Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
JCI Insight ; 4(19)2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31578313

RESUMEN

Cetuximab, an EGFR-blocking antibody, is currently approved for treatment of metastatic head and neck squamous cell carcinoma (HNSCC), but its response rate is limited. In addition to blocking EGFR-stimulated cell signaling, cetuximab can induce endocytosis of ASCT2, a glutamine transporter associated with EGFR in a complex, leading to glutathione biosynthesis inhibition and cellular sensitization to ROS. Pyruvate dehydrogenase kinase-1 (PDK1), a key mitochondrial enzyme overexpressed in cancer cells, redirects glucose metabolism from oxidative phosphorylation toward aerobic glycolysis. In this study, we tested the hypothesis that targeting PDK1 is a rational approach to synergize with cetuximab through ROS overproduction. We found that combination of PDK1 knockdown or inhibition by dichloroacetic acid (DCA) with ASCT2 knockdown or with cetuximab treatment induced ROS overproduction and apoptosis in HNSCC cells, and this effect was independent of effective inhibition of EGFR downstream pathways but could be lessened by N-acetyl cysteine, an anti-oxidative agent. In several cetuximab-resistant HNSCC xenograft models, DCA plus cetuximab induced marked tumor regression, whereas either agent alone failed to induce tumor regression. Our findings call for potentially novel clinical trials of combining cetuximab and DCA in patients with cetuximab-sensitive EGFR-overexpressing tumors and patients with cetuximab-resistant EGFR-overexpressing tumors.


Asunto(s)
Cetuximab/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Sistema de Transporte de Aminoácidos ASC/genética , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ácido Dicloroacético/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones Desnudos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/efectos de los fármacos , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Pharm Sci ; 106(5): 1396-1404, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28163135

RESUMEN

Dichloroacetic acid (DCA), a halogenated organic acid, is a pyruvate dehydrogenase kinase inhibitor that has been used to treat congenital or acquired lactic acidosis and is currently in early-phase clinical trials for cancer treatment. DCA was found to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta 1 (GSTZ1-1), resulting in nonlinear kinetics and abnormally high accumulation ratio after repeated dosing. In this analysis, a semi-mechanistic pharmacokinetic enzyme turnover model was developed for the first time to capture DCA autoinhibition, gastrointestinal region-dependent absorption, and time-dependent change in bioavailability in rats. The maximum rate constant for DCA-induced GSTZ1-1 inactivation is estimated to be 0.96/h, which is 110 times that of the rate constant for GSTZ1-1 natural degradation (0.00875/h). The model-predicted DCA concentration that corresponds to 50% of maximum enzyme inhibition (EC50) is 4.32 mg/L. The constructed pharmacokinetic enzyme turnover model, when applied to human data, could be used to predict the accumulation of DCA after repeated oral dosing, guide selection of dosing regimens in clinical studies, and facilitate clinical development of DCA.


Asunto(s)
Ácido Dicloroacético/farmacocinética , Hígado/efectos de los fármacos , Hígado/enzimología , Dinámicas no Lineales , Animales , Disponibilidad Biológica , Ácido Dicloroacético/antagonistas & inhibidores , Masculino , Ratas , Ratas Sprague-Dawley
3.
BMC Pharmacol Toxicol ; 18(1): 17, 2017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28431577

RESUMEN

BACKGROUND: The present study was designed to investigate the protective effect of aqueous date extract (ADE) against the dichloroacetic acid (DCA)-induced testicular injury in rats. METHODS: Forty-eight male Wistar rats were randomly divided into six groups of eight: group I served as the control; group II was given ADE (4 ml/kg) by gavage; groups III and IV received DCA at 0.5 and 2 g/L drinking water, respectively; and groups V and VI received DCA at 0.5 and 2 g/L drinking water, respectively, before ADE administration. The experiment was performed for two months. RESULTS: Results showed that the absolute weights of testes and epididymis were decreased following the DCA administration. The testosterone, FSH and LH levels were also decreased. Severe histopathological changes in testes were observed including degeneration of seminiferous tubules and depletion of germ cells. These changes were associated with alterations of oxidative stress markers. Levels of lipid peroxidation and SOD and CAT activities were increased, while activity of GPx and GSH levels were decreased. Pretreatment with ADE has effectively alleviated the oxidative stress induced by DCA thereby restoring these parameters to normal values. CONCLUSIONS: These results suggest that ADE has a protective effect over DCA-induced oxidative damage in rat testes.


Asunto(s)
Ácido Dicloroacético/toxicidad , Desinfectantes/toxicidad , Phoeniceae/química , Extractos Vegetales/uso terapéutico , Testículo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Carcinógenos/antagonistas & inhibidores , Carcinógenos/toxicidad , Ácido Dicloroacético/antagonistas & inhibidores , Desinfectantes/antagonistas & inhibidores , Epidídimo/efectos de los fármacos , Hormonas Esteroides Gonadales/sangre , Peroxidación de Lípido/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar , Testículo/patología
4.
Chem Biol Interact ; 215: 33-9, 2014 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-24632415

RESUMEN

The in vivo elimination rate of dichloroacetate (DCA), an investigational drug; is determined by the rate of its biotransformation to glyoxylate, catalyzed by glutathione transferase ζ1 (GSTZ1). DCA is a mechanism-based inactivator of GSTZ1, thus elimination of DCA is slowed with repeated dosing. We observed that chloride, a physiologically important anion, attenuated DCA-induced GSTZ1 inactivation in human liver cytosol in a concentration and GSTZ1 haplotype-dependent way. In the absence of chloride, incubation with 0.5mM DCA resulted in inactivation of GSTZ1 with a half-life of 0.4h (samples with the KRT haplotype) to 0.5h (EGT haplotype). At the hepatic physiological chloride concentration, 38mM, samples with the EGT haplotype retained more activity (80%) following a 2-h incubation with 0.5mM DCA than those possessing the KRT haplotype (55%). The chloride concentration that protected 50% of the GSTZ1 activity following 2-h incubation with 0.5mM DCA (EC50) was 15.0±3.1mM (mean±S.D., n=3) for EGT samples and 36.2±2.2mM for KRT samples. Bromide, iodide and sulfite also protected GSTZ1 from inactivation by DCA, however fluoride, sulfate, carbonate, acetate, cyanide did not. Protection by bromide varied by GSTZ1 haplotype: EC50 was 1.3±0.3mM for the EGT haplotype and 5.0±0.60mM for the KRT haplotype. The EC50 values for iodide and sulfite in liver cytosol samples with EGT haplotype were respectively 0.14±0.06mM and 9.6±1.1mM (mean±S.D., n=3). Because the in vivo half-life of DCA is determined by the fraction of active GSTZ1 in the liver, identifying factors that regulate GSTZ1 activity is important in determining appropriate DCA dosing in humans.


Asunto(s)
Cloruros/farmacología , Ácido Dicloroacético/antagonistas & inhibidores , Ácido Dicloroacético/farmacología , Glutatión Transferasa/metabolismo , Haplotipos , Hígado/enzimología , Adolescente , Adulto , Anciano , Niño , Citosol/efectos de los fármacos , Citosol/enzimología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Femenino , Humanos , Concentración de Iones de Hidrógeno , Cinética , Hígado/citología , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA