Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(7): e0070124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38888345

RESUMEN

Vector competence defines the ability of a vector to acquire, host, and transmit a pathogen. Understanding the molecular determinants of the mosquitos' competence to host dengue virus (DENV) holds promise to prevent its transmission. To this end, we employed RNA-seq to profile mRNA transcripts of the female Aedes aegypti mosquitos feeding on naïve vs viremic mouse. While most transcripts (12,634) did not change their abundances, 360 transcripts showed decreases. Biological pathway analysis revealed representatives of the decreased transcripts involved in the wnt signaling pathway and hippo signaling pathway. One thousand three hundred fourteen transcripts showed increases in abundance and participate in 21 biological pathways including amino acid metabolism, carbon metabolism, fatty acid metabolism, and oxidative phosphorylation. Inhibition of oxidative phosphorylation with antimycin A reduced oxidative phosphorylation activity and ATP concentration associated with reduced DENV replication in the Aedes aegypti cells. Antimycin A did not affect the amounts of the non-structural proteins 3 and 5, two major components of the replication complex. Ribavirin, an agent that reduces GTP concentration, recapitulated the effects of reduced ATP concentration on DENV replication. Knocking down one of the oxidative phosphorylation components, ATP synthase subunit ß, reduced DENV replication in the mosquitos. In summary, our results suggest that DENV enhances metabolic pathways in the female Aedes aegypti mosquitos to supply nutrients and energy for virus replication. ATP synthase subunit ß knockdown might be exploited to reduce the mosquitos' competence to host and transmit DENV. IMPORTANCE: Through evolution, the mosquito-borne viruses have adapted to the blood-feeding behaviors of their opportunist hosts to fulfill a complete lifecycle in humans and mosquitos. Disruption in the mosquitos' ability to host these viruses offers strategies to prevent diseases caused by them. With the advent of genomic tools, we discovered that dengue virus (DENV) benefited from the female mosquitos' bloodmeals for metabolic and energetic supplies for replication. Chemical or genetic disruption in these supplies reduced DENV replication in the female mosquitos. Our discovery can be exploited to produce genetically modified mosquitos, in which DENV infection leads to disruption in the supplies and thereby reduces replication and transmission. Our discovery might be extrapolated to prevent mosquito-borne virus transmission and the diseases they cause.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Replicación Viral , Aedes/virología , Animales , Femenino , Virus del Dengue/fisiología , Dengue/transmisión , Dengue/virología , Dengue/metabolismo , Fosforilación Oxidativa , Ratones , Mosquitos Vectores/virología , Adenosina Trifosfato/metabolismo
2.
Mol Ecol ; 32(2): 350-368, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36305220

RESUMEN

Driven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion. By applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Aedes aegypti, sampled along an altitudinal gradient in Nepal (200-1300 m), we identify putatively adaptive traits and describe the species' genomic footprint of climate adaptation to colder ecoregions. We found two differentiated clusters with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300 m) and all other lowland populations (≤800 m). We revealed nonsynonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern. Other than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. Local high-altitude adaptation could be one explanation of the population's phenotypic cold tolerance. Carrying alleles relevant for survival under colder climate increases the likelihood of this highland population to a worldwide expansion into other colder ecoregions.


Asunto(s)
Aedes , Dengue , Humanos , Animales , Aedes/genética , Dengue/genética , Dengue/epidemiología , Nepal/epidemiología , Mosquitos Vectores/genética , Genómica
3.
Parasitol Res ; 123(1): 14, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060021

RESUMEN

Alpha-cypermethrin interacts with the sodium channel and causes nerve blockage in insects. It is used to manage Aedes aegypti (Linnaeus) (Diptera: Culicidae), a primary vector of dengue worldwide. It not only affects both target and non-target organisms, but overuse of this insecticide increases the chances of resistance development in insect pests. In this study, resistance development, biological parameters, and stability of alpha-cypermethrin resistance were studied in a laboratory-selected strain of Ae. aegypti. The alpha-cypermethrin selected strain (Alpha Sel) developed an 11.86-fold resistance level after 12 rounds of alpha-cypermethrin selection compared to the unselected strain (Unsel). In biological parameters, Alpha Sel and Cross1 (Unsel ♂ and Alpha Sel♀) had shorter larval durations compared to Unsel and Cross2 (Unsel ♀ and Alpha Sel ♂) populations. The pupal duration of Alpha Sel and both crosses was shorter than that in the Unsel strain. The relative fitness of Alpha Sel, Cross1, and Cross2 was significantly less than that of the Unsel strain. These results indicate that alpha-cypermethrin resistance comes with fitness costs. Moreover, the frequency of alpha-cypermethrin resistance decreased when the Alpha Sel population was reared without further selection pressure for four generations. So, resistance was unstable and reversed when insecticide pressure ceased. We concluded that the judicious and rotational use of different insecticides with different modes of action and the adoption of other IPM-recommended practices would suppress resistance development for more extended periods in Ae. aegypti.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Fiebre Amarilla , Animales , Insecticidas/farmacología , Resistencia a los Insecticidas , Mosquitos Vectores , Piretrinas/farmacología
4.
J Insect Sci ; 23(6)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38102758

RESUMEN

The heat shock protein (HSP) gene families, present across prokaryotes to eukaryotes, play vital roles in growth, development, and heat resistance processes. While HSP proteins have been identified and characterized in various species, this study achieved the first genome-wide identification and characterization of HSP proteins in the Aedes aegypti genome. This study identified and assessed 80 potential HSP genes in Ae. aegypti. The phylogenetic relationships of HSP genes were investigated in Ae. aegypti, Anopheles stephensi, and Drosophila melanogaster. Additionally, the structural features, chromosomal locations, protein characteristics, 3D structure, protein-protein interactions, and microsatellites associated with HSP proteins were examined in Ae. aegypti. The phylogenetic analysis of HSP gene families revealed distinct intra-group relationships for each HSP group. Each family exhibited relatively conserved genetic structures and motif components. In the expression analysis of growth and development, high expression was observed in certain HSP20 and HSP70 genes, while others exhibited low expression. Notably, sex-dependent expression differences were observed, particularly in HSP20 genes. These findings, the relationships, evolution, and modification of HSP gene families are illuminated by these comprehensive findings, and a better understanding of the mechanisms underlying growth, development, and heat resistance in vector organisms is facilitated.


Asunto(s)
Aedes , Fiebre Amarilla , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Aedes/genética , Aedes/metabolismo , Filogenia , Drosophila melanogaster , Mosquitos Vectores , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/genética
5.
Ecotoxicology ; 31(6): 998-1008, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35779162

RESUMEN

Pyriproxyfen is a juvenile hormone analogue that is commonly used to control the immature stages of mosquitoes in both artificial and natural water reservoirs. Recently, concerns have been raised regarding the community effectiveness of pyriproxyfen in preventing vector-transmitted diseases. Such concerns have been based on the unintended effects on non-target organisms and the selection of resistant mosquito populations. This investigation was, therefore, conducted to evaluate the toxicity of pyriproxyfen to Aedes aegypti (Diptera: Culicidae) larvae and the backswimmer Buenoa amnigenus (Hemiptera: Notonectidae), a naturally occurring mosquito larvae predator. We also assessed the abilities of backswimmers exposed to sublethal levels of pyriproxyfen to prey upon mosquito larvae (L2) under three larval densities (3, 6, or 9 larvae/100 mL of water) using artificial containers. Our results revealed that pyriproxyfen killed backswimmers only at concentrations higher than 100 µg active ingredient [a.i.]/L, which is 10 times higher than that recommended for larvicidal field application (i.e, 10 µg a.i./L). The abilities of backswimmers exposed to sublethal levels of pyriproxyfen (100 µg a.i./L) to prey upon mosquito larvae were not affected. Harmful effects on the backswimmer predatory abilities were detected only at concentrations of 150 µg a.i./L and when there was a higher prey availability (i.e., 9 larvae/100 mL of water). Together, our findings indicate that the reduced community effectiveness of this insecticide derives from factors other than its detrimental effects on non-target organisms such as backswimmers.


Asunto(s)
Aedes , Heterópteros , Insecticidas , Animales , Insecticidas/toxicidad , Larva , Control de Mosquitos/métodos , Mosquitos Vectores , Piridinas , Agua
6.
J Therm Biol ; 95: 102808, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33454038

RESUMEN

The expansion of the invasive mosquito Aedes aegypti L. (Diptera: Culicidae) towards temperate regions in the Americas is causing concern because of its public health implications. As for other insects, the distribution limits of Ae. aegypti have been suggested to be related to minimum temperatures and to be controlled mainly by cold tolerance. The aim of this study was to assess the daily mortality of immature stages of Ae. aegypti under natural winter conditions in Buenos Aires, Argentina, in relation to preceding thermal conditions. The experiment was performed outdoors, and one cohort of larvae was started each week for 16 weeks, and reared up to the emergence of the adults. Three times a week, larvae, pupae and emerged adults were counted, and these data were used to calculate the daily mortality of larvae, pupae and adults and to analyze their relationship with thermal conditions. The results showed that mortality was generally low, with a few peaks of high mortality after cold front events. The mortality of pupae and larvae showed a higher correlation with the cooling degree hours of previous days than with the minimum, maximum or mean temperatures. Pupae and adults showed to be more vulnerable to low temperatures than larvae. A delay in mortality was observed in relation to the low temperature events, with a proportion of individuals dying in a later stage after the end of the cold front. These results suggest that thermal conditions during cold fronts in Buenos Aires are close to the tolerance limit of the local Ae. aegypti population. The wide range of responses of different individuals suggests that low winter temperatures may constitute a selective force, leading the population to a higher tolerance to low temperatures, which might favor the further expansion of this species towards colder regions.


Asunto(s)
Aclimatación , Aedes/fisiología , Respuesta al Choque por Frío , Aedes/crecimiento & desarrollo , Animales , Biomasa , Frío , Larva/fisiología , Pupa/fisiología , Estaciones del Año
7.
Environ Monit Assess ; 193(10): 665, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545435

RESUMEN

Aedes aegypti is an important vector of dengue fever, dengue hemorrhagic fever and yellow fever, chikungunya, and Zika virus. The objective was to evaluate the resistance of A. aegypti exposed to insecticides with different action modes (deltamethrin, imidacloprid, and fipronil) under intense selection pressure for 10 generations in laboratory. Bioassays were conducted according to World Health Organization. Biochemical assay performed after selection with deltamethrin (Delta-SEL), fipronil (Fipro-SEL), and imidacloprid (Imida-SEL) from G1 to G10 was used for the assessment of detoxification enzymes (esterase (EST), acetylcholinesterase (AChE), glutathione S-transferases (GST), and acid and alkaline phosphatases (ACP and ALP)). The Fipro-SEL (G10) had high resistance (77-fold), whereas Delta-SEL and Imida-SEL populations presented very high resistance with 118 and 372-fold, respectively, in comparison with unselected (UNSEL). The levels of EST, AChE, GST, ACP, and ALP enzymes amplified on application from G1 to G10. The enzymes contributing in resistance development of insecticides were as follows: GST (20.7 µmol/min/mg of protein) in Delta-SEL (G10), while AChE 9.71 µmol/min/mg of protein in Imida-SEL (G10) and the peak ACP and ALP enzyme activities 13.32 and 12.93 µmol/min/mg of protein, respectively, in Fipro-SEL (G10). The results showed that detoxification enzymes trigger insecticide resistance in A. aegypti and their suppression may aid in the resistance breakage.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Infección por el Virus Zika , Virus Zika , Acetilcolinesterasa , Animales , Monitoreo del Ambiente , Insecticidas/toxicidad , Larva , Mosquitos Vectores , Neonicotinoides , Nitrilos , Nitrocompuestos , Pirazoles , Piretrinas/toxicidad
8.
J Invertebr Pathol ; 174: 107423, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32525026

RESUMEN

One advantage of using the Cry proteins of Bacillus thuringiensis as pesticides is their relatively narrow spectrum of activity, thus reducing the risk of non-target effects. Understanding the molecular basis of specificity has the potential to help us design improved products against emerging pests, or against pests that have developed resistance to other Cry proteins. Many previous studies have associated specificity with the binding of the Cry protein, particularly through the apical regions of domain II, to particular receptors on the midgut epithelial cells of the host insect. We have previously found that the specificity of Cry2A proteins against some insects is associated with domain I, which is traditionally associated with pore-formation but not receptor binding. In this work we identify four amino acids in the N-terminal region that, when mutated, can confer activity towards Aedes aegypti to Cry2Ab, a protein known to lack this toxicity. Intriguingly these amino acids are located in the region (amino acids 1-49) that is believed to be removed during proteolytic activation of the Cry protein. We discuss how the motifs containing these amino acids might be involved in the toxic process.


Asunto(s)
Aedes/microbiología , Toxinas de Bacillus thuringiensis/genética , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Agentes de Control Biológico/farmacología , Endotoxinas/genética , Proteínas Hemolisinas/genética , Secuencia de Aminoácidos , Animales , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Endotoxinas/química , Endotoxinas/farmacología , Proteínas Hemolisinas/química , Proteínas Hemolisinas/farmacología , Mutación , Alineación de Secuencia
9.
J Insect Sci ; 17(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28423421

RESUMEN

The current Zika health crisis in the Americas has created an intense interest in mosquito control methods and products. Mosquito vectors of Zika are of the genus Aedes, mainly the yellow fever mosquito, Aedes aegypti. L. The use of repellents to alter mosquito host seeking behavior is an effective method for the prevention of mosquito-borne diseases. A large number of different spray-on repellents and wearable repellent devices are commercially available. The efficacies of many repellents are unknown. This study focuses on the efficacy of eleven different repellents in reducing the number of Ae. aegypti female mosquitoes attracted to human bait. We performed attraction-inhibition assays using a taxis cage in a wind tunnel setting. One person was placed upwind of the taxis cage and the mosquito movement towards or away from the person was recorded. The person was treated with various spray-on repellents or equipped with different mosquito repellent devices. We found that the spray-on repellents containing N,N-Diethyl-meta-toluamide and p-menthane-3,8-diol had the highest efficacy in repelling mosquitoes compared to repellents with other ingredients. From the five wearable devices that we tested, only the one that releases Metofluthrin significantly reduced the numbers of attracted mosquitoes. The citronella candle had no effect. We conclude that many of the products that we tested that were marketed as repellents do not reduce mosquito attraction to humans.


Asunto(s)
Aedes , Repelentes de Insectos , Control de Mosquitos , Aedes/fisiología , Animales , Quimiotaxis , Femenino , Humanos
10.
J Am Mosq Control Assoc ; 33(1): 56-59, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28388329

RESUMEN

Aedes aegypti is an important subtropical vector species and is predicted to have a limited year-round distribution in the southern United States. Collection of the species has not been officially verified in Oklahoma since 1940. Adult mosquitoes were collected in 42 sites across 7 different cities in Oklahoma using 3 different mosquito traps between May and September 2016. Between July and September 2016, 88 Ae. aegypti adults were collected at 18 different sites in 4 different cities across southern Oklahoma. Centers for Disease Control and Prevention mini light traps baited with CO2 attracted the highest numbers of Ae. aegypti individuals compared to Biogents (BG)-Sentinel® traps baited with Biogents (BG)-lure and octenol and Centers for Disease Control and Prevention gravid traps baited with Bermuda grass-infused water. The discovery of Ae. aegypti mosquitoes within urban/exurban areas in Oklahoma is important from an ecological as well as a public health perspective.


Asunto(s)
Aedes , Distribución Animal , Control de Mosquitos/métodos , Feromonas/farmacología , Aedes/fisiología , Animales , Oklahoma , Dinámica Poblacional
11.
Zoolog Sci ; 33(6): 643-649, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27927093

RESUMEN

In polarization-sensitive insect species an orthogonal arrangement of photoreceptive microvilli is a characteristic feature. However, mosquito eyes had not revealed this feature, and polarization sensitivity (PS) was considered to be non-existent in them. Recently, however, gravid Aedes (Stegomyia) aegypti females were found to possess PS, sequels of which could be demonstrated only in the absence of chemicals emitted by conspecifics. Therefore, PS in Ae. aegypti, unlike that of other aquatic insects, apparently does not play a dominant role in locating water bodies, and is difficult to demonstrate in situations free of chemical cues. Here, we present behavioral evidence with Ae. aegypti females, exposed to large-field optomotor stimuli based solely on polarization contrast. Under conditions with stripes of alternating orthogonal directions of polarization, clear optomotor responses were elicited, no different from those in response to a rotating drum with vertical black and white stripes. Thus, Ae. aegypti is indeed polarization-sensitive; it reacts to vertically-striped contrast patterns with low spatial frequency on the basis of both intensity and polarization differences between the stripes.


Asunto(s)
Aedes/fisiología , Conducta Animal/fisiología , Luz , Fiebre Amarilla/transmisión , Virus Zika/fisiología , Animales , Femenino , Estimulación Luminosa , Visión Ocular/fisiología
12.
Biochem Biophys Res Commun ; 463(4): 1203-9, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26086103

RESUMEN

Recent work demonstrated that a splice variant of a human macrophage voltage-gated sodium channel expressed on endosomes acts as an intracellular sensor for dsRNA, a viral-associated molecular pattern. Here our goal was to identify a candidate gene in a clinically relevant invertebrate model with related cellular and pattern recognition properties. The para gene in drosophila and other insects encodes voltage-gated sodium channels with similar electrophysiological properties to those found in vertebrate excitable membranes. A database search revealed that the AAEL006019 gene in Aedes aegypti, the yellow fever mosquito, encodes a voltage-gated sodium channel that is distinct from genes that encode para-like sodium channels. As compared to para-like channels, the protein products from this gene have deletions in the N-terminus and in the DII-DIII linker region. When over-expressed in an Aedes aegypti cell line, CCL-125, the AAEL006019 channel demonstrated cytoplasmic expression on vesicular-like organelles. Electrophysiologic analysis revealed that the channel mediates small inward currents that are enhanced by synthetic mimics of viral-derived ssRNA, R848 and ORN02, but not the dsRNA mimic, poly I:C. R848 treatment of CCL-125 cells that express high levels of the channels led to increased expression of RelA and Ago2, two mediators of insect innate immunity. These results suggest that the AAEL006019 channel acts as an intracellular pathogen sensor for ssRNA molecular patterns.


Asunto(s)
Aedes/metabolismo , Técnicas Biosensibles , Canales de Sodio/metabolismo , Animales , Línea Celular , Células HEK293 , Humanos , Activación del Canal Iónico
13.
J Med Entomol ; 52(4): 638-46, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26335470

RESUMEN

Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season.


Asunto(s)
Aedes/clasificación , Aedes/genética , Animales , Variación Genética , Filipinas , Estaciones del Año
14.
J Insect Sci ; 15: 140, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26443777

RESUMEN

Reducing the number of host-vector interactions is an effective way to reduce the spread of vector-borne diseases. Repellents are widely used to protect humans from a variety of protozoans, viruses, and nematodes. DEET (N,N-Diethyl-meta-toluamide), a safe and effective repellent, was developed during World War II. Fear of possible side effects of DEET has created a large market for "natural" DEET-free repellents with a variety of active ingredients. We present a comparative study on the efficacy of eight commercially available products, two fragrances, and a vitamin B patch. The products were tested using a human hand as attractant in a Y-tube olfactometer setup with Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), both major human disease vectors. We found that Ae. albopictus were generally less attracted to the test subject's hand compared with Ae, aegypti. Repellents with DEET as active ingredient had a prominent repellency effect over longer times and on both species. Repellents containing p-menthane-3,8-diol produced comparable results but for shorter time periods. Some of the DEET-free products containing citronella or geraniol did not have any significant repellency effect. Interestingly, the perfume we tested had a modest repellency effect early after application, and the vitamin B patch had no effect on either species. This study shows that the different active ingredients in commercially available mosquito repellent products are not equivalent in terms of duration and strength of repellency. Our results suggest that products containing DEET or p-menthane-3,8-diol have long-lasting repellent effects and therefore provide good protection from mosquito-borne diseases.


Asunto(s)
Aedes , Repelentes de Insectos , Adulto , Animales , Monoterpenos Ciclohexánicos , DEET , Femenino , Humanos , Insectos Vectores , Mentol/análogos & derivados , Aceites Volátiles , Perfumes
15.
Pest Manag Sci ; 80(11): 5876-5886, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39017029

RESUMEN

BACKGROUND: Controlling the spread of arboviral diseases remains a considerable challenge due to the rapid development of insecticide resistance in Aedes mosquitoes. This study evaluated the effects of boric acid-containing toxic sugar bait (TSB) on field populations of resistant Aedes aegypti mosquitoes. In addition, this study examined the flight activity and wing beat frequency and amplitude of males and the flight activity, fecundity, and insemination of females after pairing with males exposed to TSB. The population dynamics of Aedes mosquitoes under imbalanced sex ratios were examined to simulate realistic field conditions for male suppression under the effect of TSB. RESULTS: The mortality of male mosquitoes was consistently high within 24 h after exposure. By contrast, the mortality of female mosquitoes was inconsistent, with over 70% mortality observed at 168 h. The flight activity and wing beat amplitude of treated males were significantly lower than those of controls, but no significant difference in wing beat frequency was detected. The fecundity and insemination of treated female mosquitoes were lower than those of controls. A simulation study indicated that considerably low male population densities led to mating failures, triggering a mate-finding Allee effect and resulting in persistently low population levels. CONCLUSION: Boric acid-containing TSB could effectively complement current chemical intervention approaches to control resistant mosquito populations. TSB is effective in reducing field male populations and impairing male flight activity and female-seeking behavior, resulting in decreased fecundity and insemination. Male suppression due to TSB potentially results in a small mosquito population. © 2024 Society of Chemical Industry.


Asunto(s)
Aedes , Ácidos Bóricos , Fertilidad , Vuelo Animal , Control de Mosquitos , Conducta Sexual Animal , Alas de Animales , Animales , Aedes/efectos de los fármacos , Aedes/fisiología , Masculino , Ácidos Bóricos/farmacología , Fertilidad/efectos de los fármacos , Femenino , Vuelo Animal/efectos de los fármacos , Control de Mosquitos/métodos , Conducta Sexual Animal/efectos de los fármacos , Inseminación , Azúcares , Insecticidas/farmacología
16.
Biomolecules ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38540733

RESUMEN

Neuropeptides are the main regulators of physiological, developmental, and behavioural processes in insects. Three insect neuropeptide systems, the adipokinetic hormone (AKH), corazonin (Crz), and adipokinetic hormone/corazonin-related peptide (ACP), and their cognate receptors, are related to the vertebrate gonadotropin (GnRH) system and form the GnRH superfamily of peptides. In the current study, the two signalling systems, AKH and ACP, of the yellow fever mosquito, Aedes aegypti, were comparatively investigated with respect to ligand binding to their respective receptors. To achieve this, the solution structure of the hormones was determined by nuclear magnetic resonance distance restraint methodology. Atomic-scale models of the two G protein-coupled receptors were constructed with the help of homology modelling. Thereafter, the binding sites of the receptors were identified by blind docking of the ligands to the receptors, and models were derived for each hormone system showing how the ligands are bound to their receptors. Lastly, the two models were validated by comparing the computational results with experimentally derived data available from the literature. This mostly resulted in an acceptable agreement, proving the models to be largely correct and usable. The identification of an antagonist versus a true agonist may, however, require additional testing. The computational data also explains the exclusivity of the two systems that bind only the cognate ligand. This study forms the basis for further drug discovery studies.


Asunto(s)
Aedes , Hormonas de Insectos , Neuropéptidos , Oligopéptidos , Ácido Pirrolidona Carboxílico/análogos & derivados , Fiebre Amarilla , Animales , Ligandos , Modelos Químicos , Filogenia , Evolución Molecular , Neuropéptidos/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo
17.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38626295

RESUMEN

The mosquito Aedes aegypti is the primary vector of many human arboviruses such as dengue, yellow fever, chikungunya, and Zika, which affect millions of people worldwide. Population genetic studies on this mosquito have been important in understanding its invasion pathways and success as a vector of human disease. The Axiom aegypti1 SNP chip was developed from a sample of geographically diverse A. aegypti populations to facilitate genomic studies on this species. We evaluate the utility of the Axiom aegypti1 SNP chip for population genetics and compare it with a low-depth shotgun sequencing approach using mosquitoes from the native (Africa) and invasive ranges (outside Africa). These analyses indicate that results from the SNP chip are highly reproducible and have a higher sensitivity to capture alternative alleles than a low-coverage whole-genome sequencing approach. Although the SNP chip suffers from ascertainment bias, results from population structure, ancestry, demographic, and phylogenetic analyses using the SNP chip were congruent with those derived from low-coverage whole-genome sequencing, and consistent with previous reports on Africa and outside Africa populations using microsatellites. More importantly, we identified a subset of SNPs that can be reliably used to generate merged databases, opening the door to combined analyses. We conclude that the Axiom aegypti1 SNP chip is a convenient, more accurate, low-cost alternative to low-depth whole-genome sequencing for population genetic studies of A. aegypti that do not rely on full allelic frequency spectra. Whole-genome sequencing and SNP chip data can be easily merged, extending the usefulness of both approaches.


Asunto(s)
Aedes , Genética de Población , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma , Aedes/genética , Animales , Secuenciación Completa del Genoma/métodos , Filogenia , Genoma de los Insectos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Genotipo , Técnicas de Genotipaje/métodos , Mosquitos Vectores/genética
18.
Infect Genet Evol ; 103: 105333, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35817397

RESUMEN

Aedes aegypti (L.), the yellow fever mosquito, is also an important vector of dengue and Zika viruses, and an invasive species in North America. Aedes aegypti inhabits tropical and sub-tropical areas of the world and in North America is primarily distributed throughout the southern US states and Mexico. The northern range of Ae. aegypti is limited by cold winter months and establishment in these areas has been mostly unsuccessful. However, frequent introductions of Ae. aegypti to temperate, non-endemic areas during the warmer months can lead to seasonal activity and disease outbreaks. Two Ae. aegypti incursions were reported in the late summer of 2019 into York, Nebraska and Moab, Utah. These states had no history of established populations of this mosquito and no evidence of previous seasonal activity. We genotyped a subset of individuals from each location at 12 microsatellite loci and ~ 14,000 single nucleotide polymorphic markers to determine their genetic affinities to other populations worldwide and investigate their potential source of introduction. Our results support a single origin for each of the introductions from different sources. Aedes aegypti from Utah likely derived from Tucson, Arizona, or a nearby location. Nebraska specimen results were not as conclusive, but point to an origin from southcentral or southeastern US. In addition to an effective, efficient, and sustainable control of invasive mosquitoes, such as Ae. aegypti, identifying the potential routes of introduction will be key to prevent future incursions and assess their potential health threat based on the ability of the source population to transmit a particular virus and its insecticide resistance profile, which may complicate vector control.


Asunto(s)
Aedes , Mosquitos Vectores , Aedes/genética , Animales , Humanos , Mosquitos Vectores/genética , Nebraska/epidemiología , Utah/epidemiología , Fiebre Amarilla , Virus Zika , Infección por el Virus Zika
19.
Front Bioeng Biotechnol ; 10: 821428, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186905

RESUMEN

Aedes aegypti is an invasive mosquito species and major vector of human arboviruses. A wide variety of control methods have been employed to combat mosquito populations. One of them is the sterile insect technique (SIT) that has recently attracted considerable research efforts due to its proven record of success and the absence of harmful environmental footprints. The efficiency and cost-effectiveness of SIT is significantly enhanced by male-only releases. For mosquito SIT, male-only releases are ideally needed since females bite, blood-feed and transmit the pathogens. Ae. aegypti genetic sexing strains (GSS) have recently become available and are based on eye colour mutations that were chosen as selectable markers. These genetic sexing strains were developed through classical genetics and it was shown to be subjected to genetic recombination, a phenomenon that is not suppressed in males as is the case in many Diptera. The genetic stability of these GSS was strengthened by the induction and isolation of radiation-induced inversions. In this study, we used the red eye mutation and the inversion Inv35 line of the Ae. aegypti red-eye GSS s and introgressed them in six different genomic backgrounds to develop GSS with the respective local genomic backgrounds. Our goal was to assess whether the recombination frequencies in the strains with and without the inversion are affected by the different genomic backgrounds. In all cases the recombination events were suppressed in all Inv35 GSS strains, thus indicating that the genomic background does not negatively affect the inversion result. Absence of any effect that could be ascribed to genetic differences, enables the introgression of the key elements of the GSS into the local genomic background prior to release to the target areas. Maintaining the local background increases the chances for successful matings between released males and wild females and addresses potential regulatory concerns regarding biosafety and biosecurity.

20.
Insects ; 12(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670293

RESUMEN

With insecticide-resistant mosquito populations becoming an ever-growing concern, new vector control technologies are needed. With the lack of new chemical classes of insecticides to control mosquito populations, the development of novel synergists may improve the performance of available insecticides. We screened a set of 20 plant essential oils alone and in combination with natural pyrethrins against Aedes aegypti (Orlando) female adult mosquitoes to assess their ability to synergize this natural insecticide. A co-toxicity factor analysis was used to identify whether plant oils modulated the toxicity of natural pyrethrins antagonistically, additively, or synergistically. Both knockdown at 1 h and mortality at 24 h were monitored. A majority of oils increased the toxicity of natural pyrethrins, either via an additive or synergistic profile. Many oils produced synergism at 2 µg/insect, whereas others were synergistic only at the higher dose of 10 µg/insect. Amyris, cardamom, cedarwood, and nutmeg East Indies (E.I.) oils were the most active oils for increasing the mortality of natural pyrethrins at 24 h with co-toxicity factors greater than 50 at either or both doses. A number of oils also synergized the 1 h knockdown of natural pyrethrins. Of these, fir needle oil and cypress oils were the most successful at improving the speed-of-action of natural pyrethrins at both doses, with co-toxicity factors of 130 and 62, respectively. To further assess the co-toxicity factor method, we applied selected plant essential oils with variable doses of natural pyrethrins to calculate synergism ratios. Only the oils that produced synergistic co-toxicity factors produced statistically significant synergism ratios. This analysis demonstrated that the degree of co-toxicity factor correlated well with the degree of synergism ratio observed (Pearson correlation coefficient r = 0.94 at 2 µg/insect; r = 0.64 at 10 µg/insect) and that the co-toxicity factor is a useful tool in screening for synergistic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA