Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.672
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677517

RESUMEN

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Asunto(s)
Mecanotransducción Celular , Interferencia de ARN , Receptores Acoplados a Proteínas G/fisiología , Animales , Materiales Biocompatibles , Calcio/metabolismo , Línea Celular Tumoral , Células Endoteliales/fisiología , Endotelio Vascular/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/genética , Resistencia al Corte , Estrés Mecánico , Resistencia Vascular
2.
Physiol Rev ; 103(2): 1247-1421, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603156

RESUMEN

This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.


Asunto(s)
Células Endoteliales , Mecanotransducción Celular , Humanos , Mecanotransducción Celular/fisiología , Células Endoteliales/metabolismo , Epigénesis Genética , Transducción de Señal/fisiología , Miocitos del Músculo Liso , Estrés Mecánico
3.
Physiol Rev ; 102(4): 1907-1989, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35679471

RESUMEN

The human body constantly exchanges heat with the environment. Temperature regulation is a homeostatic feedback control system that ensures deep body temperature is maintained within narrow limits despite wide variations in environmental conditions and activity-related elevations in metabolic heat production. Extensive research has been performed to study the physiological regulation of deep body temperature. This review focuses on healthy and disordered human temperature regulation during heat stress. Central to this discussion is the notion that various morphological features, intrinsic factors, diseases, and injuries independently and interactively influence deep body temperature during exercise and/or exposure to hot ambient temperatures. The first sections review fundamental aspects of the human heat stress response, including the biophysical principles governing heat balance and the autonomic control of heat loss thermoeffectors. Next, we discuss the effects of different intrinsic factors (morphology, heat adaptation, biological sex, and age), diseases (neurological, cardiovascular, metabolic, and genetic), and injuries (spinal cord injury, deep burns, and heat stroke), with emphasis on the mechanisms by which these factors enhance or disturb the regulation of deep body temperature during heat stress. We conclude with key unanswered questions in this field of research.


Asunto(s)
Trastornos de Estrés por Calor , Sudoración , Regulación de la Temperatura Corporal/fisiología , Respuesta al Choque Térmico , Humanos , Temperatura
4.
Physiol Rev ; 100(4): 1779-1837, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999509

RESUMEN

The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life's biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.


Asunto(s)
Enfermedades Cardiovasculares/genética , Fenómenos Fisiológicos Cardiovasculares/genética , Predisposición Genética a la Enfermedad , Hemodinámica , Músculo Liso Vascular/citología , Humanos
5.
Proc Natl Acad Sci U S A ; 121(15): e2322135121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568964

RESUMEN

Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.


Asunto(s)
Cloruros , Proteínas Serina-Treonina Quinasas , Ratones , Animales , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Cloruros/metabolismo , Células Endoteliales/metabolismo , Canales Catiónicos TRPV/metabolismo , Transducción de Señal/fisiología
6.
Proc Natl Acad Sci U S A ; 120(9): e2220769120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812211

RESUMEN

S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans-including healthy subjects and patients with various microcirculatory disorders-strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders.


Asunto(s)
Hiperemia , Humanos , Ratones , Animales , Microcirculación , Hemoglobinas/genética , Eritrocitos/fisiología , Oxígeno , Sujetos de Investigación , Óxido Nítrico/fisiología
7.
Proc Natl Acad Sci U S A ; 120(31): e2303238120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37494394

RESUMEN

Endothelial cells (ECs) line the lumen of all blood vessels and regulate functions, including contractility. Physiological stimuli, such as acetylcholine (ACh) and intravascular flow, activate transient receptor potential vanilloid 4 (TRPV4) channels, which stimulate small (SK3)- and intermediate (IK)-conductance Ca2+-activated potassium channels in ECs to produce vasodilation. Whether physiological vasodilators also modulate the surface abundance of these ion channels in ECs to elicit functional responses is unclear. Here, we show that ACh and intravascular flow stimulate rapid anterograde trafficking of an intracellular pool of SK3 channels in ECs of resistance-size arteries, which increases surface SK3 protein more than two-fold. In contrast, ACh and flow do not alter the surface abundance of IK or TRPV4 channels. ACh triggers SK3 channel trafficking by activating TRPV4-mediated Ca2+ influx, which stimulates Rab11A, a Rab GTPase associated with recycling endosomes. Superresolution microscopy data demonstrate that SK3 trafficking specifically increases the size of surface SK3 clusters which overlap with TRPV4 clusters. We also show that Rab11A-dependent trafficking of SK3 channels is an essential contributor to vasodilator-induced SK current activation in ECs and vasorelaxation. In summary, our data demonstrate that vasodilators activate Rab11A, which rapidly delivers an intracellular pool of SK3 channels to the vicinity of surface TRPV4 channels in ECs. This trafficking mechanism increases surface SK3 cluster size, elevates SK3 current density, and produces vasodilation. These data also demonstrate that SK3 and IK channels are differentially regulated by trafficking-dependent and -independent signaling mechanisms in endothelial cells.


Asunto(s)
Canales Catiónicos TRPV , Vasodilatadores , Vasodilatadores/farmacología , Canales Catiónicos TRPV/metabolismo , Células Endoteliales/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Arterias/metabolismo , Vasodilatación , Acetilcolina/metabolismo , Endotelio Vascular/metabolismo
8.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37144413

RESUMEN

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Animales , Ratones , Ratas , Presión Sanguínea , Endotelio Vascular/metabolismo , Hipertensión/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ratas Endogámicas SHR , Accidente Cerebrovascular/genética , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Vasodilatación
9.
Arterioscler Thromb Vasc Biol ; 44(1): 238-253, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38031841

RESUMEN

BACKGROUND: Biological sex differences play a vital role in cardiovascular diseases, including atherosclerosis. The endothelium is a critical contributor to cardiovascular pathologies since endothelial cells (ECs) regulate vascular tone, redox balance, and inflammatory reactions. Although EC activation and dysfunction play an essential role in the early and late stages of atherosclerosis development, little is known about sex-dependent differences in EC. METHODS: We used human and mouse aortic EC as well as EC-lineage tracing (Cdh5-CreERT2 Rosa-YFP [yellow fluorescence protein]) atherosclerotic Apoe-/- mice to investigate the biological sexual dimorphism of the EC functions in vitro and in vivo. Bioinformatics analyses were performed on male and female mouse aortic EC and human lung and aortic EC. RESULTS: In vitro, female human and mouse aortic ECs showed more apoptosis and higher cellular reactive oxygen species levels than male EC. In addition, female mouse aortic EC had lower mitochondrial membrane potential (ΔΨm), lower TFAM (mitochondrial transcription factor A) levels, and decreased angiogenic potential (tube formation, cell viability, and proliferation) compared with male mouse aortic EC. In vivo, female mice had significantly higher lipid accumulation within the aortas, impaired glucose tolerance, and lower endothelial-mediated vasorelaxation than males. Using the EC-lineage tracing approach, we found that female lesions had significantly lower rates of intraplaque neovascularization and endothelial-to-mesenchymal transition within advanced atherosclerotic lesions but higher incidents of missing EC lumen coverage and higher levels of oxidative products and apoptosis. RNA-seq analyses revealed that both mouse and human female EC had higher expression of genes associated with inflammation and apoptosis and lower expression of genes related to angiogenesis and oxidative phosphorylation than male EC. CONCLUSIONS: Our study delineates critical sex-specific differences in EC relevant to proinflammatory, pro-oxidant, and angiogenic characteristics, which are entirely consistent with a vulnerable phenotype in females. Our results provide a biological basis for sex-specific proatherosclerotic mechanisms.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Femenino , Masculino , Humanos , Ratones , Animales , Células Endoteliales/metabolismo , Enfermedades de la Aorta/patología , Aterosclerosis/patología , Aorta/patología , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL
10.
Arterioscler Thromb Vasc Biol ; 44(5): 1101-1113, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38545783

RESUMEN

BACKGROUND: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS: We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.


Asunto(s)
Factor 6 de Ribosilación del ADP , Endotelio , Resistencia a la Insulina , Músculo Esquelético , Ratones , Factor 6 de Ribosilación del ADP/genética , Factor 6 de Ribosilación del ADP/metabolismo , Endotelio/metabolismo , Ratones Endogámicos C57BL , Intolerancia a la Glucosa , Tamoxifeno , Ratones Noqueados , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Obesidad/metabolismo , Obesidad/patología , Glucosa/metabolismo , Dieta Alta en Grasa , Ratones Obesos , Vasodilatación
11.
Cell Mol Life Sci ; 81(1): 125, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467757

RESUMEN

Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.


Asunto(s)
Eicosanoides , Lipólisis , Lipólisis/fisiología , Aceite de Oliva , Ácido Araquidónico/metabolismo , Eicosanoides/metabolismo , Prostaglandinas I/metabolismo , Fosfolipasas/metabolismo
12.
J Physiol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843467

RESUMEN

The brain requires an uninterrupted supply of oxygen and nutrients to support the high metabolic needs of billions of nerve cells processing information. In low oxygen conditions, increases in cerebral blood flow maintain brain oxygen delivery, but the cellular and molecular mechanisms responsible for dilation of cerebral blood vessels in response to hypoxia are not fully understood. This article presents a systematic review and analysis of data reported in studies of these mechanisms. Our primary outcome measure was the percent reduction of the cerebrovascular response to hypoxia in conditions of pharmacological or genetic blockade of specific signaling mechanisms studied in experimental animals or in humans. Selection criteria were met by 28 articles describing the results of animal studies and six articles describing the results of studies conducted in humans. Selected studies investigated the potential involvement of various neurotransmitters, neuromodulators, vasoactive molecules and ion channels. Of all the experimental conditions, blockade of adenosine-mediated signaling and inhibition of ATP-sensitive potassium (KATP) channels had the most significant effect in reducing the cerebrovascular response to hypoxia (by 49% and 37%, respectively). Various degree reductions of the hypoxic response were also reported in studies which investigated the roles of nitric oxide, arachidonic acid derivates, catecholamines and hydrogen sulphide, amongst others. However, definitive conclusions about the importance of these signaling pathways cannot be drawn from the results of this analysis. In conclusion, there is significant evidence that one of the key mechanisms of hypoxic cerebral vasodilation (accounting for ∼50% of the response) involves the actions of adenosine and modulation of vascular KATP channels. However, recruitment of other vasodilatory signaling mechanisms is required for the full expression of the cerebrovascular response to hypoxia.

13.
Am J Physiol Renal Physiol ; 326(5): F802-F813, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545652

RESUMEN

Men are likely at greater risk for heat-induced acute kidney injury compared with women, possibly due to differences in vascular control. We tested the hypothesis that the renal vasoconstrictor and vasodilator responses will be greater in younger women compared with men during passive heat stress. Twenty-five healthy adults [12 women (early follicular phase) and 13 men] completed two experimental visits, heat stress or normothermic time-control, assigned in a block-randomized crossover design. During heat stress, participants wore a water-perfused suit perfused with 50°C water. Core temperature was increased by ∼0.8°C in the first hour before commencing a 2-min cold pressor test (CPT). Core temperature remained clamped and at 1-h post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75 min, and 150 min post-protein. Beat-to-beat blood pressure (Penaz method) was measured and segmental artery vascular resistance (VR, Doppler ultrasound) was calculated as segmental artery blood velocity ÷ mean arterial pressure. CPT-induced increases in segmental artery VR did not differ between trials (trial effect: P = 0.142) nor between men (heat stress: 1.5 ± 1.0 mmHg/cm/s, normothermia: 1.4 ± 1.0 mmHg/cm/s) and women (heat stress: 1.4 ± 1.2 mmHg/cm/s, normothermia: 2.1 ± 1.1 mmHg/cm/s) (group effect: P = 0.429). Reductions in segmental artery VR following oral protein loading did not differ between trials (trial effect: P = 0.080) nor between men (heat stress: -0.6 ± 0.8 mmHg/cm/s, normothermia: -0.6 ± 0.6 mmHg/cm/s) and women (heat stress: -0.5 ± 0.5 mmHg/cm/s, normothermia: -1.1 ± 0.6 mmHg/cm/s) (group effect: P = 0.204). Renal vasoconstrictor responses to the cold pressor test and vasodilator responses following an oral protein load during heat stress or normothermia do not differ between younger men and younger women in the early follicular phase of the menstrual cycle.NEW & NOTEWORTHY The mechanisms underlying greater heat-induced acute kidney injury risk in men versus women remain unknown. This study examined renal vascular control, including both vasodilatory (oral protein load) and vasoconstrictor (cold presser test) responses, during normothermia and heat stress and compared these responses between men and women. The results indicated that in both conditions neither renal vasodilatory nor vasoconstrictor responses differ between younger men and younger women.


Asunto(s)
Respuesta al Choque Térmico , Vasodilatación , Humanos , Femenino , Masculino , Adulto , Adulto Joven , Respuesta al Choque Térmico/fisiología , Estudios Cruzados , Factores Sexuales , Resistencia Vascular , Riñón/irrigación sanguínea , Vasoconstricción , Circulación Renal , Arteria Renal , Trastornos de Estrés por Calor/fisiopatología , Presión Sanguínea/fisiología , Factores de Edad
14.
J Neurophysiol ; 132(2): 322-334, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38863429

RESUMEN

Fentanyl is the leading contributor to drug overdose deaths in the United States. Its potency, rapid onset of action, and lack of effective reversal treatment make the drug much more lethal than other opioids. Although it is understood that fentanyl is dangerous at higher doses, the literature surrounding fentanyl's physiological effects remains contradictory at lower doses. To explore this discrepancy, we designed a study incorporating electrochemical assessment of oxygen in the brain (nucleus accumbens) and subcutaneous space, multisite thermorecording (brain, skin, muscle), and locomotor activity at varying doses of fentanyl (1.0, 3.0, 10, 30, and 90 µg/kg) in rats. In the nucleus accumbens, lower doses of fentanyl (3.0 and 10 µg/kg) led to an increase in oxygen levels while higher doses (30 and 90 µg/kg) led to a biphasic pattern, with an initial dose-dependent decrease followed by an increase. In the subcutaneous space, oxygen decreases started to appear at relatively lower doses (>3 µg/kg), had shorter onset latencies, and were stronger and prolonged. In the temperature experiment, lower doses of fentanyl (1.0, 3.0, and 10 µg/kg) led to an increase in brain, skin, and muscle temperatures, while higher doses (30 and 90 µg/kg) resulted in a dose-dependent biphasic temperature change, with an increase followed by a prolonged decrease. We also compared oxygen and temperature responses induced by fentanyl over six consecutive days and found no evidence of tolerance in both parameters. In conclusion, we report that fentanyl's effects are highly dose-dependent, drawing attention to the importance of better characterization to adequately respond in emergent cases of illicit fentanyl misuse.NEW & NOTEWORTHY By using electrochemical oxygen sensors in freely moving rats, we show that intravenous fentanyl induces opposite changes in brain oxygen at varying doses, increasing at lower doses (<10 µg/kg) and inducing a biphasic response, decrease followed by increase, at higher doses (>10-90 µg/kg). In contrast, fentanyl-induced dose-dependent oxygen decreases in the subcutaneous space. We consider the mechanisms underlying distinct oxygen responses in the brain and periphery and discuss naloxone's role in alleviating fentanyl-induced brain hypoxia.


Asunto(s)
Analgésicos Opioides , Relación Dosis-Respuesta a Droga , Fentanilo , Ratas Sprague-Dawley , Fentanilo/administración & dosificación , Fentanilo/farmacología , Animales , Masculino , Analgésicos Opioides/farmacología , Analgésicos Opioides/administración & dosificación , Ratas , Oxígeno/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo
15.
J Neurochem ; 168(5): 781-800, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317494

RESUMEN

Hormone-sensitive lipase (HSL) is active throughout the brain and its genetic ablation impacts brain function. Its activity in the brain was proposed to regulate bioactive lipid availability, namely eicosanoids that are inflammatory mediators and regulate cerebral blood flow (CBF). We aimed at testing whether HSL deletion increases susceptibility to neuroinflammation and impaired brain perfusion upon diet-induced obesity. HSL-/-, HSL+/-, and HSL+/+ mice of either sex were fed high-fat diet (HFD) or control diet for 8 weeks, and then assessed in behavior tests (object recognition, open field, and elevated plus maze), metabolic tests (insulin and glucose tolerance tests and indirect calorimetry in metabolic cages), and CBF determination by arterial spin labeling (ASL) magnetic resonance imaging (MRI). Immunofluorescence microscopy was used to determine coverage of blood vessels, and morphology of astrocytes and microglia in brain slices. HSL deletion reduced CBF, most prominently in cortex and hippocampus, while HFD feeding only lowered CBF in the hippocampus of wild-type mice. CBF was positively correlated with lectin-stained vessel density. HSL deletion did not exacerbate HFD-induced microgliosis in the hippocampus and hypothalamus. HSL-/- mice showed preserved memory performance when compared to wild-type mice, and HSL deletion did not significantly aggravate HFD-induced memory impairment in object recognition tests. In contrast, HSL deletion conferred protection against HFD-induced obesity, glucose intolerance, and insulin resistance. Altogether, this study points to distinct roles of HSL in periphery and brain during diet-induced obesity. While HSL-/- mice were protected against metabolic syndrome development, HSL deletion reduced brain perfusion without leading to aggravated HFD-induced neuroinflammation and memory dysfunction.


Asunto(s)
Circulación Cerebrovascular , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad , Animales , Obesidad/genética , Ratones , Dieta Alta en Grasa/efectos adversos , Circulación Cerebrovascular/fisiología , Masculino , Femenino , Esterol Esterasa/genética , Esterol Esterasa/metabolismo , Memoria/fisiología , Eliminación de Gen , Trastornos de la Memoria/etiología , Trastornos de la Memoria/genética , Encéfalo/patología , Encéfalo/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 327(2): H364-H369, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847757

RESUMEN

The transcriptional regulator nuclear factor-κB (NF-κB) is a mediator of endothelial dysfunction. Inhibiting NF-κB with salsalate is used to investigate inflammatory mechanisms contributing to accelerated cardiovascular disease risk. However, in the absence of disease, inhibition of NF-κB can impact redox mechanisms, resulting in paradoxically decreased endothelial function. This study aimed to measure microvascular endothelial function during inhibition of the transcriptional regulator NF-κB in reproductive-aged healthy women. In a randomized, single-blind, crossover, placebo-controlled design, nine healthy women were randomly assigned oral salsalate (1,500 mg, twice daily) or placebo treatments for 5 days. Subjects underwent graded perfusion with the endothelium-dependent agonist acetylcholine (ACh, 10-10 to 10-1 M, 33°C) alone and in combination with 15 mM NG-nitro-l-arginine methyl ester [l-NAME; nonselective nitric oxide (NO) synthase inhibitor] through intradermal microdialysis. Laser-Doppler flux was measured over each microdialysis site, and cutaneous vascular conductance (CVC) was calculated as flux divided by mean arterial pressure and normalized to site-specific maximum (CVC%max; 28 mM sodium nitroprusside + 43°C). The l-NAME sensitive component was calculated as the difference between the areas under the dose-response curves. During the placebo and salsalate treatments, the l-NAME sites were reduced compared with the control sites (both P < 0.0001). Across treatments, there was a significant difference between the control and l-NAME sites, where both sites shifted upward following salsalate treatment (both P < 0.0001), whereas the l-NAME-sensitive component was not different (P = 0.94). These data demonstrate that inhibition of the transcriptional regulator NF-κB improves cutaneous microvascular function in reproductive-aged healthy women through non-NO-dependent mechanisms.NEW & NOTEWORTHY The transcription factor nuclear factor-κB (NF-κB) regulates multiple aspects of innate and adaptive immunity by encoding for genes that participate in inflammation and impact endothelial function following NF-κB inhibition with salsalate treatment. Our results show that cutaneous microvascular function is increased through non-nitric oxide (NO)-dependent mechanisms following salsalate treatment in reproductive-aged healthy women.


Asunto(s)
Estudios Cruzados , Microcirculación , FN-kappa B , Óxido Nítrico , Piel , Humanos , Femenino , Adulto , Piel/irrigación sanguínea , Piel/efectos de los fármacos , Piel/metabolismo , FN-kappa B/metabolismo , Método Simple Ciego , Microcirculación/efectos de los fármacos , Óxido Nítrico/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Vasodilatación/efectos de los fármacos , Adulto Joven , Acetilcolina/farmacología , Voluntarios Sanos , Vasodilatadores/farmacología , Inhibidores Enzimáticos/farmacología , Salicilatos/farmacología , Microvasos/efectos de los fármacos , Microvasos/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos
17.
Am J Physiol Heart Circ Physiol ; 327(4): H1004-H1015, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39212765

RESUMEN

Hypertension is associated with decreased endothelial function through reduced contributions of nitric oxide (NO). We previously discovered that flow-induced NO production in resistance arteries of mice and humans critically depends on endothelial inwardly rectifying K+ (Kir2.1) channels. The goal of this study was to establish whether these channels contribute to the impairment of endothelial function, measured by flow-induced vasodilation (FIV) in peripheral resistance arteries of humans with hypertension. We measured FIV in vessels isolated from subcutaneous fat biopsies from 32 subjects: normotensive [n = 19; 30.6 ± 9.8 yr old; systolic blood pressure (SBP): 115.2 ± 7 mmHg; diastolic blood pressure (DBP): 75.3 ± 5.7 mmHg] and hypertensive (n = 13; 45.3 ± 15.3 yr old; SBP: 146.1 ± 15.2 mmHg; DBP: 94.4 ± 6.9 mmHg). Consistent with previous studies, we find that FIV is impaired in hypertensive adults as demonstrated by a significant reduction in FIV when compared with the normotensive adults. Furthermore, our data suggest that the impairment of FIV in hypertensive adults is partially attributed to a reduction in Kir2.1-dependent vasodilation. Specifically, we show that blocking Kir2.1 with ML133 or functionally downregulating Kir2.1 with endothelial-specific adenoviral vector containing dominant-negative Kir2.1 (dnKir2.1) result in a significant reduction in FIV in normotensive subjects but with a smaller effect in hypertensive adults. The Kir2.1-dependent vasodilation was negatively correlated to both SBP and DBP, indicating that the Kir2.1 contribution to FIV decreases as blood pressure increases. In addition, we show that exposing vessels from normotensive adults to acute high-pressure results in loss of Kir2.1 contribution, as high pressure impairs vasodilation. No effect is seen when these vessels were incubated with dnKir2.1. Overexpressing wtKir2.1 in the endothelium resulted in some improvement in vasodilation in arteries from all participants, with a greater recovery in hypertensive adults. Our data suggest that hypertension-induced suppression of Kir2.1 is an important mechanism underlying endothelial dysfunction in hypertension.NEW & NOTEWORTHY Impairment of endothelial function under high blood pressure is linked to the loss of inwardly rectifying K+ (Kir2.1) channels activity in human resistance arteries, leading to a reduction in flow-induced vasodilation and possibly leading to a vicious cycle between elevation of blood pressure, and further impairment of Kir2.1 function and flow-induced vasodilation.


Asunto(s)
Endotelio Vascular , Hipertensión , Canales de Potasio de Rectificación Interna , Vasodilatación , Humanos , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Hipertensión/fisiopatología , Hipertensión/metabolismo , Hipertensión/genética , Persona de Mediana Edad , Masculino , Femenino , Adulto , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Estudios de Casos y Controles , Presión Sanguínea , Microvasos/fisiopatología , Microvasos/metabolismo , Adulto Joven , Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 326(3): H760-H771, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241008

RESUMEN

Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.


Asunto(s)
Sedestación , Enfermedades Vasculares , Humanos , Pierna/irrigación sanguínea , Postura/fisiología , Endotelio Vascular , Extremidad Inferior/irrigación sanguínea , Vasodilatación/fisiología
19.
Biochem Biophys Res Commun ; 734: 150766, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39368368

RESUMEN

Ischemic stroke triggers a cascade of metabolic and inflammatory events leading to neuronal death, particularly in the hippocampus. Here, we investigate the role of lactate metabolism in ischemic resistance using LDHB-deficient mice, which exhibit impaired lactate utilization. Contrary to expectations of severe neuronal damage due to metabolic defects, LDHB-deficient mice displayed significantly increased neuronal survival following ischemic insult. Magnetic resonance spectroscopy revealed elevated lactate levels in LDHB-deficient brains, which correlated with enhanced vasodilation of the posterior communicating artery (PComA) and increased extracellular PGE2 levels. These findings suggest that elevated lactate inhibits PGE2 reabsorption, promoting vasodilation and neuronal protection. Our results highlight lactate's potential role in neuroprotection and its therapeutic promise for ischemic stroke.

20.
Microcirculation ; 31(2): e12842, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38133925

RESUMEN

OBJECTIVE: Regulation of blood flow to bone is critical but poorly understood, particularly in humans. This study aims to determine whether nitric oxide (NO), a major regulator of vascular tone to other tissues, contributes also to the regulation of blood flow to bone. METHODS: In young healthy adults (n = 16, 8F, 8M), we characterized NO-mediated vasodilation in the tibia in response to sublingual nitroglycerin and contrasted it to lower leg. Blood flow responses were assessed in supine individuals by continuously measuring tibial total hemoglobin (tHb) via near-infrared spectroscopy and lower leg blood flow (LBF) as popliteal flow velocity via Doppler ultrasound in the same leg. RESULTS: LBF increased by Δ9.73 ± 0.66 cm/s and peaked 4.4 min after NO administration and declined slowly but remained elevated (Δ3.63 ± 0.60 cm/s) at 10 min. In contrast, time to peak response was longer and smaller in magnitude in the tibia as tHb increased Δ2.08 ± 0.22 µM and peaked 5.3 min after NO administration and declined quickly but remained elevated (Δ0.87±0.22 µM) at 10 min (p = .01). CONCLUSIONS: In young adults, the tibial vasculature demonstrates robust NO-mediated vasodilation, but tHb is delayed and diminishes faster compared to LBF, predominately reflective of skeletal muscle responses. Thus, NO-mediated vasodilation in bone may be characteristically different from other vascular beds.


Asunto(s)
Óxido Nítrico , Vasodilatación , Adulto Joven , Humanos , Óxido Nítrico/fisiología , Vasodilatación/fisiología , Hemodinámica , Pierna , Extremidad Inferior , Flujo Sanguíneo Regional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA