Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 568(7751): 187-192, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944478

RESUMEN

Microglia maintain homeostasis in the central nervous system through phagocytic clearance of protein aggregates and cellular debris. This function deteriorates during ageing and neurodegenerative disease, concomitant with cognitive decline. However, the mechanisms of impaired microglial homeostatic function and the cognitive effects of restoring this function remain unknown. We combined CRISPR-Cas9 knockout screens with RNA sequencing analysis to discover age-related genetic modifiers of microglial phagocytosis. These screens identified CD22, a canonical B cell receptor, as a negative regulator of phagocytosis that is upregulated on aged microglia. CD22 mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-ß oligomers and α-synuclein fibrils in vivo. Long-term central nervous system delivery of an antibody that blocks CD22 function reprograms microglia towards a homeostatic transcriptional state and improves cognitive function in aged mice. These findings elucidate a mechanism of age-related microglial impairment and a strategy to restore homeostasis in the ageing brain.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/citología , Homeostasis/efectos de los fármacos , Microglía/efectos de los fármacos , Ácido N-Acetilneuramínico/farmacología , Fagocitosis/efectos de los fármacos , Lectina 2 Similar a Ig de Unión al Ácido Siálico/antagonistas & inhibidores , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Cognición/efectos de los fármacos , Cognición/fisiología , Femenino , Homeostasis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/citología , Ácido N-Acetilneuramínico/química , Fagocitosis/genética , Análisis de Secuencia de ARN , Lectina 2 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 2 Similar a Ig de Unión al Ácido Siálico/metabolismo
2.
IUBMB Life ; 76(3): 161-178, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37818680

RESUMEN

Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1ß. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.


Asunto(s)
Aterosclerosis , Ácido N-Acetilneuramínico , Humanos , Ratones , Animales , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacología , Autofagia
3.
Microb Pathog ; 190: 106628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508422

RESUMEN

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Asunto(s)
Neuraminidasa , Infecciones por Rotavirus , Rotavirus , Replicación Viral , Animales , Neuraminidasa/metabolismo , Neuraminidasa/genética , Rotavirus/efectos de los fármacos , Rotavirus/fisiología , Porcinos , Replicación Viral/efectos de los fármacos , Línea Celular , Células Epiteliales/virología , Células Epiteliales/microbiología , Acoplamiento Viral/efectos de los fármacos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Antivirales/farmacología , Haplorrinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/microbiología
4.
PLoS Pathog ; 17(4): e1009158, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33819312

RESUMEN

Binding of Streptococcus pneumoniae (Spn) to nasal mucus leads to entrapment and clearance via mucociliary activity during colonization. To identify Spn factors allowing for evasion of mucus binding, we used a solid-phase adherence assay with immobilized mucus of human and murine origin. Spn bound large mucus particles through interactions with carbohydrate moieties. Mutants lacking neuraminidase A (nanA) or neuraminidase B (nanB) showed increased mucus binding that correlated with diminished removal of terminal sialic acid residues on bound mucus. The non-additive activity of the two enzymes raised the question why Spn expresses two neuraminidases and suggested they function in the same pathway. Transcriptional analysis demonstrated expression of nanA depends on the enzymatic function of NanB. As transcription of nanA is increased in the presence of sialic acid, our findings suggest that sialic acid liberated from host glycoconjugates by the secreted enzyme NanB induces the expression of the cell-associated enzyme NanA. The absence of detectable mucus desialylation in the nanA mutant, in which NanB is still expressed, suggests that NanA is responsible for the bulk of the modification of host glycoconjugates. Thus, our studies describe a functional role for NanB in sialic acid sensing in the host. The contribution of the neuraminidases in vivo was then assessed in a murine model of colonization. Although mucus-binding mutants showed an early advantage, this was only observed in a competitive infection, suggesting a complex role of neuraminidases. Histologic examination of the upper respiratory tract demonstrated that Spn stimulates mucus production in a neuraminidase-dependent manner. Thus, an increase production of mucus containing secretions appears to be balanced, in vivo, by decreased mucus binding. We postulate that through the combined activity of its neuraminidases, Spn evades mucus binding and mucociliary clearance, which is needed to counter neuraminidase-mediated stimulation of mucus secretions.


Asunto(s)
Transporte Biológico/efectos de los fármacos , Ácido N-Acetilneuramínico/farmacología , Neuraminidasa/metabolismo , Neuraminidasa/farmacología , Animales , Proteínas Bacterianas/metabolismo , Glicósido Hidrolasas/efectos de los fármacos , Glicósido Hidrolasas/metabolismo , Ratones Endogámicos C57BL , Moco , Ácido N-Acetilneuramínico/metabolismo , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/metabolismo
5.
Bioconjug Chem ; 34(8): 1498-1507, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37498932

RESUMEN

Cell communication and signal transduction rely heavily on the charge on the cell surface. The cell surface is negatively charged, with glycoproteins on the cell membrane providing a large percentage of the charge. Sialic acid is found on the outermost side of glycan chains and contributes to glycoprotein's negative charge. Sialic acid is highly expressed in tumor cells and plays an important role in tumor metastasis and immune escape by interacting with extracellular ligands. However, the specific effect of negative charge changes on glycoproteins is still poorly understood. In this study, we used 9-azido sialic acid (9Az-Sia) to create artificial epitopes on glycoproteins via metabolic glycan labeling, and we attached charged groups such as amino and carboxyl to 9Az-Sia via a click reaction with dibenzocyclooctyne (DBCO). The charge of glycoproteins was changed by metabolic glycan labeling and click modification. The results showed that the migration and invasion ability of the MDA-MB-231 cell labeled with 9Az-Sia was significantly reduced after the modification with amino groups rather than carboxyl groups. Epithelial-mesenchymal transition (EMT) is the biological process of metastatic tumor cells, with an increasing ability of tumor cells to migrate and invade. In particular, the expression of adhesion molecules increased in the amine-linked group, whereas the expression of matrix metalloproteinases (MMPs) increased significantly, which is not identical to EMT characteristics. In vivo experiments have demonstrated that the loss of negative charge on glycoproteins has an inhibitory effect on tumors. In conclusion, modifying the positive charge on the surface of glycoproteins can inhibit tumor cell metastasis and has great potential for tumor therapy.


Asunto(s)
Glicoproteínas de Membrana , Neoplasias , Humanos , Ácido N-Acetilneuramínico/farmacología , Transición Epitelial-Mesenquimal , Movimiento Celular , Neoplasias/patología , Glicoproteínas , Metaloproteinasas de la Matriz , Uniones Intercelulares/patología , Línea Celular Tumoral , Metástasis de la Neoplasia/patología
6.
J Nutr ; 153(9): 2561-2570, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37543214

RESUMEN

BACKGROUND: In early life, sialic acid (SA) plays a crucial role in neurodevelopment and neuronal function. However, it remains unclear whether and how SA supplementation in early life promotes behavioral response to stress in adolescence. OBJECTIVES: This study aimed to examine the effects and mechanisms of SA on the antistress capability under challenging situations. METHODS: In this study, C57BL/6 mice were daily supplemented with 1 µL SA solution/g body weight at the dose of 10 mg/kg/d from postnatal day (PND) 5-45. The antistress behaviors, including open field, elevated plus maze, forced swimming test, and tail suspension test, were performed at PND 46, PND 48, PND 50, and PND 52 to detect the antistress ability of SA, respectively. RESULTS: Our results showed that SA-treated mice were more active in facing challenging situations. The fiber photometry experiment showed that SA promoted the excitatory neuronal response in the medial prefrontal cortex (mPFC), which was extensively interconnected to stress. Besides, electrophysiological results revealed SA enhanced synaptic transmission rather than neuronal excitability of mPFC excitatory neurons. It was also supported by the increasing spine density of mPFC excitatory neurons. At the molecular amount, the SA elevated the transmitter release-related proteins of mPFC, including Synapsin 1 and vesicular glutamate transporter 1 (VGlut 1). Furthermore, SA supplementation enhanced synaptic transmission mainly by altering the kinetics of synaptic transmission. CONCLUSIONS: The SA supplementation enhanced the response capability to stress under challenging situations, and the enhanced synaptic transmission of mPFC excitatory neurons may be the neurological basis of active response under challenging situations. In general, our findings suggested that SA supplementation in early life can promote stress resistance in adolescence.


Asunto(s)
Ácido N-Acetilneuramínico , Transmisión Sináptica , Ratones , Animales , Ácido N-Acetilneuramínico/farmacología , Ratones Endogámicos C57BL , Transmisión Sináptica/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología
7.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569799

RESUMEN

The action of UVA radiation (both that derived from solar radiation and that used in the treatment of skin diseases) modifies the function and composition of keratinocyte membranes. Therefore, this study aimed to assess the effects of phytocannabinoids (CBD and CBG), used singly and in combination, on the contents of phospholipids, ceramides, lipid rafts and sialic acid in keratinocyte membranes exposed to UVA radiation, together with their structure and functionality. The phytocannabinoids, especially in combination (CBD+CBG), partially prevented increased levels of phosphatidylinositols and sialic acid from occurring and sphingomyelinase activity after the UVA exposure of keratinocytes. This was accompanied by a reduction in the formation of lipid rafts and malondialdehyde, which correlated with the parameters responsible for the integrity and functionality of the keratinocyte membrane (membrane fluidity and permeability and the activity of transmembrane transporters), compared to UVA-irradiated cells. This suggests that the simultaneous use of two phytocannabinoids may have a protective effect on healthy cells, without significantly reducing the therapeutic effect of UV radiation used to treat skin diseases such as psoriasis.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabidiol/farmacología , Ácido N-Acetilneuramínico/farmacología , Queratinocitos , Cannabinoides/farmacología , Rayos Ultravioleta
8.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139095

RESUMEN

In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/tratamiento farmacológico , Ácido N-Acetilneuramínico/farmacología , Ácido N-Acetilneuramínico/metabolismo , Hemaglutininas/farmacología , Neuraminidasa/metabolismo , Subtipo H3N2 del Virus de la Influenza A , Ácidos Neuramínicos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo
9.
Bioconjug Chem ; 33(7): 1269-1278, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35759354

RESUMEN

Multiple conjugation of virus-binding ligands to multivalent carriers is a prominent strategy to construct highly affine virus binders for the inhibition of viral entry into host cells. In a previous study, we introduced rationally designed sialic acid conjugates of bacteriophages (Qß) that match the triangular binding site geometry on hemagglutinin spike proteins of influenza A virions, resulting in effective infection inhibition in vitro and in vivo. In this work, we demonstrate that even partially sialylated Qß conjugates retain the inhibitory effect despite reduced activity. These observations not only support the importance of trivalent binding events in preserving high affinity, as supported by computational modeling, but also allow us to construct heterobifunctional modalities. Capsids carrying two different sialic acid ligand-linker structures showed higher viral inhibition than their monofunctional counterparts. Furthermore, capsids carrying a fluorescent dye in addition to sialic acid ligands were used to track their interaction with cells. These findings support exploring broader applications as multivalent inhibitors in the future.


Asunto(s)
Bacteriófagos , Virus de la Influenza A , Internalización del Virus , Bacteriófagos/metabolismo , Cápside/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza , Humanos , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Ligandos , Ácido N-Acetilneuramínico/farmacología , Internalización del Virus/efectos de los fármacos
10.
J Biochem Mol Toxicol ; 36(9): e23124, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35670011

RESUMEN

Galactosamine (GalN) is a well-known agent for inducing viral hepatitis models in rodents, but it can cause toxicity on different organs. Vitamin U (Vit U) has been proved as a powerful antioxidant on many toxicity models. The present study was designed to investigate the protective effects of Vit U on GalN-induced stomach injury. Rats were divided into four groups as follows: control (group I), Vit U given animals (50 mg/kg per day; group II), GalN administered animals (500 mg/kg at a single dose; group III), GalN + Vit U given animals (at the same dose and time, group IV). At the end of the 3rd day, animals were killed, and stomach tissues were taken. They were homogenized and centrifuged. In comparison to the control group, glutathione, total antioxidant capacity levels, catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and Na+ /K+ -ATPase activities of GalN group were found to be decreased. On the contrary, lipid peroxidation, advanced oxidized protein products, hexose-hexosamine, fucose, sialic acid, reactive oxygen species levels, as well as the activities of myeloperoxidase, xanthine oxidase, and lactate dehydrogenase were elevated. Administration of Vit U reversed these abnormalities in the GalN group. It can be concluded that Vit U exerts its unique antioxidant effect and prevents GalN-induced gastric damage.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Vitamina U , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/farmacología , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Fucosa/farmacología , Galactosamina/toxicidad , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Lactato Deshidrogenasas/metabolismo , Peroxidación de Lípido , Ácido N-Acetilneuramínico/farmacología , Estrés Oxidativo , Peroxidasa/metabolismo , Ratas , Especies Reactivas de Oxígeno , Superóxido Dismutasa/metabolismo , Vitamina U/farmacología , Xantina Oxidasa/metabolismo
11.
Infect Immun ; 89(6)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33782153

RESUMEN

Nontypeable Haemophilus influenzae (NTHi), a common inhabitant of the human nasopharynx and upper airways, causes opportunistic respiratory tract infections that are frequently recurring and chronic. NTHi utilizes sialic acid from the host to evade antibacterial defenses and persist in mucosal tissues; however, the role of sialic acid scavenged by NTHi during infection is not fully understood. We previously showed that sialylation protects specific epitopes on NTHi lipooligosaccharide (LOS) targeted by bactericidal IgM in normal human serum. Here, we evaluated the importance of immune evasion mediated by LOS sialylation in the mouse respiratory tract using wild-type H. influenzae and an isogenic siaB mutant incapable of sialylating the LOS. Sialylation protected common NTHi glycan structures recognized by human and murine IgM and protected NTHi from complement-mediated killing directed by IgM against these structures. Protection from IgM binding by sialylated LOS correlated with decreased survival of the siaB mutant versus the wild type in the murine lung. Complement depletion with cobra venom factor increased survival of the siaB mutant in the nasopharynx but not in the lungs, suggesting differing roles of sialylation at these sites. Prior infection increased IgM against H. influenzae but not against sialic acid-protected epitopes, consistent with sialic acid-mediated immune evasion during infection. These results provide mechanistic insight into an NTHi evasive strategy against an immune defense conserved across host species, highlighting the potential of the mouse model for development of anti-infective strategies targeting LOS antigens of NTHi.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/inmunología , Inmunoglobulina M/inmunología , Ácido N-Acetilneuramínico/farmacología , Animales , Modelos Animales de Enfermedad , Lipopolisacáridos/inmunología , Ratones , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología
12.
Am J Physiol Renal Physiol ; 320(4): F559-F568, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33615893

RESUMEN

Hypercalciuria is one of the early manifestations of diabetic nephropathy (DN). This is partially due to a decrease in the expression of renal transient receptor potential vanilloid type 5 (TRPV5), which is responsible for renal Ca2+ reabsorption. Soluble klotho has been previously determined to increase TRPV5 by cleaving sialic acid, causing TRPV5 to bind to membrane protein galectin-1. However, a recent study showed that soluble klotho binds to α2-3-sialyllactose, where sialic acid is located, on TRPV5, rather than cleave it. Here, we report that soluble klotho tethers TRPV5 on the membrane by binding both TRPV5 and galectin-1, thereby protecting membrane TRPV5 from diabetes-induced endocytosis. In the present study, we injected recombinant soluble α-klotho protein (rKL) into db/db and db/m mice for 8 wk and collected urine and kidneys. We administered rKL, AZD4547 [fibroblast growth factor (FGF) receptor type 1 inhibitor], and OTX008 (galectin-1 inhibitor) to cultured mouse distal tubular cells with or without 30 mM high-glucose (HG) exposure. db/db mice showed increased renal Ca2+ excretion and decreased renal TRPV5 expression. rKL treatment reversed this change. In vitro, TRPV5 expression in distal tubular cells decreased under HG conditions, and rKL successfully upregulated TRPV5 with or without FGF23. Also, immunofluorescence showed colocalization of klotho, TRPV5, and galectin-1 in distal tubule cells, suggesting that klotho binds to both TRPV5 and galectin-1. Moreover, when both FGF receptor type 1 and galectin-1 were inhibited, rKL failed to increase TRPV5 under HG conditions. Our results indicate that soluble klotho prevents TRPV5 from degradation and subsequent diabetes-induced endocytosis by anchoring TRPV5 through binding with both TRPV5 and galectin-1.NEW & NOTEWORTHY Soluble α-klotho anchors transient receptor potential vanilloid type 5 (TRPV5) on the apical membrane of the distal tubule by binding both TRPV5 and a membrane-abundant protein, galectin-1. This newly discovered mechanism works even when fibroblast growth factor (FGF)23 signaling is inhibited by treatment with FGF receptor type 1 inhibitor. Therefore, we identified how soluble α-klotho increases TRPV5 without FGF23. We confirmed this mechanism by observing that soluble α-klotho fails to enhance TRPV5 when both FGF receptor type 1 and galectin-1 are inhibited.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Galectina 1/metabolismo , Riñón/metabolismo , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Animales , Benzamidas/farmacología , Membrana Celular/metabolismo , Nefropatías Diabéticas/metabolismo , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Células Epiteliales/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/metabolismo , Galectina 1/farmacología , Ratones , Ácido N-Acetilneuramínico/farmacología , Piperazinas/farmacología , Pirazoles/farmacología
13.
J Pharmacol Exp Ther ; 376(1): 136-146, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33139318

RESUMEN

Pulmonary fibrosis remains a serious biomedical problem with no cure and an urgent need for better therapies. Neuraminidases (NEUs), including NEU1, have been recently implicated in the mechanism of pulmonary fibrosis by us and others. We now have tested the ability of a broad-spectrum neuraminidase inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), to modulate the in vivo response to acute intratracheal bleomycin challenge as an experimental model of pulmonary fibrosis. A marked alleviation of bleomycin-induced body weight loss and notable declines in accumulation of pulmonary lymphocytes and collagen deposition were observed. Real-time polymerase chain reaction analyses of human and mouse lung tissues and primary human lung fibroblast cultures were also performed. A predominant expression and pronounced elevation in the levels of NEU1 mRNA were observed in patients with idiopathic pulmonary fibrosis and bleomycin-challenged mice compared with their corresponding controls, whereas NEU2, NEU3, and NEU4 were expressed at far lower levels. The levels of mRNA for the NEU1 chaperone, protective protein/cathepsin A (PPCA), were also elevated by bleomycin. Western blotting analyses demonstrated bleomycin-induced elevations in protein expression of both NEU1 and PPCA in mouse lungs. Two known selective NEU1 inhibitors, C9-pentyl-amide-DANA (C9-BA-DANA) and C5-hexanamido-C9-acetamido-DANA, dramatically reduced bleomycin-induced loss of body weight, accumulation of pulmonary lymphocytes, and deposition of collagen. Importantly, C9-BA-DANA was therapeutic in the chronic bleomycin exposure model with no toxic effects observed within the experimental timeframe. Moreover, in the acute bleomycin model, C9-BA-DANA attenuated NEU1-mediated desialylation and shedding of the mucin-1 ectodomain. These data indicate that NEU1-selective inhibition offers a potential therapeutic intervention for pulmonary fibrotic diseases. SIGNIFICANCE STATEMENT: Neuraminidase-1-selective therapeutic targeting in the acute and chronic bleomycin models of pulmonary fibrosis reverses pulmonary collagen deposition, accumulation of lymphocytes in the lungs, and the disease-associated loss of body weight-all without observable toxic effects. Such therapy is as efficacious as nonspecific inhibition of all neuraminidases in these models, thus indicating the central role of neuraminidase-1 as well as offering a potential innovative, specifically targeted, and safe approach to treating human patients with a severe malady: pulmonary fibrosis.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Ácido N-Acetilneuramínico/análogos & derivados , Neuraminidasa/antagonistas & inhibidores , Neumonía/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bleomicina/toxicidad , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Femenino , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mucina-1/metabolismo , Ácido N-Acetilneuramínico/farmacología , Ácido N-Acetilneuramínico/uso terapéutico , Neuraminidasa/genética , Neuraminidasa/metabolismo , Neumonía/etiología , Fibrosis Pulmonar/etiología
14.
Bioconjug Chem ; 32(6): 1047-1051, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34043338

RESUMEN

Bacterial pathogens such as Nontypeable Haemophilus influenzae (NTHi) can evade the immune system by taking up and presenting host-derived sialic acids. Herein, we report a detailed structure-activity relationship of sialic acid-based inhibitors that prevent the transfer of host sialic acids to NTHi. We report the synthesis and biological evaluation of C-5, C-8, and C-9 derivatives of the parent compound 3-fluorosialic acid (SiaNFAc). Small modifications are tolerated at the C-5 and C-9 positions, while the C-8 position does not allow for modification. These structure-activity relationships define the chemical space available to develop selective bacterial sialylation inhibitors.


Asunto(s)
Haemophilus influenzae/efectos de los fármacos , Haemophilus influenzae/metabolismo , Halogenación , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacología , Relación Estructura-Actividad
15.
Nat Chem Biol ; 15(10): 949-958, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451760

RESUMEN

Antibody-drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine-citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.


Asunto(s)
Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo , Inmunoconjugados/toxicidad , Maitansina/análogos & derivados , Ácido N-Acetilneuramínico/farmacología , Trastuzumab/farmacología , Ado-Trastuzumab Emtansina , Antineoplásicos Inmunológicos/farmacología , Proteínas Portadoras , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Lisosomas , Maitansina/farmacología
16.
Lett Appl Microbiol ; 73(1): 20-25, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33386625

RESUMEN

Sialic acid (N-acetylneuraminic acid), a 9-carbon monosaccharide, has been widely studied in immunology, oncology and neurology. However, the effects of sialic acid on organ and intestinal development, liver function and gut microbiota were rarely studied. In this study, we found that oral sialic acid tended to increase the relative weight of liver and decreased the serum aspartate aminotransferase (GPT) activity. In addition, sialic acid treatment markedly reduced gut villus length, depth, the ratio of villus length/depth (L/D), areas, width and the number of goblet cells. Furthermore, gut microbes were changed in response to oral sialic acid, such as Staphylococcus lentus, Corynebacterium stationis, Corynebacterium urealyticum, Jeotgalibaca sp_PTS2502, Ignatzschineria indica, Sporosarcina pasteurii, Sporosarcina sp_HW10C2, Facklamia tabacinasalis, Oblitimonas alkaliphila, Erysipelatoclostridium ramosum, Blautia sp_YL58, Bacteroids thetaiotaomicron, Morganella morganii, Clostridioides difficile, Helicobacter tryphlonius, Clostridium sp_Clone47, Alistipes finegoldii, [pseudomonas]_geniculata and Pseudomonas parafulva at the species level. In conclusion, oral sialic acid altered the intestinal pathological state and microbial compositions, and the effect of sialic acid on host health should be further studied.


Asunto(s)
Biodiversidad , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Hígado/efectos de los fármacos , Ácido N-Acetilneuramínico/farmacología , Administración Oral , Animales , Aspartato Aminotransferasas/sangre , Activación Enzimática/efectos de los fármacos , Tracto Gastrointestinal/crecimiento & desarrollo , Ratones , Ácido N-Acetilneuramínico/administración & dosificación
17.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445134

RESUMEN

Coxsackievirus A24 variant (CVA24v) is the primary causative agent of the highly contagious eye infection designated acute hemorrhagic conjunctivitis (AHC). It is solely responsible for two pandemics and several recurring outbreaks of the disease over the last decades, thus affecting millions of individuals throughout the world. To date, no antiviral agents or vaccines are available for combating this disease, and treatment is mainly supportive. CVA24v utilizes Neu5Ac-containing glycans as attachment receptors facilitating entry into host cells. We have previously reported that pentavalent Neu5Ac conjugates based on a glucose-scaffold inhibit CVA24v infection of human corneal epithelial cells. In this study, we report on the design and synthesis of scaffold-replaced pentavalent Neu5Ac conjugates and their effect on CVA24v cell transduction and the use of cryogenic electron microscopy (cryo-EM) to study the binding of these multivalent conjugates to CVA24v. The results presented here provide insights into the development of Neu5Ac-based inhibitors of CVA24v and, most significantly, the first application of cryo-EM to study the binding of a multivalent ligand to a lectin.


Asunto(s)
Antivirales/farmacología , Infecciones por Coxsackievirus/dietoterapia , Enterovirus Humano C/efectos de los fármacos , Ácido N-Acetilneuramínico/farmacología , Conjuntivitis Hemorrágica Aguda/tratamiento farmacológico , Conjuntivitis Hemorrágica Aguda/metabolismo , Conjuntivitis Hemorrágica Aguda/virología , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/virología , Glucosa/metabolismo , Humanos , Lectinas/metabolismo , Ligandos , Polisacáridos/metabolismo , Receptores Virales/metabolismo
18.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208755

RESUMEN

Although the approved vaccines are proving to be of utmost importance in containing the Coronavirus disease 2019 (COVID-19) threat, they will hardly be resolutive as new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, a single-stranded RNA virus) variants might be insensitive to the immune response they induce. In this scenario, developing an effective therapy is still a dire need. Different targets for therapeutic antibodies and diagnostics have been identified, among which the SARS-CoV-2 spike (S) glycoprotein, particularly its receptor-binding domain, has been defined as crucial. In this context, we aim to focus attention also on the role played by the S N-terminal domain (S1-NTD) in the virus attachment, already recognized as a valuable target for neutralizing antibodies, in particular, building on a cavity mapping indicating the presence of two druggable pockets and on the recent literature hypothesizing the presence of a ganglioside-binding domain. In this perspective, we aim at proposing S1-NTD as a putative target for designing small molecules hopefully able to hamper the SARS-CoV-2 attachment to host cells.


Asunto(s)
SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sitios de Unión , COVID-19/patología , COVID-19/terapia , COVID-19/virología , Reposicionamiento de Medicamentos , Humanos , Simulación de Dinámica Molecular , Ácido N-Acetilneuramínico/análogos & derivados , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Ácido N-Acetilneuramínico/uso terapéutico , Unión Proteica , Dominios Proteicos , SARS-CoV-2/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Glicoproteína de la Espiga del Coronavirus/química , Acoplamiento Viral/efectos de los fármacos
19.
Molecules ; 26(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467083

RESUMEN

Chitosan is the only cationic polysaccharide found in nature. It has broad application prospects in biomaterials, but its application is limited due to its poor solubility in water. A novel chitosan derivative was synthesized by amidation of chitosan with 18ß-glycyrrhetinic acid and sialic acid. The chitosan derivatives were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and measurement of the zeta potential. We also investigated the solubility, cytotoxicity, and blood compatibility of chitosan derivatives. 18ß-glycyrrhetinic acid and sialic acid could be grafted onto chitosan molecular chains. The thermal stability of the synthesized chitosan derivatives was decreased and the surface was positively charged in water and phosphate-buffered saline. After chitosan had been modified by 18 ß-glycyrrhetinic acid and sialic acid, the solubility of chitosan was improved greatly in water and phosphate-buffered saline, and percent hemolysis was <5%. Novel amphiphilic chitosan derivatives could be suitable polymers for biomedical purposes.


Asunto(s)
Quitosano , Ácido Glicirretínico/análogos & derivados , Ensayo de Materiales , Ácido N-Acetilneuramínico , Línea Celular , Quitosano/análogos & derivados , Quitosano/síntesis química , Quitosano/química , Quitosano/farmacología , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacología , Humanos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacología , Solubilidad
20.
AAPS PharmSciTech ; 22(1): 16, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389218

RESUMEN

Many anti-inflammatory therapies targeting neutrophils have been developed so far. A sialic acid (SA)-modified liposomal (SAL) formulation, based on the high expression of L-selectin in peripheral blood neutrophils (PBNs) and SA as its targeting ligand, has proved to be an effective neutrophil-mediated drug delivery system targeting rheumatoid arthritis (RA). The objective of this study was to investigate the influence of particle size of drug-carrying SALs transported and delivered by neutrophils on their anti-RA effect. Dexamethasone palmitate-loaded SALs (DP-SALs) of different particle sizes (300.2 ± 5.5 nm, 150.3 ± 4.3 nm, and 75.0 ± 3.9 nm) were prepared with DP as a model drug. Our study indicated that DP-SALs could efficiently target PBNs, with larger liposomes leading to higher drug accumulation in cells. However, a high intake of large DP-SALs by PBNs inhibited their migration ability and capacity to release the payload at the target site. In contrast, small DP-SALs (75.0 ± 3.9 nm) could maintain the drug delivery potential of PBNs, leading to their efficient accumulation at the inflammatory site, where PBNs would be excessively activated to form neutrophil extracellular traps along with efficient payload release (small DP-SALs) and finally to induce excellent anti-RA effect.


Asunto(s)
Antiinflamatorios/administración & dosificación , Artritis Reumatoide/tratamiento farmacológico , Dexametasona/administración & dosificación , Liposomas/química , Neutrófilos/efectos de los fármacos , Ácidos Siálicos/química , Animales , Antiinflamatorios/uso terapéutico , Dexametasona/uso terapéutico , Sistemas de Liberación de Medicamentos , Humanos , Masculino , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Ácido N-Acetilneuramínico/uso terapéutico , Tamaño de la Partícula , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA