Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 20(9): e1011300, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39255275

RESUMEN

The genome of living cells is constantly challenged by DNA lesions that interfere with cellular processes such as transcription and replication. A manifold of mechanisms act in concert to ensure adequate DNA repair, gene expression, and genome stability. Bulky DNA lesions, such as those induced by UV light or the DNA-damaging agent 4-nitroquinoline oxide, act as transcriptional and replicational roadblocks and thus represent a major threat to cell metabolism. When located on the transcribed strand of active genes, these lesions are handled by transcription-coupled nucleotide excision repair (TC-NER), a yet incompletely understood NER sub-pathway. Here, using a genetic screen in the yeast Saccharomyces cerevisiae, we identified histone variant H2A.Z as an important component to safeguard transcription and DNA integrity following UV irradiation. In the absence of H2A.Z, repair by TC-NER is severely impaired and RNA polymerase II clearance reduced, leading to an increase in double-strand breaks. Thus, H2A.Z is needed for proficient TC-NER and plays a major role in the maintenance of genome stability upon UV irradiation.


Asunto(s)
Daño del ADN , Reparación del ADN , Inestabilidad Genómica , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcripción Genética , Rayos Ultravioleta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Reparación del ADN/genética , Histonas/metabolismo , Histonas/genética , Inestabilidad Genómica/efectos de la radiación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Genoma Fúngico , Roturas del ADN de Doble Cadena/efectos de la radiación , 4-Nitroquinolina-1-Óxido/farmacología , Regulación Fúngica de la Expresión Génica/efectos de la radiación
2.
J Virol ; 96(24): e0143822, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448807

RESUMEN

All living organisms have evolved DNA damage response (DDR) strategies in coping with threats to the integrity of their genome. In response to DNA damage, Sulfolobus islandicus activates its DDR network in which Orc1-2, an ortholog of the archaeal Orc1/Cdc6 superfamily proteins, plays a central regulatory role. Here, we show that pretreatment with UV irradiation reduced virus genome replication in S. islandicus infected with the fusellovirus SSV2. Like treatment with UV or the DNA-damaging agent 4-nitroquinoline-1-oxide (NQO), infection with SSV2 facilitated the expression of orc1-2 and significantly raised the cellular level of Orc1-2. The inhibitory effect of UV irradiation on the virus DNA level was no longer apparent in the infected culture of an S. islandicus orc1-2 deletion mutant strain. On the other hand, the overexpression of orc1-2 decreased virus genomic DNA by ~102-fold compared to that in the parent strain. Furthermore, as part of the Orc1-2-mediated DDR response genes for homologous recombination repair (HRR), cell aggregation and intercellular DNA transfer were upregulated, whereas genes for cell division were downregulated. However, the HRR pathway remained functional in host inhibition of SSV2 genome replication in the absence of UpsA, a subunit of pili essential for intercellular DNA transfer. In agreement with this finding, lack of the general transcriptional activator TFB3, which controls the expression of the ups genes, only moderately affected SSV2 genome replication. Our results demonstrate that infection of S. islandicus by SSV2 triggers the host DDR pathway that, in return, suppresses virus genome replication. IMPORTANCE Extremophiles thrive in harsh habitats and thus often face a daunting challenge to the integrity of their genome. How these organisms respond to virus infection when their genome is damaged remains unclear. We found that the thermophilic archaeon Sulfolobus islandicus became more inhibitory to genome replication of the virus SSV2 after preinfection UV irradiation than without the pretreatment. On the other hand, like treatment with UV or other DNA-damaging agents, infection of S. islandicus by SSV2 triggers the activation of Orc1-2-mediated DNA damage response, including the activation of homologous recombination repair, cell aggregation and DNA import, and the repression of cell division. The inhibitory effect of pretreatment with UV irradiation on SSV2 genome replication was no longer observed in an S. islandicus mutant lacking Orc1-2. Our results suggest that DNA damage response is employed by S. islandicus as a strategy to defend against virus infection.


Asunto(s)
Fuselloviridae , Sulfolobus , Daño del ADN/genética , Reparación del ADN/genética , Fuselloviridae/genética , Sulfolobus/genética , Sulfolobus/efectos de la radiación , Sulfolobus/virología , Replicación Viral , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Rayos Ultravioleta , 4-Nitroquinolina-1-Óxido/farmacología , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo
3.
FASEB J ; 36(1): e22092, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919761

RESUMEN

Detection and accurate delineation of tumor is important for the management of head and neck squamous cell carcinoma (HNSCC) but is challenging with current imaging techniques. In this study, we evaluated whether molecular immuno-imaging targeting myeloperoxidase (MPO) activity, an oxidative enzyme secreted by many myeloid innate immune cells, would be superior in detecting tumor extent compared to conventional contrast agent (DTPA-Gd) in a carcinogen-induced immunocompetent HNSCC murine model and corroborated in human surgical specimens. In C57BL/6 mice given 4-nitroquinoline-N-oxide (4-NQO), there was increased MPO activity in the head and neck region as detected by luminol bioluminescence compared to that of the control group. On magnetic resonance imaging, the mean enhancing volume detected by the MPO-targeting agent (MPO-Gd) was higher than that by the conventional agent DTPA-Gd. The tumor volume detected by MPO-Gd strongly correlated with tumor size on histology, and higher MPO-Gd signal corresponded to larger tumor size found by imaging and histology. On the contrary, the tumor volume detected by DTPA-Gd did not correlate as well with tumor size on histology. Importantly, MPO-Gd imaging detected areas not visualized with DTPA-Gd imaging that were confirmed histopathologically to represent early tumor. In human specimens, MPO was similarly associated with tumors, especially at the tumor margins. Thus, molecular immuno-imaging targeting MPO not only detects oxidative immune response in HNSCC, but can better detect and delineate tumor extent than nonselective imaging agents. Thus, our findings revealed that MPO imaging could improve tumor resection as well as be a useful imaging biomarker for tumor progression, and potentially improve clinical management of HNSCC once translated.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de Cabeza y Cuello , Imagen por Resonancia Magnética , Imagen Molecular , Neoplasias Experimentales , Quinolonas/farmacología , 4-Nitroquinolina-1-Óxido/farmacología , Animales , Línea Celular Tumoral , Femenino , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/metabolismo , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/metabolismo
4.
Carcinogenesis ; 43(1): 28-39, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34888650

RESUMEN

Recent reports suggest that glucocorticoids (GCs), which can be synthesized in the oral mucosa, play an important role in cancer development. Therefore, the objectives of this study were to characterize the role of the oral GC system in oral cancer, and determine the effect of black raspberry (BRB) administration on GC modulation during oral cancer chemoprevention. We determined the expression of GC enzymes in various oral cancer cell lines, and investigated the role of the GC inactivating enzyme HSD11B2 on CAL27 oral cancer cells using siRNA mediated knockdown approaches. Using two in vivo models of oral carcinogenesis with 4-nitroquinoline 1-oxide carcinogen on C57Bl/6 mice and F344 rats, we determined the effect of BRB on GC modulation during head and neck squamous cell carcinoma chemoprevention. Our results demonstrate that HSD11B2, which inactivates cortisol to cortisone, is downregulated during oral carcinogenesis in clinical and experimental models. Knockdown of HSD11B2 in oral cancer cells promotes cellular proliferation, invasion and expression of angiogenic biomarkers EGFR and VEGFA. An ethanol extract of BRB increased HSD11B2 expression on oral cancer cells. Dietary administration of 5% BRB increased Hsd11b2 gene and protein expression and reduced the active GC, corticosterone, in cancer-induced mouse tongues. Our results demonstrate that the oral GC system is modulated during oral carcinogenesis, and BRB administration upregulates Hsd11b2 during oral cancer chemoprevention. In conclusion, our findings challenge the use of synthetic GCs in head and neck cancer, and support the use of natural product alternatives that potentially modulate GC metabolism in a manner that supports oral cancer chemoprevention.


Asunto(s)
Glucocorticoides/metabolismo , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/prevención & control , Rubus/química , 4-Nitroquinolina-1-Óxido/farmacología , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinógenos/farmacología , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/prevención & control , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioprevención/métodos , Modelos Animales de Enfermedad , Femenino , Neoplasias de Cabeza y Cuello/inducido químicamente , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/prevención & control , Ratones , Ratones Endogámicos C57BL , Mucosa Bucal/efectos de los fármacos , Mucosa Bucal/metabolismo , Neoplasias de la Boca/inducido químicamente , Ratas , Ratas Endogámicas F344 , Carcinoma de Células Escamosas de Cabeza y Cuello/inducido químicamente , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/prevención & control
5.
Genes Dev ; 28(4): 409-21, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24532717

RESUMEN

Genetic basis of phenotypic differences in individuals is an important area in biology and personalized medicine. Analysis of divergent Saccharomyces cerevisiae strains grown under different conditions revealed extensive variation in response to both drugs (e.g., 4-nitroquinoline 1-oxide [4NQO]) and different carbon sources. Differences in 4NQO resistance were due to amino acid variation in the transcription factor Yrr1. Yrr1(YJM789) conferred 4NQO resistance but caused slower growth on glycerol, and vice versa with Yrr1(S96), indicating that alleles of Yrr1 confer distinct phenotypes. The binding targets of Yrr1 alleles from diverse yeast strains varied considerably among different strains grown under the same conditions as well as for the same strain under different conditions, indicating that distinct molecular programs are conferred by the different Yrr1 alleles. Our results demonstrate that genetic variations in one important control gene (YRR1), lead to distinct regulatory programs and phenotypes in individuals. We term these polymorphic control genes "master variators."


Asunto(s)
Regulación Fúngica de la Expresión Génica/genética , Variación Genética , Fenotipo , Saccharomyces cerevisiae/fisiología , 4-Nitroquinolina-1-Óxido/farmacología , Alelos , Farmacorresistencia Fúngica/genética , Glicerol/metabolismo , Mutágenos/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo
6.
Nucleic Acids Res ; 47(8): 4026-4038, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30715459

RESUMEN

Eukaryotic Primase-Polymerase (PrimPol) is an enzyme that maintains efficient DNA duplication by repriming replication restart downstream of replicase stalling lesions and structures. To elucidate the cellular requirements for PrimPol in human cells, we generated PrimPol-deleted cell lines and show that it plays key roles in maintaining active replication in both the nucleus and mitochondrion, even in the absence of exogenous damage. Human cells lacking PrimPol exhibit delayed recovery after UV-C damage and increased mutation frequency, micronuclei and sister chromatin exchanges but are not sensitive to genotoxins. PrimPol is also required during mitochondrial replication, with PrimPol-deficient cells having increased mtDNA copy number but displaying a significant decrease in replication. Deletion of PrimPol in XPV cells, lacking functional polymerase Eta, causes an increase in DNA damage sensitivity and pronounced fork stalling after UV-C treatment. We show that, unlike canonical TLS polymerases, PrimPol is important for allowing active replication to proceed, even in the absence of exogenous damage, thus preventing the accumulation of excessive fork stalling and genetic mutations. Together, these findings highlight the importance of PrimPol for maintaining efficient DNA replication in unperturbed cells and its complementary roles, with Pol Eta, in damage tolerance in human cells.


Asunto(s)
Núcleo Celular/efectos de la radiación , ADN Primasa/genética , Replicación del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Mitocondrias/efectos de la radiación , Enzimas Multifuncionales/genética , 4-Nitroquinolina-1-Óxido/farmacología , Bleomicina/farmacología , Línea Celular Transformada , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Cisplatino/farmacología , ADN/efectos de los fármacos , ADN/metabolismo , ADN Primasa/deficiencia , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/deficiencia , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Eliminación de Gen , Humanos , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/efectos de la radiación , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Enzimas Multifuncionales/deficiencia , Mutágenos/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Quinolonas/farmacología , Intercambio de Cromátides Hermanas/efectos de los fármacos , Intercambio de Cromátides Hermanas/efectos de la radiación , Rayos Ultravioleta/efectos adversos
7.
Nucleic Acids Res ; 46(14): 7085-7096, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29618058

RESUMEN

Previously it was shown that UV irradiation induces a strong upregulation of tfb3 coding for a paralog of the archaeal transcriptional factor B (TFB) in Sulfolobus solfataricus, a crenarchaea. To investigate the function of this gene in DNA damage response (DDR), tfb3 was inactivated by gene deletion in Sulfolobus islandicus and the resulting Δtfb3 was more sensitive to DNA damage agents than the original strain. Transcriptome analysis revealed that a large set of genes show TFB3-dependent activation, including genes of the ups operon and ced system. Furthermore, the TFB3 protein was found to be associated with DDR gene promoters and functional dissection of TFB3 showed that the conserved Zn-ribbon and coiled-coil motif are essential for the activation. Together, the results indicated that TFB3 activates the expression of DDR genes by interaction with other transcriptional factors at the promoter regions of DDR genes to facilitate the formation of transcription initiation complex. Strikingly, TFB3 and Ced systems are present in a wide range of crenarchaea, suggesting that the Ced system function as a primary DNA damage repair mechanism in Crenarchaeota. Our findings further suggest that TFB3 and the concurrent TFB1 form a TFB3-dependent DNA damage-responsive circuit with their target genes, which is evolutionarily conserved in the major lineage of Archaea.


Asunto(s)
Proteínas Arqueales/metabolismo , Reparación del ADN , Sulfolobus/genética , Factores de Transcripción/metabolismo , 4-Nitroquinolina-1-Óxido/farmacología , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/química , Proteínas Arqueales/genética , Crenarchaeota/genética , Daño del ADN , Evolución Molecular , Eliminación de Gen , Regiones Promotoras Genéticas , Dominios Proteicos , Sulfolobus/citología , Sulfolobus/efectos de los fármacos , Sulfolobus/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
8.
Oncology ; 93(3): 204-212, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28633143

RESUMEN

OBJECTIVE: We aimed to determine the distribution of tumor-associated macrophages (TAMs) in the development of tongue squamous cell carcinoma (SCC) and to elucidate the role of TAMs in the progression of tongue SCC. METHODS: The expression of the macrophage markers nitric oxide synthase, Retnla, and mannose receptor 1 in the development of tongue SCC was longitudinally observed using real-time quantitative polymerase chain reaction. Additionally, an immunohistochemical study using an anti-mannose receptor (MR) antibody was performed. RESULTS: The numbers of both of M1 and M2 macrophages in the tongues of mice treated with 4-nitroquinoline-1-oxide (4NQO) were significantly lower compared with those of normal tongues. The cyclooxygenase-2 (COX-2) inhibitor did not prevent cancer progression and did not affect the total number of macrophages in the tongues of 4NQO-treated mice. In the immunohistochemical studies, MR staining was observed in lymphangioendothelium in the subepithelial area of the tongues. The staining intensity of the MR was significantly stronger in the 4NQO-treated mice compared with that in control mice and 4NQO-treated mice treated with the COX-2 inhibitor. CONCLUSION: TAMs may not contribute to the development of 4NQO-induced tongue SCC. MR expression is associated with the progression of 4NQO-induced tongue SCC.


Asunto(s)
4-Nitroquinolina-1-Óxido/farmacología , Carcinógenos/farmacología , Carcinoma de Células Escamosas/patología , Macrófagos/efectos de los fármacos , Neoplasias de la Lengua/patología , Animales , Carcinoma de Células Escamosas/inducido químicamente , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Neoplasias de la Lengua/inducido químicamente
9.
Nature ; 464(7291): 1039-42, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20393561

RESUMEN

Most heritable traits, including many human diseases, are caused by multiple loci. Studies in both humans and model organisms, such as yeast, have failed to detect a large fraction of the loci that underlie such complex traits. A lack of statistical power to identify multiple loci with small effects is undoubtedly one of the primary reasons for this problem. We have developed a method in yeast that allows the use of much larger sample sizes than previously possible and hence permits the detection of multiple loci with small effects. The method involves generating very large numbers of progeny from a cross between two Saccharomyces cerevisiae strains and then phenotyping and genotyping pools of these offspring. We applied the method to 17 chemical resistance traits and mitochondrial function, and identified loci for each of these phenotypes. We show that the level of genetic complexity underlying these quantitative traits is highly variable, with some traits influenced by one major locus and others by at least 20 loci. Our results provide an empirical demonstration of the genetic complexity of a number of traits and show that it is possible to identify many of the underlying factors using straightforward techniques. Our method should have broad applications in yeast and can be extended to other organisms.


Asunto(s)
Mapeo Cromosómico/métodos , Herencia Multifactorial/genética , Sitios de Carácter Cuantitativo/genética , Saccharomyces cerevisiae/genética , 4-Nitroquinolina-1-Óxido/farmacología , Cruzamientos Genéticos , Diploidia , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Frecuencia de los Genes , Genotipo , Haploidia , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Quinolonas/farmacología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Tamaño de la Muestra
10.
Mol Cell ; 30(4): 519-29, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18498753

RESUMEN

Translesion synthesis (TLS) is a potentially mutagenic method of bypassing DNA damage encountered during replication that requires the recruitment of specialized DNA polymerases to stalled replication forks or postreplicative gaps. Current models suggest that TLS is activated by monoubiquitination of the DNA sliding clamp PCNA. However, in higher organisms, fully effective TLS also requires a noncatalytic function of the Y family polymerase REV1. Using the genetically tractable chicken cell line DT40, we show that TLS at stalled replication forks requires that both the translesion polymerase-interaction domain and ubiquitin-binding domain in the C terminus of REV1 are intact. Surprisingly, however, PCNA ubiquitination is not required to maintain normal fork progression on damaged DNA. Conversely, PCNA ubiquitination is essential for filling postreplicative gaps. Thus, PCNA ubiquitination and REV1 play distinct roles in the coordination of DNA damage bypass that are temporally separated relative to replication fork arrest.


Asunto(s)
Daño del ADN , Replicación del ADN/fisiología , ADN/biosíntesis , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina/metabolismo , 4-Nitroquinolina-1-Óxido/farmacología , Secuencia de Aminoácidos , Animales , Línea Celular , Pollos , ADN/efectos de los fármacos , Reparación del ADN , Epistasis Genética , Humanos , Datos de Secuencia Molecular , Mutágenos/farmacología , Proteínas Nucleares/genética , Nucleotidiltransferasas/genética , Alineación de Secuencia , Rayos Ultravioleta
11.
Antimicrob Agents Chemother ; 60(3): 1515-20, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26711761

RESUMEN

We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network.


Asunto(s)
Antibacterianos/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/efectos de los fármacos , Mutágenos/farmacología , 2-Aminopurina/farmacología , 4-Nitroquinolina-1-Óxido/farmacología , Azacitidina/farmacología , Bromodesoxiuridina/farmacología , Cloranfenicol/farmacología , Ciprofloxacina/farmacología , Citidina/análogos & derivados , Citidina/farmacología , Eritromicina/farmacología , Gentamicinas/farmacología , Pruebas de Sensibilidad Microbiana , Tetraciclina/farmacología , Trimetoprim/farmacología , Vancomicina/farmacología
12.
PLoS Genet ; 7(5): e1002061, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21573136

RESUMEN

The Saccharomyces cerevisiae Dun1 protein kinase is a downstream target of the conserved Mec1-Rad53 checkpoint pathway. Dun1 regulates dNTP pools during an unperturbed cell cycle and after DNA damage by modulating the activity of ribonucleotide reductase (RNR) by multiple mechanisms, including phosphorylation of RNR inhibitors Sml1 and Dif1. Dun1 also activates DNA-damage-inducible genes by inhibiting the Crt1 transcriptional repressor. Among the genes repressed by Crt1 are three out of four RNR genes: RNR2, RNR3, and RNR4. The fourth RNR gene, RNR1, is also DNA damage-inducible, but is not controlled by Crt1. It has been shown that the deletion of DUN1 is synthetic lethal with the deletion of IXR1, encoding an HMG-box-containing DNA binding protein, but the reason for this lethality is not known. Here we demonstrate that the dun1 ixr1 synthetic lethality is caused by an inadequate RNR activity. The deletion of IXR1 results in decreased dNTP levels due to a reduced RNR1 expression. The ixr1 single mutants compensate for the reduced Rnr1 levels by the Mec1-Rad53-Dun1-Crt1-dependent elevation of Rnr3 and Rnr4 levels and downregulation of Sml1 levels, explaining why DUN1 is indispensible in ixr1 mutants. The dun1 ixr1 synthetic lethality is rescued by an artificial elevation of the dNTP pools. We show that Ixr1 is phosphorylated at several residues and that Ser366, a residue important for the interaction of HMG boxes with DNA, is required for Ixr1 phosphorylation. Ixr1 interacts with DNA at multiple loci, including the RNR1 promoter. Ixr1 levels are decreased in Rad53-deficient cells, which are known to have excessive histone levels. A reduction of the histone gene dosage in the rad53 mutant restores Ixr1 levels. Our results demonstrate that Ixr1, but not Dun1, is required for the proper RNR1 expression both during an unperturbed cell cycle and after DNA damage.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , 4-Nitroquinolina-1-Óxido/farmacología , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Daño del ADN/efectos de los fármacos , Eliminación de Gen , Orden Génico , Histonas/metabolismo , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Quinolonas/farmacología , Ribonucleósido Difosfato Reductasa/metabolismo , Alineación de Secuencia , Transcripción Genética
13.
Biochem Biophys Res Commun ; 434(1): 42-7, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23545261

RESUMEN

Yeast cells can extrude intracellular drugs through membrane-associated efflux pumps, such as ATP-binding cassette (ABC) transporters and members of the major facilitator superfamily. Gene expression of drug efflux pumps is regulated by several transcription factors involved in pleiotropic drug resistance (PDR). Salicylic acid (SA) possesses weak antifungal activity. Although the excretion mechanisms of some antifungal drugs have been revealed, the mechanism of SA extrusion remains unclear. To elucidate the mechanism of SA excretion, we screened SA-resistant mutants from random mutagenized Saccharomyces cerevisiae BY4741 cells. We successfully isolated 60 SA-resistant clones (KinSal001-060). KinSal052, one of the strongest SA-resistant clones, also exhibited resistance to 4-nitroquinoline-1-oxide and cycloheximide, indicating that it acquired the PDR phenotype. We identified a novel mutation in YRR1 conferring SA resistance to KinSal052. YRR1 encodes a Zn(II)2Cys6-type zinc-finger transcription factor that reportedly activates gene expression involved in PDR. Yeast cells carrying the yrr1 allele (yrr1-52) activated expression of several efflux pump-encoding genes, including YOR1, SNQ2, AZR1, and FLR1. These results suggested that SA resistance in KinSal052 is conferred by the overexpression of efflux pumps constitutively activated by the mutant form of Yrr1p.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Ácido Salicílico/farmacología , Factores de Transcripción/genética , 4-Nitroquinolina-1-Óxido/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Antifúngicos/metabolismo , Antifúngicos/farmacología , Cicloheximida/farmacología , Farmacorresistencia Fúngica Múltiple/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Mutación , Transportadores de Anión Orgánico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/metabolismo
14.
Proc Natl Acad Sci U S A ; 107(35): 15517-22, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20696893

RESUMEN

We report observations suggesting that the transcription elongation factor NusA promotes a previously unrecognized class of transcription-coupled repair (TCR) in addition to its previously proposed role in recruiting translesion synthesis (TLS) DNA polymerases to gaps encountered during transcription. Earlier, we reported that NusA physically and genetically interacts with the TLS DNA polymerase DinB (DNA pol IV). We find that Escherichia coli nusA11(ts) mutant strains, at the permissive temperature, are highly sensitive to nitrofurazone (NFZ) and 4-nitroquinolone-1-oxide but not to UV radiation. Gene expression profiling suggests that this sensitivity is unlikely to be due to an indirect effect on gene expression affecting a known DNA repair or damage tolerance pathway. We demonstrate that an N(2)-furfuryl-dG (N(2)-f-dG) lesion, a structural analog of the principal lesion generated by NFZ, blocks transcription by E. coli RNA polymerase (RNAP) when present in the transcribed strand, but not when present in the nontranscribed strand. Our genetic analysis suggests that NusA participates in a nucleotide excision repair (NER)-dependent process to promote NFZ resistance. We provide evidence that transcription plays a role in the repair of NFZ-induced lesions through the isolation of RNAP mutants that display altered ability to survive NFZ exposure. We propose that NusA participates in an alternative class of TCR involved in the identification and removal of a class of lesion, such as the N(2)-f-dG lesion, which are accurately and efficiently bypassed by DinB in addition to recruiting DinB for TLS at gaps encountered by RNAP.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Factores de Elongación de Péptidos/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , 4-Nitroquinolina-1-Óxido/farmacología , Antiinfecciosos/farmacología , Far-Western Blotting , Daño del ADN , Reparación del ADN , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Microscopía Fluorescente , Mutación , Nitrofurazona/farmacología , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Quinolonas/farmacología , Rec A Recombinasas/genética , Rec A Recombinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Factores de Elongación Transcripcional
15.
Biosci Biotechnol Biochem ; 76(10): 1993-5, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23047103

RESUMEN

Vba5p is closest to Vba3p in the vacuolar transporter for basic amino acids (VBA) family of Saccharomyces cerevisiae. We found that green fluorescence protein (GFP)-tagged Vba5p localized exclusively to the plasma membrane. The uptake of lysine and arginine by whole cells was little affected by deletion of the VBA5 gene, but was stimulated by overexpression of the VBA5 gene. The inhibitory effect of 4-nitroquinoline N-oxide on cell growth was accelerated by expression of the VBA5 gene, and was lessened by the addition of arginine. These results suggest that Vba5p is a plasma membrane protein involved in amino acid uptake and drug sensitivity.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , 4-Nitroquinolina-1-Óxido/farmacología , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/química , Transporte Biológico/efectos de los fármacos , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química
16.
Proc Natl Acad Sci U S A ; 106(31): 12664-9, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19617571

RESUMEN

The actions of Escherichia coli DNA Polymerase IV (Pol IV) in mutagenesis are managed by its interaction with the beta sliding clamp. In the structure reported by Bunting et al. [EMBO J (2003) 22:5883-5892], the C-tail of Pol IV contacts a hydrophobic cleft on the clamp, while residues V303-P305 reach over the dimer interface to contact the rim of the adjacent clamp protomer. Using mutant forms of these proteins impaired for either the rim or the cleft contacts, we determined that the rim contact was dispensable for Pol IV replication in vitro, while the cleft contact was absolutely required. Using an in vitro assay to monitor Pol III*-Pol IV switching, we determined that a single cleft on the clamp was sufficient to support the switch, and that both the rim and cleft contacts were required. Results from genetic experiments support a role for the cleft and rim contacts in Pol IV function in vivo. Taken together, our findings challenge the toolbelt model and suggest instead that Pol IV contacts the rim of the clamp adjacent to the cleft that is bound by Pol III* before gaining control of the same cleft that is bound by Pol III*.


Asunto(s)
ADN Polimerasa III/química , ADN Polimerasa beta/química , Escherichia coli/enzimología , 4-Nitroquinolina-1-Óxido/farmacología , ADN Polimerasa III/fisiología , ADN Polimerasa beta/fisiología , Replicación del ADN , Dimerización , Escherichia coli/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nitrofurazona/farmacología , Respuesta SOS en Genética
17.
Sensors (Basel) ; 12(12): 17414-32, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23242275

RESUMEN

The SOS/umu genotoxicity assay evaluates the primary DNA damage caused by chemicals from the ß-galactosidase activity of S. typhimurium. One of the weaknesses of the common umu test system based on spectrophotometric detection is that it is unable to measure samples containing a high concentration of colored dissolved organic matters, sediment, and suspended solids. However, umu tests with electrochemical detection techniques prove to be a better strategy because it causes less interference, enables the analysis of turbid samples and allows detection even in small volumes without loss of sensitivity. Based on this understanding, we aim to develop a new umu test system with hydrodynamic chronoamperometry using a rotating disk electrode (RDE) in a microliter droplet. PAPG when used as a substrate is not electroactive at the potential at which PAP is oxidized to p-quinone imine (PQI), so the current response of chronoamperometry resulting from the oxidation of PAP to PQI is directly proportional to the enzymatic activity of S. typhimurium. This was achieved by performing genotoxicity tests for 2-(2-furyl)-3-(5-nitro-2-furyl)-acrylamide (AF-2) and 2-aminoanthracene (2-AA) as model genotoxic compounds. The results obtained in this study indicated that the signal detection in the genotoxicity assay based on hydrodynamic voltammetry was less influenced by the presence of colored components and sediment particles in the samples when compared to the usual colorimetric signal detection. The influence caused by the presence of humic acids (HAs) and artificial sediment on the genotoxic property of selected model compounds such as 4-nitroquinoline-N-oxide (4-NQO), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), 1,8-dinitropyrene (1,8-DNP) and 1-nitropyrene (1-NP) were also investigated. The results showed that the genotoxicity of 1-NP and MX changed in the presence of 10 mg∙L-1 HAs. The genotoxicity of tested chemicals with a high hydrophobicity such as 1,8-DNP and 1-NP were decreased substantially with the presence of 1 g∙L-1 sediment. This was not observed in the case of genotoxins with a low log K(ow) value.


Asunto(s)
Daño del ADN/efectos de los fármacos , Mutágenos/farmacología , Salmonella typhimurium/enzimología , beta-Galactosidasa/genética , 4-Nitroquinolina-1-Óxido/farmacología , Benzoquinonas/farmacología , Benzoquinonas/toxicidad , Furanos/farmacología , Pruebas de Mutagenicidad , Pirenos , Respuesta SOS en Genética , Salmonella typhimurium/efectos de los fármacos
18.
J Bacteriol ; 193(19): 5400-11, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21784925

RESUMEN

DNA is constantly exposed to chemical and environmental mutagens, causing lesions that can stall replication. In order to deal with DNA damage and other stresses, Escherichia coli utilizes the SOS response, which regulates the expression of at least 57 genes, including umuDC. The gene products of umuDC, UmuC and the cleaved form of UmuD, UmuD', form the specialized E. coli Y-family DNA polymerase UmuD'2C, or polymerase V (Pol V). Y-family DNA polymerases are characterized by their specialized ability to copy damaged DNA in a process known as translesion synthesis (TLS) and by their low fidelity on undamaged DNA templates. Y-family polymerases exhibit various specificities for different types of DNA damage. Pol V carries out TLS to bypass abasic sites and thymine-thymine dimers resulting from UV radiation. Using alanine-scanning mutagenesis, we probed the roles of two active-site loops composed of residues 31 to 38 and 50 to 54 in Pol V activity by assaying the function of single-alanine variants in UV-induced mutagenesis and for their ability to confer resistance to UV radiation. We find that mutations of the N-terminal residues of loop 1, N32, N33, and D34, confer hypersensitivity to UV radiation and to 4-nitroquinoline-N-oxide and significantly reduce Pol V-dependent UV-induced mutagenesis. Furthermore, mutating residues 32, 33, or 34 diminishes Pol V-dependent inhibition of recombination, suggesting that these mutations may disrupt an interaction of UmuC with RecA, which could also contribute to the UV hypersensitivity of cells expressing these variants.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Rayos Ultravioleta , 4-Nitroquinolina-1-Óxido/farmacología , Secuencia de Aminoácidos , Western Blotting , Dominio Catalítico/genética , Dominio Catalítico/fisiología , ADN Polimerasa Dirigida por ADN/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Estructura Secundaria de Proteína , Respuesta SOS en Genética/genética , Respuesta SOS en Genética/fisiología , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 285(33): 25699-707, 2010 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-20516064

RESUMEN

Werner syndrome (WS) is a rare progeroid disorder characterized by genomic instability, increased cancer incidence, and early onset of a variety of aging pathologies. WS is unique among early aging syndromes in that affected individuals are developmentally normal, and phenotypic onset is in early adulthood. The protein defective in WS (WRN) is a member of the large RecQ family of helicases but is unique among this family in having an exonuclease. RecQ helicases form multimers, but the mechanism and consequence of multimerization remain incompletely defined. Here, we identify a novel heptad repeat coiled coil region between the WRN nuclease and helicase domains that facilitates multimerization of WRN. We mapped a novel and unique DNA-dependent protein kinase phosphorylation site proximal to the WRN multimerization region. However, phosphorylation at this site affected neither exonuclease activity nor multimeric state. We found that WRN nuclease is stimulated by DNA-dependent protein kinase independently of kinase activity or WRN nuclease multimeric status. In addition, WRN nuclease multimerization significantly increased nuclease processivity. We found that the novel WRN coiled coil domain is necessary for multimerization of the nuclease domain and sufficient to multimerize with full-length WRN in human cells. Importantly, correct homomultimerization is required for WRN function in vivo as overexpression of this multimerization domain caused increased sensitivity to camptothecin and 4-nitroquinoline 1-oxide similar to that in cells lacking functional WRN protein.


Asunto(s)
Exodesoxirribonucleasas/metabolismo , Exonucleasas/metabolismo , RecQ Helicasas/metabolismo , 4-Nitroquinolina-1-Óxido/farmacología , Western Blotting , Camptotecina/farmacología , Cromatografía en Gel , Daño del ADN/efectos de los fármacos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Exonucleasas/genética , Células HeLa , Humanos , Inmunoprecipitación , Fosforilación , Reacción en Cadena de la Polimerasa , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , RecQ Helicasas/química , RecQ Helicasas/genética , Helicasa del Síndrome de Werner
20.
PLoS Genet ; 4(7): e1000123, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18617998

RESUMEN

Complex traits typically involve the contribution of multiple gene variants. In this study, we took advantage of a high-density genotyping analysis of the BY (S288c) and RM strains of Saccharomyces cerevisiae and of 123 derived spore progeny to identify the genetic loci that underlie a complex DNA repair sensitivity phenotype. This was accomplished by screening hybrid yeast progeny for sensitivity to a variety of DNA damaging agents. Both the BY and RM strains are resistant to the ultraviolet light-mimetic agent 4-nitroquinoline 1-oxide (4-NQO); however, hybrid progeny from a BYxRM cross displayed varying sensitivities to the drug. We mapped a major quantitative trait locus (QTL), RAD5, and identified the exact polymorphism within this locus responsible for 4-NQO sensitivity. By using a backcrossing strategy along with array-assisted bulk segregant analysis, we identified one other locus, MKT1, and a QTL on Chromosome VII that also link to the hybrid 4-NQO-sensitive phenotype but confer more minor effects. This work suggests an additive model for sensitivity to 4-NQO and provides a strategy for mapping both major and minor QTL that confer background-specific phenotypes. It also provides tools for understanding the effect of genetic background on sensitivity to genotoxic agents.


Asunto(s)
Adenosina Trifosfatasas/genética , Reparación del ADN/efectos de los fármacos , Mutágenos/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , 4-Nitroquinolina-1-Óxido/farmacología , Adenosina Trifosfatasas/metabolismo , Cromosomas Fúngicos/efectos de los fármacos , Cromosomas Fúngicos/genética , Cruzamientos Genéticos , Daño del ADN/efectos de los fármacos , ADN Helicasas , Ligamiento Genético , Genoma Fúngico , Pruebas de Sensibilidad Microbiana , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Polimorfismo Genético , Carácter Cuantitativo Heredable , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA