, lipogenesis, and steroid biosynthesis compared with WT mice. Nod2-/- mice also had lower expression of genes required for adipogenesis and reduced levels of lipids compared with WT mice. The tumors in Nod2-/- mice had decreased expression of genes associated with PPARα/γ signaling, increased activation of STAT3, decreased activation of STAT5, and no change in the activation of ERK compared with WT mice. CONCLUSIONS: We conclude that Nod2 protects mice from the 4T1 orthotopic breast tumor, and that tumors in Nod2-/- mice are predicted to have increased DNA replication and cell proliferation and decreased lipid metabolism compared with WT mice.


Asunto(s)
Neoplasias de la Mama , Inmunidad Innata , Proteína Adaptadora de Señalización NOD2 , Animales , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Ratones , Femenino , Inmunidad Innata/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Ratones Noqueados , Línea Celular Tumoral , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Ratones Endogámicos BALB C , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos
5.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260392

RESUMEN

It is known that tumor growth can be influenced by the nervous system. It is not known, however, if tumors communicate directly with the central nervous system (CNS) or if such interactions may impact tumor growth. Here, we report that ventrolateral medulla (VLM) catecholaminergic (CA) neurons in the mouse brain are activated in tumor-bearing mice and the activity of these neurons significantly alter tumor growth in multiple syngeneic and spontaneous mouse tumor models. Specific ablation of VLM CA neurons by a dopamine-ß-hydroxylase (DBH) promotor-activated apoptosis-promoting caspase-3 in Dbh-Cre mice as well as inhibition of these neurons by a chemogenetic method slowed tumor progression. Consistently, chemogenetic activation of VLM CA neurons promoted tumor growth. The tumor inhibition effect of VLM CA neuron ablation is mitigated in Dbh-Cre;Rag1-/- mice, indicating that this regulatory effect is mediated by the adaptive immune system. Specific depletion of CD8+ T cells using an anti-CD8+ antibody also mitigated the tumor suppression resulting from the VLM CA neuron ablation. Finally, we showed that the VLM CA neuronal ablation had an additive antitumor effect with paclitaxel treatment. Collectively, our study uncovered the role of VLM CA neurons in the mouse brain in controlling tumor growth in the mouse body.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Catecolaminas/metabolismo , Bulbo Raquídeo/patología , Neuronas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Sistema Inmunológico/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/patología
6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725151

RESUMEN

Liver metastasis is a major cause of mortality for patients with colorectal cancer (CRC). Mismatch repair-proficient (pMMR) CRCs make up about 95% of metastatic CRCs, and are unresponsive to immune checkpoint blockade (ICB) therapy. Here we show that mouse models of orthotopic pMMR CRC liver metastasis accurately recapitulate the inefficacy of ICB therapy in patients, whereas the same pMMR CRC tumors are sensitive to ICB therapy when grown subcutaneously. To reveal local, nonmalignant components that determine CRC sensitivity to treatment, we compared the microenvironments of pMMR CRC cells grown as liver metastases and subcutaneous tumors. We found a paucity of both activated T cells and dendritic cells in ICB-treated orthotopic liver metastases, when compared with their subcutaneous tumor counterparts. Furthermore, treatment with Feline McDonough sarcoma (FMS)-like tyrosine kinase 3 ligand (Flt3L) plus ICB therapy increased dendritic cell infiltration into pMMR CRC liver metastases and improved mouse survival. Lastly, we show that human CRC liver metastases and microsatellite stable (MSS) primary CRC have a similar paucity of T cells and dendritic cells. These studies indicate that orthotopic tumor models, but not subcutaneous models, should be used to guide human clinical trials. Our findings also posit dendritic cells as antitumor components that can increase the efficacy of immunotherapies against pMMR CRC.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Células Dendríticas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Interferón gamma/uso terapéutico , Neoplasias Hepáticas Experimentales/inmunología , Neoplasias Hepáticas Experimentales/secundario , Masculino , Ratones Endogámicos C57BL
7.
Lasers Med Sci ; 39(1): 55, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308119

RESUMEN

This study aimed to investigate the impact of ablative fractional laser (AFL) on hedgehog pathway gene expression in murine microscopic basal cell carcinomas (BCCs) and compare these results to the effect of topical treatment with vismodegib, an FDA-approved hedgehog inhibitor. In 25 mice, 1 cm2 skin test sites (n = 44) containing microscopic BCCs were exposed to one of three interventions: a single CO2 AFL treatment (1 pulse, 40 mJ/microbeam, wavelength 10.6 µm, 5% density, pulse rate 250 Hz, n = 12), eight topical vismodegib treatments (3.8 mg/mL, n = 8), or combination of AFL and vismodegib treatments (n = 9). Untreated controls were included for comparison (n = 15). After 4 days, skin samples were analyzed for hedgehog gene expression (Gli1, Gli2, and Ptch1) by qPCR and vismodegib concentrations by liquid chromatography mass spectrometry (data analyzed with two-tailed t-tests and linear regression). A single treatment with AFL monotherapy significantly reduced hedgehog gene expression compared to untreated controls (Gli1 72.4% reduction, p = 0.003; Gli2 55.2%, p = 0.010; Ptch1 70.9%, p < 0.001). Vismodegib treatment also reduced hedgehog gene expression (Gli1 91.6%; Gli2 83.3%; Ptch1 83.0%), significantly surpassing AFL monotherapy for two out of three genes (Gli1, p = 0.017; Gli2, p = 0.007; Ptch1, p = 0.15). AFL and vismodegib combination mirrored the effects of vismodegib monotherapy (Gli1, p = 0.424; Gli2, p = 0.289; Ptch1, p = 0.593), possibly due to comparable cutaneous vismodegib concentrations (mean ± SD, vismodegib monotherapy 850 ± 475 µmol/L; combination 1036 ± 824 µmol/L; p = 0.573). In conclusion, a single AFL treatment significantly reduced hedgehog gene expression in murine BCCs mimicking the effects of eight topical applications of vismodegib. Further studies are needed to assess whether AFL can be utilized for BCC treatment, either as monotherapy or in combination with other drugs.


Asunto(s)
Anilidas , Carcinoma Basocelular , Piridinas , Neoplasias Cutáneas , Animales , Ratones , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/uso terapéutico , Carcinoma Basocelular/tratamiento farmacológico , Carcinoma Basocelular/genética , Expresión Génica , Rayos Láser
8.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928259

RESUMEN

Oncolytic adenoviruses are in development as immunotherapeutic agents for solid tumors. Their efficacy is in part dependent on their ability to replicate in tumors. It is, however, difficult to obtain evidence for intratumoral oncolytic adenovirus replication if direct access to the tumor is not possible. Detection of systemic adenovirus DNA, which is sometimes used as a proxy, has limited value because it does not distinguish between the product of intratumoral replication and injected virus that did not replicate. Therefore, we investigated if detection of virus-associated RNA (VA RNA) by RT-qPCR on liquid biopsies could be used as an alternative. We found that VA RNA is expressed in adenovirus-infected cells in a replication-dependent manner and is secreted by these cells in association with extracellular vesicles. This allowed VA RNA detection in the peripheral blood of a preclinical in vivo model carrying adenovirus-injected human tumors and on liquid biopsies from a human clinical trial. Our results confirm that VA RNA detection in liquid biopsies can be used for minimally invasive assessment of oncolytic adenovirus replication in solid tumors in vivo.


Asunto(s)
Adenoviridae , Viroterapia Oncolítica , Virus Oncolíticos , ARN Viral , Replicación Viral , Humanos , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , ARN Viral/genética , Adenoviridae/genética , Adenoviridae/fisiología , Animales , Viroterapia Oncolítica/métodos , Ratones , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/genética , Femenino
9.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612551

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a solid-tumor malignancy. To enhance the treatment landscape of PDAC, a 3D model optimized for rigorous drug screening is essential. Within the PDAC tumor microenvironment, a dense stroma comprising a large extracellular matrix and cancer-associated fibroblasts (CAFs) is well-known for its vital role in modulating tumor growth, cellular heterogeneity, bidirectional paracrine signaling, and chemoresistance. In this study, we employed a fibroblast-populated collagen lattice (FPCL) modeling approach that has the ability to replicate fibroblast contractility in the collagenous matrix to build dense stroma. This FPCL model allows CAF differentiation by facilitating multifaceted cell-cell interactions between cancer cells and CAFs, with the differentiation further influenced by mechanical forces and hypoxia carried within the 3D structure. Our FPCL models displayed hallmark features, including ductal gland structures and differentiated CAFs with spindle shapes. Through morphological explorations alongside in-depth transcriptomic and metabolomic profiling, we identified substantial molecular shifts from the nascent to mature model stages and potential metabolic biomarkers, such as proline. The initial pharmacological assays highlighted the effectiveness of our FPCL model in screening for improved therapeutic strategies. In conclusion, our PDAC modeling platform mirrors complex tumor microenvironmental dynamics and offers an unparalleled perspective for therapeutic exploration.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral , Páncreas , Hormonas Pancreáticas , Colágeno
10.
Curr Issues Mol Biol ; 45(10): 7734-7748, 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37886932

RESUMEN

The clinically approved human epidermal growth factor receptor 2 (HER2)-targeting monoclonal antibodies (mAbs), trastuzumab, and pertuzumab, target domains IV and II, respectively. Trastuzumab is now the standard treatment for HER2-overexpressed breast and gastric cancers, and trastuzumab in combination with pertuzumab showed clinical benefit. However, there still exist patients who do not respond to the therapy. Furthermore, HER2 mutants that cannot be recognized by pertuzumab were found in tumors. Therefore, novel anti-HER2 mAbs and modalities have been desired. In our previous study, we developed a novel anti-HER2 domain I mAb, H2Mab-139 (mouse IgG1, kappa). We herein produced a defucosylated mouse IgG2a type of mAb against HER2 (H2Mab-139-mG2a-f) to enhance antibody-dependent cellular cytotoxicity (ADCC)-mediated antitumor activity. H2Mab-139-mG2a-f exhibits a high binding affinity in flow cytometry with the dissociation constant (KD) determined to be 3.9 × 10-9 M and 7.7 × 10-9 M against HER2-overexpressed Chinese hamster ovary (CHO)-K1 (CHO/HER2) and HER2-positive BT-474 cells, respectively. Moreover, we showed that H2Mab-139-mG2a-f exerted ADCC and complement-dependent cytotoxicity against CHO/HER2 and BT-474 in vitro and exhibited potent antitumor activities in mouse xenograft models. These results indicated that H2Mab-139-mG2a-f exerts antitumor effects against HER2-positive human breast cancers and is useful as an antibody treatment for HER2-positive human cancers.

11.
EMBO J ; 38(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30396996

RESUMEN

Targeting immune checkpoints, such as PD-L1 and its receptor PD-1, has opened a new avenue for treating cancers. Understanding the regulatory mechanism of PD-L1 and PD-1 will improve the clinical response rate and efficacy of PD-1/PD-L1 blockade in cancer patients and the development of combinatorial strategies. VGLL4 inhibits YAP-induced cell proliferation and tumorigenesis through competition with YAP for binding to TEADs. However, whether VGLL4 has a role in anti-tumor immunity is largely unknown. Here, we found that disruption of Vgll4 results in potent T cell-mediated tumor regression in murine syngeneic models. VGLL4 deficiency reduces PD-L1 expression in tumor cells. VGLL4 interacts with IRF2BP2 and promotes its protein stability through inhibiting proteasome-mediated protein degradation. Loss of IRF2BP2 results in persistent binding of IRF2, a transcriptional repressor, to PD-L1 promoter. In addition, YAP inhibits IFNγ-inducible PD-L1 expression partially through suppressing the expression of VGLL4 and IRF1 by YAP target gene miR-130a. Our study identifies VGLL4 as an important regulator of PD-L1 expression and highlights a central role of VGLL4 and YAP in the regulation of tumor immunity.


Asunto(s)
Antígeno B7-H1/genética , Factores de Transcripción/genética , Escape del Tumor/genética , Células A549 , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Células Cultivadas , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Oncogenes/genética , Interferencia de ARN , Factores de Transcripción/fisiología , Proteínas Señalizadoras YAP
12.
Small ; : e2307365, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990372

RESUMEN

In search of effective therapeutics for breast cancers, establishing physiologically relevant in vitro models is of great benefit to facilitate the clinical translation. Despite extensive progresses, it remains to develop the tumor models maximally recapturing the key pathophysiological attributes of their native counterparts. Therefore, the current study aimed to develop a microsphere-enabled modular approach toward the formation of in vitro breast tumor models with the capability of incorporating various selected cells while retaining spatial organization. Poly (lactic-co-glycolic acid) microspheres (150-200 mm) with tailorable pore size and surface topography are fabricated and used as carriers to respectively lade with breast tumor-associated cells. Culture of cell-laden microspheres assembled within a customized microfluidic chamber allowed to form 3D tumor models with spatially controlled cell distribution. The introduction of endothelial cell-laden microspheres into cancer-cell laden microspheres at different ratios would induce angiogenesis within the culture to yield vascularized tumor. Evaluation of anticancer drugs such as doxorubicin and Cediranib on the tumor models do demonstrate corresponding physiological responses. Clearly, with the ability to modulate microsphere morphology, cell composition and spatial distribution, microsphere-enabled 3D tumor tissue formation offers a high flexibility to satisfy the needs for pathophysiological study, anticancer drug screening or design of personalized treatment.

13.
Gynecol Oncol ; 171: 49-58, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804621

RESUMEN

OBJECTIVES: Epidermal growth factor EGF-like domain multiple-6 (EGFL6) is highly expressed in high grade serous ovarian cancer and promotes both endothelial cell proliferation/angiogenesis and cancer cell proliferation/metastasis. As such it has been implicated as a therapeutic target. As a secreted factor, EGFL6 is a candidate for antibody therapy. The objectives of this study were to create and validate humanized affinity-matured EGFL6 neutralizing antibodies for clinical development. METHODS: A selected murine EGFL6 antibody was humanized using CDR grafting to create 26 variant humanized antibodies. These were screened and the lead candidate was affinity matured. Seven humanized affinity-matured EGFL6 antibodies were screened for their ability to block EGFL6 activity on cancer cells in vitro, two of which were selected and tested their therapeutic activity in vivo. RESULTS: Humanized affinity matured antibodies demonstrated high affinity for EGFL6 (150 pM to 2.67 nM). We found that several humanized affinity-matured EGFL6 antibodies specifically bound to recombinant, and native human EGFL6. Two lead antibodies were able to inhibit EGFL6-mediated (i) cancer cell migration, (ii) proliferation, and (iii) increase in ERK phosphorylation in cancer cells in vitro. Both lead antibodies restricted growth of an EGFL6 expressing ovarian cancer patient derived xenograft. Analysis of treated human tumor xenografts indicated that anti-EGFL6 therapy suppressed angiogenesis, inhibited tumor cell proliferation, and promoted tumor cell apoptosis. CONCLUSIONS: Our studies confirm the ability of these humanized affinity-matured antibodies to neutralize EGFL6 and acting as a therapeutic to restrict cancer growth. This work supports the development of these antibody for first-in-human clinical trials.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Neoplasias Ováricas , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Proliferación Celular , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular
14.
J Theor Biol ; 559: 111383, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36539112

RESUMEN

Immune cells in the tumor microenvironment (TME) are known to affect tumor growth, vascularization, and extracellular matrix (ECM) deposition. Marked interest in system-scale analysis of immune species interactions within the TME has encouraged progress in modeling tumor-immune interactions in silico. Due to the computational cost of simulating these intricate interactions, models have typically been constrained to representing a limited number of immune species. To expand the capability for system-scale analysis, this study develops a three-dimensional continuum mixture model of tumor-immune interactions to simulate multiple immune species in the TME. Building upon a recent distributed computing implementation that enables efficient solution of such mixture models, major immune species including monocytes, macrophages, natural killer cells, dendritic cells, neutrophils, myeloid-derived suppressor cells (MDSC), cytotoxic, helper, regulatory T-cells, and effector and regulatory B-cells and their interactions are represented in this novel implementation. Immune species extravasate from blood vasculature, undergo chemotaxis toward regions of high chemokine concentration, and influence the TME in proportion to locally defined levels of stimulation. The immune species contribute to the production of angiogenic and tumor growth factors, promotion of myofibroblast deposition of ECM, upregulation of angiogenesis, and elimination of living and dead tumor species. The results show that this modeling approach offers the capability for quantitative insight into the modulation of tumor growth by diverse immune-tumor interactions and immune-driven TME effects. In particular, MDSC-mediated effects on tumor-associated immune species' activation levels, volume fraction, and influence on the TME are explored. Longer term, linking of the model parameters to particular patient tumor information could simulate cancer-specific immune responses and move toward a more comprehensive evaluation of immunotherapeutic strategies.


Asunto(s)
Antineoplásicos , Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Microambiente Tumoral , Macrófagos/metabolismo , Antineoplásicos/farmacología
15.
Immunol Invest ; 52(6): 749-766, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37403798

RESUMEN

BACKGROUND: Tumor innervation has been shown to be utilized by some solid cancers to support tumor initiation, growth, progression, and metastasis, as well as confer resistance to immune checkpoint blockade through suppression of antitumor immunologic responses. Since botulinum neurotoxin type A1 (BoNT/A1) blocks neuronal cholinergic signaling, its potential use as an anticancer drug in combination with anti-PD-1 therapy was investigated in four different syngeneic mouse tumor models. METHODS: Mice implanted with breast (4T1), lung (LLC1), colon (MC38), and melanoma (B16-F10) tumors were administered a single intratumoral injection of 15 U/kg BoNT/A1, repeated intraperitoneal injections of 5 mg/kg anti-PD-1 (RMP1-14), or both. RESULTS: Compared to the single-agent treatments, anti-PD-1 and BoNT/A1 combination treatment elicited significant reduction in tumor growth among B16-F10 and MC38 tumor-bearing mice. The combination treatment also lowered serum exosome levels in these mice compared to the placebo control group. In the B16-F10 syngeneic mouse tumor model, anti-PD-1 + BoNT/A1 combination treatment lowered the proportion of MDSCs, negated the increased proportion of Treg cells, and elicited a higher number of tumor-infiltrating CD4+ and CD8+ T lymphocytes into the tumor microenvironment compared to anti-PD-1 treatment alone. CONCLUSION: Our findings demonstrate the synergistic antitumor effects of BoNT/A1 and PD-1 checkpoint blockade in mouse tumor models of melanoma and colon carcinoma. These findings provide some evidence on the potential application of BoNT/A1 as an anticancer drug in combination with immune checkpoint blockade and should be further explored.


Asunto(s)
Antineoplásicos , Toxinas Botulínicas , Melanoma , Animales , Ratones , Receptor de Muerte Celular Programada 1 , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Antineoplásicos/farmacología , Toxinas Botulínicas/farmacología , Colon , Microambiente Tumoral , Linfocitos T CD8-positivos
16.
Proc Natl Acad Sci U S A ; 117(38): 23684-23694, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907939

RESUMEN

Immune checkpoint blockade (ICB) is efficacious in many diverse cancer types, but not all patients respond. It is important to understand the mechanisms driving resistance to these treatments and to identify predictive biomarkers of response to provide best treatment options for all patients. Here we introduce a resection and response-assessment approach for studying the tumor microenvironment before or shortly after treatment initiation to identify predictive biomarkers differentiating responders from nonresponders. Our approach builds on a bilateral tumor implantation technique in a murine metastatic breast cancer model (E0771) coupled with anti-PD-1 therapy. Using our model, we show that tumors from mice responding to ICB therapy had significantly higher CD8+ T cells and fewer Gr1+CD11b+ myeloid-derived suppressor cells (MDSCs) at early time points following therapy initiation. RNA sequencing on the intratumoral CD8+ T cells identified the presence of T cell exhaustion pathways in nonresponding tumors and T cell activation in responding tumors. Strikingly, we showed that our derived response and resistance signatures significantly segregate patients by survival and associate with patient response to ICB. Furthermore, we identified decreased expression of CXCR3 in nonresponding mice and showed that tumors grown in Cxcr3-/- mice had an elevated resistance rate to anti-PD-1 treatment. Our findings suggest that the resection and response tumor model can be used to identify response and resistance biomarkers to ICB therapy and guide the use of combination therapy to further boost the antitumor efficacy of ICB.


Asunto(s)
Neoplasias de la Mama , Inmunoterapia , Neoplasias Mamarias Experimentales , Microambiente Tumoral/inmunología , Animales , Biomarcadores de Tumor/inmunología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Linfocitos T CD8-positivos/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/terapia , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Transcriptoma/inmunología
17.
BMC Biol ; 20(1): 74, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35361222

RESUMEN

BACKGROUND: Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. RESULTS: We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. CONCLUSIONS: We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice.


Asunto(s)
Mutación con Ganancia de Función , Edición Génica , Animales , Hígado/metabolismo , Ratones , Fenotipo , Tecnología
18.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069128

RESUMEN

The title compounds were synthesized by the reaction of 5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide with various aldehydes bearing aromatic and heterocyclic moieties and acetophenones, and their cytotoxicity was tested via MTT assay against human triple-negative breast cancer MDA-MB-231, human melanoma IGR39, human pancreatic carcinoma Panc-1, and prostate cancer cell line PPC-1. Furthermore, the selectivity of compounds towards cancer cells compared to fibroblasts was also investigated. Four compounds were identified as the most promising anticancer agents out of a series of pyrrolidinone-hydrazone derivatives bearing a diphenylamine moiety. These compounds were most selective against the prostate cancer cell line PPC-1 and the melanoma cell lines IGR39, with EC50 values in the range of 2.5-20.2 µM against these cell lines. In general, the compounds were less active against triple-negative breast cancer MDA-MB-231 cell line, and none of them showed an inhibitory effect on the migration of these cells. In the 'wound healing' assay, N'-((5-nitrothiophen-2-yl)methylene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was identified as the most promising derivative that could be further developed as an antimetastatic agent. N'-(5-chloro- and N'-(3,4-dichlorobenzylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazides most efficiently reduced the cell viability in IGR39 cell spheroids, while there was no effect of the investigated pyrrolidinone-hydrazone derivatives on PPC-1 3D cell cultures. Antioxidant activity determined via FRAP assay of N'-(1-(4-aminophenyl)ethylidene)-5-oxo-1-(4-(phenylamino)phenyl)pyrrolidine-3-carbohydrazide was 1.2 times higher than that of protocatechuic acid.


Asunto(s)
Antineoplásicos , Melanoma , Neoplasias de la Próstata , Neoplasias de la Mama Triple Negativas , Masculino , Humanos , Antioxidantes/farmacología , Hidrazonas/farmacología , Difenilamina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Proliferación Celular , Antineoplásicos/farmacología , Pirrolidinonas/farmacología , Pirrolidinas/farmacología , Relación Estructura-Actividad , Línea Celular Tumoral
19.
Molecules ; 28(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37446888

RESUMEN

Despite several treatment options for blood cancer, mortality remains high due to relapse and the disease's aggressive nature. Elevated levels of HSP90, a molecular chaperone essential for protein folding, are associated with poor prognosis in leukemia and lymphoma. HSP90 as a target for chemotherapy has been met with limited success due to toxicity and induction of heat shock. This study tested the activity of an HSP90 inhibitor, SP11, against leukemic cells, mouse lymphoma allograft, and xenograft models. SP11 induced cytotoxicity in vitro in leukemic cell lines and induced cell death via apoptosis, with minimal effect on normal cells. SP11 induced cell death by altering the status of HSP90 client proteins both in vitro and in vivo. SP11 reduced the tumor burden in allograft and xenograft mouse models without apparent toxicity. The half-life of SP11 in the plasma was approximately 2 h. SP11 binding was observed at both the N-terminal and C-terminal domains of HSP90. C-terminal binding was more potent than N-terminal binding of HSP90 in silico and in vitro using isothermal calorimetry. SP11 bioavailability and minimal toxicity in vivo make it a potential candidate to be developed as a novel anticancer agent.


Asunto(s)
Antineoplásicos , Cumarinas , Humanos , Animales , Ratones , Cumarinas/farmacología , Línea Celular Tumoral , Proteínas HSP90 de Choque Térmico/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Pliegue de Proteína , Apoptosis
20.
Curr Issues Mol Biol ; 44(10): 4987-4999, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36286054

RESUMEN

Chemokines are involved in the humoral regulation of body homeostasis. Changes in the blood level of chemokines were found in cancer, atherosclerosis, diabetes, and other systemic diseases. It is essential to distinguish the effects of co-morbid pathologies and cancer on the level of chemokines in the blood. We aimed to analyze, by multiplex cytometry, the levels of chemokines in the blood of healthy young volunteers as well as of intact mice and mice with CT26 colon and Pan02 pancreatic tumors. Two types of chemokines were identified both in human and murine plasmas: homeostatic ones, which were found in high concentrations (>100 pg/mL), and inducible ones, which can be undetectable or determined at very low levels (0−100 pg/mL). There was a high variability in the chemokine levels, both in healthy humans and mice. To analyze chemokine levels during tumor growth, C57BL/6 and BALB/c were inoculated with Pan02 or CT26 tumor cells, accordingly. The tumors significantly differed in the growth and the mortality of mice. However, the blood chemokine levels did not change in tumor-bearing mice until the very late stages. Taken collectively, blood chemokine level is highly variable and reflects in situ homeostasis. Care should be taken when considering chemokines as prognostic parameters or therapeutic targets in cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA