Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(15): e2221725120, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37014859

RESUMEN

The coupling of light to electrical charge carriers in semiconductors is the foundation of many technological applications. Attosecond transient absorption spectroscopy measures simultaneously how excited electrons and the vacancies they leave behind dynamically react to the applied optical fields. In compound semiconductors, these dynamics can be probed via any of their atomic constituents with core-level transitions into valence and conduction band. Typically, the atomic species forming the compound contribute comparably to the relevant electronic properties of the material. One therefore expects to observe similar dynamics, irrespective of the choice of atomic species via which it is probed. Here, we show in the two-dimensional transition metal dichalcogenide semiconductor MoSe2, that through a selenium-based core-level transition we observe charge carriers acting independently from each other, while when probed through molybdenum, the collective, many-body motion of the carriers dominates. Such unexpectedly contrasting behavior can be explained by a strong localization of electrons around molybdenum atoms following absorption of light, which modifies the local fields acting on the carriers. We show that similar behavior in elemental titanium metal [M. Volkov et al., Nat. Phys. 15, 1145-1149 (2019)] carries over to transition metal-containing compounds and is expected to play an essential role for a wide range of such materials. Knowledge of independent particle and collective response is essential for fully understanding these materials.

2.
Proc Natl Acad Sci U S A ; 119(22): e2205510119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35609200

RESUMEN

SignificanceIn a theoretical study, we present an ultrafast technique for probing time-dependent molecular charge densities. An ultrafast optical pump first brings the molecule into an electronic nonstationary state. This is followed by coherent inelastic scattering of a broadband single-electron probe pulse with a variable delay T, which is detected spectrally. The technique is applied to reveal phase-sensitive background-free coherent electron beating in the conical intersection passage in uracil and reveals the otherwise elusive coherent beating of strongly coupled electrons and nuclei.

3.
Nano Lett ; 24(1): 339-346, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147355

RESUMEN

Moiré superlattices have emerged as an unprecedented manipulation tool for engineering correlated quantum phenomena in van der Waals heterostructures. With moiré potentials as a naturally configurable solid-state that sustains high exciton density, interlayer excitons in transition metal dichalcogenide heterostructures are expected to achieve high-temperature exciton condensation. However, the exciton degeneracy state is usually optically inactive due to the finite momentum of interlayer excitons. Experimental observation of dark interlayer excitons in moiré potentials remains challenging. Here we directly visualize the dark interlayer exciton transport in WS2/h-BN/WSe2 heterostructures using femtosecond transient absorption microscopy. We observe a transition from classical free exciton gas to quantum degeneracy by imaging temperature-dependent exciton transport. Below a critical degeneracy temperature, exciton diffusion rates exhibit an accelerating downward trend, which can be explained well by a nonlinear quantum diffusion model. These results open the door to quantum information processing and high-precision metrology in moiré superlattices.

4.
Nano Lett ; 24(1): 222-228, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147363

RESUMEN

Chirality of massless fermions emerging in condensed matter is a key to understand their characteristic behavior as well as to exploit their functionality. However, the chiral nature of massless fermions in Dirac semimetals has remained elusive, due to equivalent occupation of carriers with the opposite chirality in thermal equilibrium. Here, we show that the isospin degree of freedom, which labels the chirality of massless carriers from a crystallographic point of view, can be injected by circularly polarized light. Terahertz Faraday rotation spectroscopy successfully detects the anomalous Hall conductivity by a light-induced isospin polarization in a three-dimensional Dirac semimetal, Cd3As2. Spectral analysis of the Hall conductivity reveals a long scattering time and a long decay time, which are characteristic of the isospin. The long-lived, robust, and reversible character of the isospin promises a potential application of Dirac semimetals in future information technology.

5.
Nano Lett ; 24(1): 424-432, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153402

RESUMEN

Applying high pressure to effectively modulate the electronic and lattice structures of materials could unravel various physical properties associated with phase transitions. In this work, high-pressure-compatible femtosecond pump-probe microscopy was constructed to study the pressure-dependent ultrafast dynamics in black phosphorus (BP) thin films. We observed pressure-driven evolution of the electronic topological transition and three structural phases as the pressure reached ∼22 GPa, which could be clearly differentiated in the transient absorption images containing spatially resolved ultrafast carrier and coherent phonon dynamics. Surprisingly, an anomalous coherent acoustic phonon mode with pressure softening behavior was observed within the range of ∼3-8 GPa, showing distinct laser power and time dependences. Density functional theory calculations show that this mode, identified as the shear mode along the armchair orientation, gains significant electron-phonon coupling strength from out-of-plane compression that leads to decreased phonon frequency. Our results provide insights into the structure evolution of BP with pressure and hold potential for applications in microelectromechanical devices.

6.
Nano Lett ; 24(14): 4101-4107, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38507732

RESUMEN

Among atomically thin semiconductors, CrSBr stands out as both its bulk and monolayer forms host tightly bound, quasi-one-dimensional excitons in a magnetic environment. Despite its pivotal importance for solid-state research, the exciton lifetime has remained unknown. While terahertz polarization probing can directly trace all excitons, independently of interband selection rules, the corresponding large far-field foci substantially exceed the lateral sample dimensions. Here, we combine terahertz polarization spectroscopy with near-field microscopy to reveal a femtosecond decay of paramagnetic excitons in a monolayer of CrSBr, which is 30 times shorter than the bulk lifetime. We unveil low-energy fingerprints of bound and unbound electron-hole pairs in bulk CrSBr and extract the nonequilibrium dielectric function of the monolayer in a model-free manner. Our results demonstrate the first direct access to the ultrafast dielectric response of quasi-one-dimensional excitons in CrSBr, potentially advancing the development of quantum devices based on ultrathin van der Waals magnets.

7.
J Synchrotron Radiat ; 31(Pt 3): 469-477, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517754

RESUMEN

Various X-ray techniques are employed to investigate specimens in diverse fields. Generally, scattering and absorption/emission processes occur due to the interaction of X-rays with matter. The output signals from these processes contain structural information and the electronic structure of specimens, respectively. The combination of complementary X-ray techniques improves the understanding of complex systems holistically. In this context, we introduce a multiplex imaging instrument that can collect small-/wide-angle X-ray diffraction and X-ray emission spectra simultaneously to investigate morphological information with nanoscale resolution, crystal arrangement at the atomic scale and the electronic structure of specimens.

8.
Chemistry ; 30(29): e202400499, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38502668

RESUMEN

We report the room temperature phosphorescence upon iodination on a crystalline eumelanin monomer with shielded hydroxyl moieties, ethyl 5,6-dimethoxyindole-2-carboxylate (DMICE). Ultrafast intersystem crossing (ISC) is observed in the iodinated (IDMICE) as well as brominated (BDMICE) analogues of the eumelanin monomer derivative in solution. The triplet quantum yields (φT) and intersystem crossing rates (kISC) of the halogenated eumelanin derivatives are φ T B D M I C E ${{\phi{} }_{T}^{BDMICE}}$ =25.4±1.1 %; k I S C B D M I C E ${{k}_{ISC}^{BDMICE}}$ =1.95×109 s-1 and φ T I D M I C E ${{\phi{} }_{T}^{IDMICE}}$ =59.1±1.6 %; k I S C I D M I C E = ${{k}_{ISC}^{IDMICE}=}$ 1.36×1010 s-1, as monitored using transient absorption spectroscopy. Theoretical calculations based on nuclear ensemble method reveal that computed kISC and spin-orbit coupling matrix elements for eumelanin derivatives are larger for IDMICE relative to BDMICE. The halogen and π-π interactions, with distinct excitonic coupling and higher ISC rate promote phosphorescence in IDMICE molecular crystals. Accessing triplet excited states and resultant photoluminescence through structural modification of eumelanin scaffolds paves way for exploring the versatility of eumelanin-inspired molecules as bio-functional materials.

9.
Chemistry ; 30(30): e202400205, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38526989

RESUMEN

The novel photoswitchable ligand 3,3'-Azobenz(metPA)2 (1) is used to prepare a [Cu2(1)2](BF4)2 metallocycle (2), whose photoisomerization was characterized using static and time-resolved spectroscopic methods. Optical studies demonstrate the highly quantitative and reproducible photoinduced cyclic E/Z switching without decay of the complex. Accordingly and best to our knowledge, [Cu2(1)2](BF4)2 constitutes the first reversibly photoswitchable (3d)-metallocycle based on azobenzene. The photoinduced multiexponential dynamics in the sub-picosecond to few picosecond time domain of 1 and 2 have been assessed. These ultrafast dynamics as well as the yield of the respective photostationary state (PSSZ = 65 %) resemble the behavior of archetypical azobenzene. Also, the innovative pump-probe laser technique of gas phase transient photodissociation (τ-PD) in a mass spectrometric ion trap was used to determine the intrinsic relaxation dynamics for the isolated complex. These results are consistent with the results from femtosecond UV/Vis transient absorption (fs-TA) in solution, emphasizing the azobenzene-like dynamics of 2. This unique combination of fs-TA and τ-PD enables valuable insights into the prevailing interplay of dynamics and solvation. Both analyses (in solution and gas phase) and quantum chemical calculations reveal a negligible effect of the metal coordination on the switching mechanism and electronic pathway, which suggests a non-cooperative isomerization process.

10.
Chemistry ; 30(25): e202304313, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38410932

RESUMEN

Unraveling the intriguing aspects of the intramolecular charge transfer (ICT) phenomenon of multi-modular donor-acceptor-based push-pull systems are of paramount importance considering their promising applications, particularly in solar energy harvesting and light-emitting devices. Herein, a series of symmetrical and unsymmetrical donor-acceptor chromophores 1-6, are designed and synthesized by the Corey-Fuchs reaction via Evano's condition followed by [2+2] cycloaddition retroelectrocyclic ring-opening reaction with strong electron acceptors TCNE and TCNQ in good yields (~60-85 %). The photophysical, electrochemical, and computational studies are investigated to explore the effect of incorporation of strong electron acceptors 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) and dicyanoquinodimethane (DCNQ) with phenothiazine (PTZ) donor. An additional low-lying broad absorption band extended towards the near-infrared (NIR) region suggests charge polarization after the introduction of the electron acceptors in both symmetrical and asymmetrical systems, leading to such strong ICT bands. The electrochemical properties reveal that reduction potentials of 3 and 6 are lower than those of 2 and 5, suggesting DCNQ imparts more on the electronic properties and hence largely contributes to the stabilization of LUMO energy levels than TCBD, in line with theoretical observations. Relative positions of the frontier orbitals on geometry-optimized structures further support accessing donor-acceptor sites responsible for the ICT transitions. Eventually, ultrafast carrier dynamics of the photoinduced species are investigated by femtosecond transient absorption studies to identify their spectral characteristics and target analysis further provides information about different excited states photophysical events including ICT and their associated time profiles. The key findings obtained here related to excited state dynamical processes of these newly synthesized systems are believed to be significant in advancing their prospect of utilization in solar energy conversion and related photonic applications.

11.
Annu Rev Phys Chem ; 74: 493-520, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36791782

RESUMEN

Photosynthetic light harvesting exhibits near-unity quantum efficiency. The high efficiency is achieved through a series of energy and charge transfer steps within a network of pigment-containing proteins. Remarkably, high efficiency is conserved across many organisms despite differences in the protein structures and organization that allow each organism to respond to its own biological niche and the stressors within. In this review, we highlight recent progress toward understanding how organisms maintain optimal light-harvesting ability by acclimating to their environment. First, we review the building blocks of photosynthetic light harvesting, energy transfer, and time-resolved spectroscopic techniques. Then, we explore how three classes of photosynthetic organisms-purple bacteria, cyanobacteria, and green plants-optimize their light-harvesting apparatuses to their particular environment. Overall, research has shown that photosynthetic energy transfer is robust to changing environmental conditions, with each organism utilizing its own strategies to optimize photon capture in its particular biological niche.


Asunto(s)
Complejos de Proteína Captadores de Luz , Fotosíntesis , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Análisis Espectral , Aclimatación , Luz
12.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33436412

RESUMEN

X-ray diffraction is routinely used for structure determination of stationary molecular samples. Modern X-ray photon sources, e.g., from free-electron lasers, enable us to add temporal resolution to these scattering events, thereby providing a movie of atomic motions. We simulate and decipher the various contributions to the X-ray diffraction pattern for the femtosecond isomerization of azobenzene, a textbook photochemical process. A wealth of information is encoded besides real-time monitoring of the molecular charge density for the cis to trans isomerization. In particular, vibronic coherences emerge at the conical intersection, contributing to the total diffraction signal by mixed elastic and inelastic photon scattering. They cause distinct phase modulations in momentum space, which directly reflect the real-space phase modulation of the electronic transition density during the nonadiabatic passage. To overcome the masking by the intense elastic scattering contributions from the electronic populations in the total diffraction signal, we discuss how this information can be retrieved, e.g., by employing very hard X-rays to record large scattering momentum transfers.

13.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33947814

RESUMEN

Intramolecular charge transfer and the associated changes in molecular structure in N,N'-dimethylpiperazine are tracked using femtosecond gas-phase X-ray scattering. The molecules are optically excited to the 3p state at 200 nm. Following rapid relaxation to the 3s state, distinct charge-localized and charge-delocalized species related by charge transfer are observed. The experiment determines the molecular structure of the two species, with the redistribution of electron density accounted for by a scattering correction factor. The initially dominant charge-localized state has a weakened carbon-carbon bond and reorients one methyl group compared with the ground state. Subsequent charge transfer to the charge-delocalized state elongates the carbon-carbon bond further, creating an extended 1.634 Å bond, and also reorients the second methyl group. At the same time, the bond lengths between the nitrogen and the ring-carbon atoms contract from an average of 1.505 to 1.465 Å. The experiment determines the overall charge transfer time constant for approaching the equilibrium between charge-localized and charge-delocalized species to 3.0 ps.

14.
Nano Lett ; 23(18): 8704-8711, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37681647

RESUMEN

Exciton polaritons are widely considered as promising platforms for developing room-temperature polaritonic devices, owing to the high-speed propagation and nonlinear interactions. However, it remains challenging to explore the dynamics of exciton polaritons specifically at room temperature, where the lifetime could be as small as a few picoseconds and the prevailing time-averaged measurement cannot give access to the true nature of it. Herein, by using the time-resolved photoluminescence, we have successfully traced the ultrafast coherent dynamics of a moving exciton polariton condensate in a one-dimensional perovskite microcavity. The propagation speed is directly measured to be ∼12.2 ± 0.8 µm/ps. Moreover, we have developed a time-resolved Michelson interferometry to quantify the time-dependent phase coherence, which reveals that the actual coherence time of exciton polaritons could be much longer (nearly 100%) than what was believed before. Our work sheds new light on the ultrafast coherent propagation of exciton polaritons at room temperature.

15.
Nano Lett ; 23(6): 2269-2276, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36897094

RESUMEN

Understanding and managing hot electrons in metals are of fundamental and practical interest in plasmonic studies and applications. A major challenge for the development of hot electron devices requires the efficient and controllable generation of long-lived hot electrons so that they can be harnessed effectively before relaxation. Here, we report the ultrafast spatiotemporal evolution of hot electrons in plasmonic resonators. Using femtosecond-resolution interferometric imaging, we show the unique periodic distributions of hot electrons due to standing plasmonic waves. In particular, this distribution can be flexibly tuned by the size, shape, and dimension of the resonator. We also demonstrate that the hot electron lifetimes are substantially prolonged at hot spots. This appealing effect is interpreted as a result of the locally concentrated energy density at the antinodes in standing hot electron waves. These results could be useful to control the distributions and lifetimes of hot electrons in plasmonic devices for targeted optoelectronic applications.

16.
Nano Lett ; 23(16): 7463-7469, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37579023

RESUMEN

Valley degrees of freedom in transition metal dichalcogenides thoroughly influence electron-phonon coupling and its nonequilibrium dynamics. We conducted a first-principles study of the quantum kinetics of chiral phonons following valley-selective carrier excitation with circularly polarized light. Our numerical investigations treat the ultrafast dynamics of electrons and phonons on equal footing within a parameter-free ab initio framework. We report the emergence of valley-polarized phonon populations in monolayer MoS2 that can be selectively excited at either the K or K' valleys depending on the light helicity. The resulting vibrational state is characterized by a distinctive chirality, which lifts time-reversal symmetry of the lattice on transient time scales. We show that chiral valley phonons can further lead to fingerprints of vibrational dichroism detectable by ultrafast diffuse scattering and persist beyond 10 ps. The valley polarization of nonequilibrium phonon populations could be exploited as an information carrier, thereby extending the paradigm of valleytronics to the domain of vibrational excitations.

17.
Small ; 19(12): e2206379, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36642834

RESUMEN

Heterostructured Au/CuS nanocrystals (NCs) exhibit localized surface plasmon resonance (LSPR) centered at two different wavelengths (551 and 1051 nm) with a slight broadening compared to respective homostructured Au and CuS NC spectra. By applying ultrafast transient absorption spectroscopy we show that a resonant excitation at the respective LSPR maxima of the heterostructured Au/CuS NCs leads to the characteristic hot charge carrier relaxation associated with both LSPRs in both cases. A comparison of the dual plasmonic heterostructure with a colloidal mixture of homostructured Au and CuS NCs shows that the coupled dual plasmonic interaction is only active in the heterostructured Au/CuS NCs. By investigating the charge carrier dynamics of the process, we find that the observed interaction is faster than phononic or thermal processes (< 100 fs). The relaxation of the generated hot charge carriers is faster for heterostructured nanocrystals and indicates that the interaction occurs as an energy transfer (we propose Landau damping or interaction via LSPR beat oscillations as possible mechanisms) or charge carrier transfer between both materials. Our results strengthen the understanding of multiplasmonic interactions in heterostructured Au/CuS NCs and will significantly advance applications where these interactions are essential, such as catalytic reactions.

18.
Nanotechnology ; 34(28)2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37059090

RESUMEN

The anisotropic transport properties of gallium telluride (GaTe) have been reported by several experiments, giving rise to many debates recently. The anisotropic electronic band structure of GaTe shows the extreme difference between the flat band and tilted band in two distinct directions,Γ¯-X¯andΓ¯-Y¯, and which we called as the mixed flat-tilted band (MFTB). Focusing on such two directions, the relaxation of photo-generated carriers has been studied using the non-adiabatic molecular dynamics (NAMD) method to investigate the anisotropic behavior of ultrafast dynamics. The results show that the relaxation lifetime is different in flat band direction and tilted band direction, which is evidence for the existence of anisotropic behavior of the ultrafast dynamic, and such anisotropic behavior comes from the different intensities of electron-phonon coupling of the flat band and tilted band. Furthermore, the ultrafast dynamic behavior is found to be affected strongly by spin-orbit coupling (SOC) and such anisotropic behavior of the ultrafast dynamic can be reversed by SOC. The tunable anisotropic ultrafast dynamic behavior of GaTe is expected to be detected in ultrafast spectroscopy experiments and it may provide a tunable application in nanodevice design. The results may also provide a reference for the investigation of MFTB semiconductors.

19.
Nanotechnology ; 34(47)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37607501

RESUMEN

Defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) greatly influence their electronic and optical properties by introducing localized in-gap states. Using different non-invasive techniques, we have investigated the spatial distribution of intrinsic defects in as-grown chemical vapor deposition (CVD) MoS2monolayers and correlated the results with the growth temperature of the sample. We have shown that by increasing the CVD growth temperature the concentration of defects decreases and their spatial distribution and type change, influencing the sample's electronic and optical properties.

20.
Proc Natl Acad Sci U S A ; 117(38): 23385-23392, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32907936

RESUMEN

Understanding hydrogen-bond interactions in self-assembled lattice materials is crucial for preparing such materials, but the role of hydrogen bonds (H bonds) remains unclear. To gain insight into H-bond interactions at the materials' intrinsic spatial scale, we investigated ultrafast H-bond dynamics between water and biomimetic self-assembled lattice materials (composed of sodium dodecyl sulfate and ß-cyclodextrin) in a spatially resolved manner. To accomplish this, we developed an infrared pump, vibrational sum-frequency generation (VSFG) probe hyperspectral microscope. With this hyperspectral imaging method, we were able to observe that the primary and secondary OH groups of ß-cyclodextrin exhibit markedly different dynamics, suggesting distinct H-bond environments, despite being separated by only a few angstroms. We also observed another ultrafast dynamic reflecting a weakening and restoring of H bonds between bound water and the secondary OH of ß-cyclodextrin, which exhibited spatial uniformity within self-assembled domains, but heterogeneity between domains. The restoration dynamics further suggest heterogeneous hydration among the self-assembly domains. The ultrafast nature and meso- and microscopic ordering of H-bond dynamics could contribute to the flexibility and crystallinity of the material--two critically important factors for crystalline lattice self-assemblies--shedding light on engineering intermolecular interactions for self-assembled lattice materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA