Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 186(19): 4085-4099.e15, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37714134

RESUMEN

Many sequence variants have additive effects on blood lipid levels and, through that, on the risk of coronary artery disease (CAD). We show that variants also have non-additive effects and interact to affect lipid levels as well as affecting variance and correlations. Variance and correlation effects are often signatures of epistasis or gene-environmental interactions. These complex effects can translate into CAD risk. For example, Trp154Ter in FUT2 protects against CAD among subjects with the A1 blood group, whereas it associates with greater risk of CAD in others. His48Arg in ADH1B interacts with alcohol consumption to affect lipid levels and CAD. The effect of variants in TM6SF2 on blood lipids is greatest among those who never eat oily fish but absent from those who often do. This work demonstrates that variants that affect variance of quantitative traits can allow for the discovery of epistasis and interactions of variants with the environment.


Asunto(s)
Enfermedad de la Arteria Coronaria , Animales , Humanos , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/genética , Epistasis Genética , Fenotipo , Lípidos/sangre , Sistema del Grupo Sanguíneo ABO
2.
Res Sq ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38746362

RESUMEN

Individual sensitivity to environmental exposures may be genetically influenced. This genotype-by-environment interplay implies differences in phenotypic variance across genotypes. However, environmental sensitivity genetic variants have proven challenging to detect. GWAS of monozygotic twin differences is a family-based variance analysis method, which is more robust to systemic biases that impact population-based methods. We combined data from up to 21,792 monozygotic twins (10,896 pairs) from 11 studies to conduct the largest GWAS meta-analysis of monozygotic phenotypic differences in children and adolescents/adults for seven psychiatric and neurodevelopmental phenotypes: attention deficit hyperactivity disorder (ADHD) symptoms, autistic traits, anxiety and depression symptoms, psychotic-like experiences, neuroticism, and wellbeing. The SNP-heritability of variance in these phenotypes were estimated (h2: 0% to 18%), but were imprecise. We identified a total of 13 genome-wide significant associations (SNP, gene, and gene-set), including genes related to stress-reactivity for depression, growth factor-related genes for autistic traits and catecholamine uptake-related genes for psychotic-like experiences. Monozygotic twins are an important new source of evidence about the genetics of environmental sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA