Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 613(7943): 383-390, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599982

RESUMEN

Specific, regulated modification of RNAs is important for proper gene expression1,2. tRNAs are rich with various chemical modifications that affect their stability and function3,4. 7-Methylguanosine (m7G) at tRNA position 46 is a conserved modification that modulates steady-state tRNA levels to affect cell growth5,6. The METTL1-WDR4 complex generates m7G46 in humans, and dysregulation of METTL1-WDR4 has been linked to brain malformation and multiple cancers7-22. Here we show how METTL1 and WDR4 cooperate to recognize RNA substrates and catalyse methylation. A crystal structure of METTL1-WDR4 and cryo-electron microscopy structures of METTL1-WDR4-tRNA show that the composite protein surface recognizes the tRNA elbow through shape complementarity. The cryo-electron microscopy structures of METTL1-WDR4-tRNA with S-adenosylmethionine or S-adenosylhomocysteine along with METTL1 crystal structures provide additional insights into the catalytic mechanism by revealing the active site in multiple states. The METTL1 N terminus couples cofactor binding with conformational changes in the tRNA, the catalytic loop and the WDR4 C terminus, acting as the switch to activate m7G methylation. Thus, our structural models explain how post-translational modifications of the METTL1 N terminus can regulate methylation. Together, our work elucidates the core and regulatory mechanisms underlying m7G modification by METTL1, providing the framework to understand its contribution to biology and disease.


Asunto(s)
Microscopía por Crioelectrón , Proteínas de Unión al GTP , Metilación , Metiltransferasas , Procesamiento Postranscripcional del ARN , ARN de Transferencia , Humanos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasas/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , Biocatálisis
2.
Nature ; 584(7822): 640-645, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32612237

RESUMEN

Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA that is delivered by the elongation factor EF-Tu1. To understand the molecular mechanism of this proofreading step it is necessary to visualize GTP-catalysed elongation, which has remained a challenge2-4. Here we use time-resolved cryogenic electron microscopy to reveal 33 ribosomal states after the delivery of aminoacyl-tRNA by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding centre dynamically monitors codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis enables the GTPase domain of EF-Tu to extend away, releasing EF-Tu from tRNA. The 30S subunit then locks cognate tRNA in the decoding centre and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase centre. By contrast, the decoding centre fails to lock near-cognate tRNA, enabling the dissociation of near-cognate tRNA both during initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between ribosomes in initial selection states5,6 and in proofreading states, which together govern the efficient rejection of incorrect tRNA.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Escherichia coli , GTP Fosfohidrolasas/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Modelos Moleculares , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Ribosomas/química , Rotación
3.
Nucleic Acids Res ; 50(18): 10201-10211, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35882385

RESUMEN

Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.


Continued expansion of the genetic code has required the use of synthetic tRNAs for decoding. Some of these synthetic tRNAs have unique structural features that are not observed in canonical tRNAs. Here, the authors applied single-molecule, biochemical and structural methods to determine whether these distinct features were deleterious for efficient protein translation on the ribosome. With a focus on selenocysteine insertion, the authors explored an allo-tRNA with a 9/3 acceptor domain. They observed a translational roadblock that occurred in A to P site tRNA translocation. This block was mediated by a tertiary interaction across the tRNA core, directing the variable arm position into an unfavorable conformation. A single-nucleotide mutation disrupted this interaction, providing flexibility in the variable arm and promoting efficient protein production.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Nucleótidos/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Selenocisteína/química
4.
EMBO J ; 38(21): e102226, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31609474

RESUMEN

Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.


Asunto(s)
Biomimética , Dicistroviridae/fisiología , Sitios Internos de Entrada al Ribosoma/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN Viral/genética , Ribosomas/metabolismo , Microscopía por Crioelectrón , Dicistroviridae/ultraestructura , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura
5.
Nucleic Acids Res ; 49(14): 8309-8323, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34268557

RESUMEN

tRNAs harbor the most diverse posttranscriptional modifications. The 3-methylcytidine (m3C) is widely distributed at position C32 (m3C32) of eukaryotic tRNAThr and tRNASer species. m3C32 is decorated by the single methyltransferase Trm140 in budding yeasts; however, two (Trm140 and Trm141 in fission yeasts) or three enzymes (METTL2A, METTL2B and METTL6 in mammals) are involved in its biogenesis. The rationale for the existence of multiple m3C32 methyltransferases and their substrate discrimination mechanism is hitherto unknown. Here, we revealed that both METTL2A and METTL2B are expressed in vivo. We purified human METTL2A, METTL2B, and METTL6 to high homogeneity. We successfully reconstituted m3C32 modification activity for tRNAThr by METT2A and for tRNASer(GCU) by METTL6, assisted by seryl-tRNA synthetase (SerRS) in vitro. Compared with METTL2A, METTL2B exhibited dramatically lower activity in vitro. Both G35 and t6A at position 37 (t6A37) are necessary but insufficient prerequisites for tRNAThr m3C32 formation, while the anticodon loop and the long variable arm, but not t6A37, are key determinants for tRNASer(GCU) m3C32 biogenesis, likely being recognized synergistically by METTL6 and SerRS, respectively. Finally, we proposed a mutually exclusive substrate selection model to ensure correct discrimination among multiple tRNAs by multiple m3C32 methyltransferases.


Asunto(s)
Conformación de Ácido Nucleico , ARN de Transferencia/genética , ARNt Metiltransferasas/genética , Anticodón/genética , Citidina/análogos & derivados , Citidina/genética , Humanos , ARN/genética , ARN de Transferencia/ultraestructura , Serina-ARNt Ligasa/genética , Especificidad por Sustrato
6.
Nucleic Acids Res ; 49(14): 8247-8260, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34244755

RESUMEN

Transfer RNAs (tRNAs) are key players in protein synthesis. To be fully active, tRNAs undergo extensive post-transcriptional modifications, including queuosine (Q), a hypermodified 7-deaza-guanosine present in the anticodon of several tRNAs in bacteria and eukarya. Here, molecular and biochemical approaches revealed that in the protozoan parasite Trypanosoma brucei, Q-containing tRNAs have a preference for the U-ending codons for asparagine, aspartate, tyrosine and histidine, analogous to what has been described in other systems. However, since a lack of tRNA genes in T. brucei mitochondria makes it essential to import a complete set from the cytoplasm, we surprisingly found that Q-modified tRNAs are preferentially imported over their unmodified counterparts. In turn, their absence from mitochondria has a pronounced effect on organellar translation and affects function. Although Q modification in T. brucei is globally important for codon selection, it is more so for mitochondrial protein synthesis. These results provide a unique example of the combined regulatory effect of codon usage and wobble modifications on protein synthesis; all driven by tRNA intracellular transport dynamics.


Asunto(s)
Mitocondrias/genética , Conformación de Ácido Nucleico , Nucleósido Q/genética , ARN de Transferencia/genética , Anticodón/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Codón/genética , Citoplasma/genética , Citoplasma/ultraestructura , Guanosina/genética , Biosíntesis de Proteínas/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/ultraestructura , Trypanosoma brucei brucei/genética
7.
RNA ; 26(12): 1755-1766, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32826323

RESUMEN

Ribonucleic acids (RNAs) play essential roles in living cells. Many of them fold into defined three-dimensional (3D) structures to perform functions. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have enabled structure determinations of RNA to atomic resolutions. However, most RNA molecules are structurally flexible, limiting the resolution of their structures solved by cryo-EM. In modeling these molecules, several computational methods are limited by the requirement of massive computational resources and/or the low efficiency in exploring large-scale structural variations. Here we use hierarchical natural move Monte Carlo (HNMMC), which takes advantage of collective motions for groups of nucleic acid residues, to refine RNA structures into their cryo-EM maps, preserving atomic details in the models. After validating the method on a simulated density map of tRNA, we applied it to objectively obtain the model of the folding intermediate for the specificity domain of ribonuclease P from Bacillus subtilis and refine a flexible ribosomal RNA (rRNA) expansion segment from the Mycobacterium tuberculosis (Mtb) ribosome in different conformational states. Finally, we used HNMMC to model atomic details and flexibility for two distinct conformations of the complete genomic RNA (gRNA) inside MS2, a single-stranded RNA virus, revealing multiple pathways for its capsid assembly.


Asunto(s)
Método de Montecarlo , Virus ARN/ultraestructura , ARN Ribosómico/ultraestructura , ARN de Transferencia/ultraestructura , ARN/ultraestructura , Ribosomas/ultraestructura , Bacillus subtilis/enzimología , Proteínas de la Cápside/genética , Proteínas de la Cápside/ultraestructura , Modelos Moleculares , ARN/genética , Virus ARN/genética , ARN Ribosómico/genética , ARN de Transferencia/genética , Ribonucleasa P/genética , Ribonucleasa P/ultraestructura , Ribosomas/genética
8.
RNA ; 26(3): 278-289, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31848215

RESUMEN

Ubiquitous across all domains of life, tRNAs constitute an essential component of cellular physiology, carry out an indispensable role in protein synthesis, and have been historically the subject of a wide range of biochemical and biophysical studies as prototypical folded RNA molecules. Although conformational flexibility is a well-established characteristic of tRNA structure, it is typically regarded as an adaptive property exhibited in response to an inducing event, such as the binding of a tRNA synthetase or the accommodation of an aminoacyl-tRNA into the ribosome. In this study, we present crystallographic data of a tRNA molecule to expand on this paradigm by showing that structural flexibility and plasticity are intrinsic properties of tRNAs, apparent even in the absence of other factors. Based on two closely related conformations observed within the same crystal, we posit that unbound tRNAs by themselves are flexible and dynamic molecules. Furthermore, we demonstrate that the formation of the T-loop conformation by the tRNA TΨC stem-loop, a well-characterized and classic RNA structural motif, is possible even in the absence of important interactions observed in fully folded tRNAs.


Asunto(s)
Conformación de Ácido Nucleico , Aminoacil-ARN de Transferencia/ultraestructura , ARN de Transferencia/ultraestructura , Anticodón/química , Anticodón/genética , Cristalografía , Escherichia coli/química , Escherichia coli/ultraestructura , Motivos de Nucleótidos/genética , ARN de Transferencia/química , Aminoacil-ARN de Transferencia/química , Ribosomas/genética , Ribosomas/ultraestructura
9.
Nature ; 534(7606): 277-280, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279228

RESUMEN

In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a ß-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics.


Asunto(s)
Aminoácidos/deficiencia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , GTP Pirofosfoquinasa/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , GTP Pirofosfoquinasa/antagonistas & inhibidores , GTP Pirofosfoquinasa/genética , GTP Pirofosfoquinasa/ultraestructura , Regulación Bacteriana de la Expresión Génica , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/metabolismo , Redes y Vías Metabólicas , Modelos Moleculares , Fosforilación , Biosíntesis de Proteínas , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/ultraestructura , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/ultraestructura , Sistemas de Mensajero Secundario
10.
Nucleic Acids Res ; 48(12): 6906-6918, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32459340

RESUMEN

The universal L-shaped tertiary structure of tRNAs is maintained with the help of nucleotide modifications within the D- and T-loops, and these modifications are most extensive within hyperthermophilic species. The obligate-commensal Nanoarchaeum equitans and its phylogenetically-distinct host Ignicoccus hospitalis grow physically coupled under identical hyperthermic conditions. We report here two fundamentally different routes by which these archaea modify the key conserved nucleotide U54 within their tRNA T-loops. In N. equitans, this nucleotide is methylated by the S-adenosylmethionine-dependent enzyme NEQ053 to form m5U54, and a recombinant version of this enzyme maintains specificity for U54 in Escherichia coli. In N. equitans, m5U54 is subsequently thiolated to form m5s2U54. In contrast, I. hospitalis isomerizes U54 to pseudouridine prior to methylating its N1-position and thiolating the O4-position of the nucleobase to form the previously uncharacterized nucleotide m1s4Ψ. The methyl and thiol groups in m1s4Ψ and m5s2U are presented within the T-loop in a spatially identical manner that stabilizes the 3'-endo-anti conformation of nucleotide-54, facilitating stacking onto adjacent nucleotides and reverse-Hoogsteen pairing with nucleotide m1A58. Thus, two distinct structurally-equivalent solutions have evolved independently and convergently to maintain the tertiary fold of tRNAs under extreme hyperthermic conditions.


Asunto(s)
Desulfurococcaceae/genética , Nanoarchaeota/genética , Conformación de Ácido Nucleico , ARN de Transferencia/ultraestructura , Archaea/genética , Archaea/ultraestructura , Escherichia coli/genética , Metilación , Filogenia , ARN de Transferencia/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/ultraestructura
11.
Nature ; 520(7549): 640-5, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25901680

RESUMEN

Ribosomes are translational machineries that catalyse protein synthesis. Ribosome structures from various species are known at the atomic level, but obtaining the structure of the human ribosome has remained a challenge; efforts to address this would be highly relevant with regard to human diseases. Here we report the near-atomic structure of the human ribosome derived from high-resolution single-particle cryo-electron microscopy and atomic model building. The structure has an average resolution of 3.6 Å, reaching 2.9 Å resolution in the most stable regions. It provides unprecedented insights into ribosomal RNA entities and amino acid side chains, notably of the transfer RNA binding sites and specific molecular interactions with the exit site tRNA. It reveals atomic details of the subunit interface, which is seen to remodel strongly upon rotational movements of the ribosomal subunits. Furthermore, the structure paves the way for analysing antibiotic side effects and diseases associated with deregulated protein synthesis.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas/química , Ribosomas/ultraestructura , Sitios de Unión , Electrones , Humanos , Modelos Moleculares , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo
12.
Nature ; 520(7548): 567-70, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25707802

RESUMEN

Single particle electron cryomicroscopy (cryo-EM) has recently made significant progress in high-resolution structure determination of macromolecular complexes due to improvements in electron microscopic instrumentation and computational image analysis. However, cryo-EM structures can be highly non-uniform in local resolution and all structures available to date have been limited to resolutions above 3 Å. Here we present the cryo-EM structure of the 70S ribosome from Escherichia coli in complex with elongation factor Tu, aminoacyl-tRNA and the antibiotic kirromycin at 2.65-2.9 Å resolution using spherical aberration (Cs)-corrected cryo-EM. Overall, the cryo-EM reconstruction at 2.9 Å resolution is comparable to the best-resolved X-ray structure of the E. coli 70S ribosome (2.8 Å), but provides more detailed information (2.65 Å) at the functionally important ribosomal core. The cryo-EM map elucidates for the first time the structure of all 35 rRNA modifications in the bacterial ribosome, explaining their roles in fine-tuning ribosome structure and function and modulating the action of antibiotics. We also obtained atomic models for flexible parts of the ribosome such as ribosomal proteins L9 and L31. The refined cryo-EM-based model presents the currently most complete high-resolution structure of the E. coli ribosome, which demonstrates the power of cryo-EM in structure determination of large and dynamic macromolecular complexes.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/química , Escherichia coli/ultraestructura , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Antibacterianos/química , Antibacterianos/metabolismo , Microscopía por Crioelectrón/métodos , Ligandos , Modelos Moleculares , Factor Tu de Elongación Peptídica/metabolismo , Piridonas/química , Piridonas/metabolismo , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Bacteriano/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Ribosomas/metabolismo
13.
Nat Methods ; 13(4): 341-4, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26878382

RESUMEN

Single-molecule fluorescence microscopy is uniquely suited for detecting transient molecular recognition events, yet achieving the time resolution and statistics needed to realize this potential has proven challenging. Here we present a single-molecule imaging and analysis platform using scientific complementary metal-oxide semiconductor (sCMOS) detectors that enables imaging of 15,000 individual molecules simultaneously at millisecond rates. This system enabled the detection of previously obscured processes relevant to the fidelity mechanism in protein synthesis.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Algoritmos , Bacterias/ultraestructura , Transferencia Resonante de Energía de Fluorescencia , Humanos , Imagen Molecular/instrumentación , Factores de Tiempo
14.
Nature ; 497(7447): 80-5, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23636399

RESUMEN

Protein synthesis in all cells is carried out by macromolecular machines called ribosomes. Although the structures of prokaryotic, yeast and protist ribosomes have been determined, the more complex molecular architecture of metazoan 80S ribosomes has so far remained elusive. Here we present structures of Drosophila melanogaster and Homo sapiens 80S ribosomes in complex with the translation factor eEF2, E-site transfer RNA and Stm1-like proteins, based on high-resolution cryo-electron-microscopy density maps. These structures not only illustrate the co-evolution of metazoan-specific ribosomal RNA with ribosomal proteins but also reveal the presence of two additional structural layers in metazoan ribosomes, a well-ordered inner layer covered by a flexible RNA outer layer. The human and Drosophila ribosome structures will provide the basis for more detailed structural, biochemical and genetic experiments.


Asunto(s)
Drosophila melanogaster/química , Ribosomas/química , Ribosomas/ultraestructura , Animales , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Drosophila melanogaster/ultraestructura , Células Eucariotas , Evolución Molecular , Humanos , Modelos Moleculares , Conformación Molecular , Peso Molecular , Factor 2 de Elongación Peptídica/metabolismo , ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química
15.
Proc Natl Acad Sci U S A ; 113(43): 12198-12201, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27729525

RESUMEN

The recent developments in cryo-EM have revolutionized our access to previously refractory structures. In particular, such studies of mammalian mitoribosomes have confirmed the absence of any 5S rRNA species and revealed the unexpected presence of a mitochondrially encoded tRNA (mt-tRNA) that usurps this position. Although the cryo-EM structures resolved the conundrum of whether mammalian mitoribosomes contain a 5S rRNA, they introduced a new dilemma: Why do human and porcine mitoribosomes integrate contrasting mt-tRNAs? Human mitoribosomes have been shown to integrate mt-tRNAVal compared with the porcine use of mt-tRNAPhe We have explored this observation further. Our studies examine whether a range of mt-tRNAs are used by different mammals, or whether the mt-tRNA selection is strictly limited to only these two species of the 22 tRNAs encoded by the mitochondrial genome (mtDNA); whether there is tissue-specific variation within a single organism; and what happens to the human mitoribosome when levels of the mt-tRNAVal are depleted. Our data demonstrate that only mt-tRNAVal or mt-tRNAPhe are found in the mitoribosomes of five different mammals, each mammal favors the same mt-tRNA in all tissue types, and strikingly, when steady-state levels of mt-tRNAVal are reduced, human mitoribosome biogenesis displays an adaptive response by switching to the incorporation of mt-tRNAPhe to generate translationally competent machinery.


Asunto(s)
Ribosomas Mitocondriales/química , Conformación de Ácido Nucleico , Biosíntesis de Proteínas/genética , ARN de Transferencia/ultraestructura , Animales , Microscopía por Crioelectrón , ADN Mitocondrial/química , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Humanos , Ribosomas Mitocondriales/ultraestructura , Procesamiento Postranscripcional del ARN/genética , ARN Ribosómico 5S/genética , ARN de Transferencia/genética , Porcinos
16.
Proc Natl Acad Sci U S A ; 113(18): 4994-9, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27092003

RESUMEN

During translation, a plethora of protein factors bind to the ribosome and regulate protein synthesis. Many of those factors are guanosine triphosphatases (GTPases), proteins that catalyze the hydrolysis of guanosine 5'-triphosphate (GTP) to promote conformational changes. Despite numerous studies, the function of elongation factor 4 (EF-4/LepA), a highly conserved translational GTPase, has remained elusive. Here, we present the crystal structure at 2.6-Å resolution of the Thermus thermophilus 70S ribosome bound to EF-4 with a nonhydrolyzable GTP analog and A-, P-, and E-site tRNAs. The structure reveals the interactions of EF-4 with the A-site tRNA, including contacts between the C-terminal domain (CTD) of EF-4 and the acceptor helical stem of the tRNA. Remarkably, EF-4 induces a distortion of the A-site tRNA, allowing it to interact simultaneously with EF-4 and the decoding center of the ribosome. The structure provides insights into the tRNA-remodeling function of EF-4 on the ribosome and suggests that the displacement of the CCA-end of the A-site tRNA away from the peptidyl transferase center (PTC) is functionally significant.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/ultraestructura , ARN Bacteriano/química , ARN Bacteriano/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Sitios de Unión , Simulación por Computador , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Motivos de Unión al ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/ultraestructura , Ribosomas
17.
Biochem Biophys Res Commun ; 493(1): 240-245, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28911863

RESUMEN

The wyosine hypermodification found exclusively at G37 of tRNAPhe in eukaryotes and archaea is a very complicated process involving multiple steps and enzymes, and the derivatives are essential for the maintenance of the reading frame during translation. In the archaea Pyrococcus abyssi, two key enzymes from the Trm5 family, named PaTrm5a and PaTrm5b respectively, start the process by forming N1-methylated guanosine (m1G37). In addition, PaTrm5a catalyzes the further methylation of C7 on 4-demethylwyosine (imG-14) to produce isowyosine (imG2) at the same position. The structural basis of the distinct methylation capacities and possible conformational changes during catalysis displayed by the Trm5 enzymes are poorly studied. Here we report the 3.3 Å crystal structure of the mono-functional PaTrm5b, which shares 32% sequence identity with PaTrm5a. Interestingly, structural superposition reveals that the PaTrm5b protein exhibits an extended conformation similar to that of tRNA-bound Trm5b from Methanococcus jannaschii (MjTrm5b), but quite different from the open conformation of apo-PaTrm5a or well folded apo-MjTrm5b reported previously. Truncation of the N-terminal D1 domain leads to reduced tRNA binding as well as the methyltransfer activity of PaTrm5b. The differential positioning of the D1 domains from three reported Trm5 structures were rationalized, which could be attributable to the dissimilar inter-domain interactions and crystal packing patterns. This study expands our understanding on the methylation mechanism of the Trm5 enzymes and wyosine hypermodification.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Methanococcus/enzimología , Metiltransferasas/química , Metiltransferasas/ultraestructura , Pyrococcus abyssi/enzimología , Sitios de Unión , Simulación por Computador , Activación Enzimática , Guanosina/análogos & derivados , Guanosina/química , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Especificidad de la Especie , Relación Estructura-Actividad
18.
RNA ; 20(12): 1944-54, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25352689

RESUMEN

The three-nucleotide mRNA reading frame is tightly regulated during translation to ensure accurate protein expression. Translation errors that lead to aberrant protein production can result from the uncoupled movement of the tRNA in either the 5' or 3' direction on mRNA. Here, we report the biochemical and structural characterization of +1 frameshift suppressor tRNA(SufJ), a tRNA known to decode four, instead of three, nucleotides. Frameshift suppressor tRNA(SufJ) contains an insertion 5' to its anticodon, expanding the anticodon loop from seven to eight nucleotides. Our results indicate that the expansion of the anticodon loop of either ASL(SufJ) or tRNA(SufJ) does not affect its affinity for the A site of the ribosome. Structural analyses of both ASL(SufJ) and ASL(Thr) bound to the Thermus thermophilus 70S ribosome demonstrate both ASLs decode in the zero frame. Although the anticodon loop residues 34-37 are superimposable with canonical seven-nucleotide ASLs, the single C31.5 insertion between nucleotides 31 and 32 in ASL(SufJ) imposes a conformational change of the anticodon stem, that repositions and tilts the ASL toward the back of the A site. Further modeling analyses reveal that this tilting would cause a distortion in full-length A-site tRNA(SufJ) during tRNA selection and possibly impede gripping of the anticodon stem by 16S rRNA nucleotides in the P site. Together, these data implicate tRNA distortion as a major driver of noncanonical translation events such as frameshifting.


Asunto(s)
Genes Supresores , Biosíntesis de Proteínas/genética , ARN Ribosómico 16S/ultraestructura , ARN de Transferencia/ultraestructura , Ribosomas/genética , Anticodón/genética , Anticodón/ultraestructura , Cristalografía por Rayos X , Escherichia coli , Conformación de Ácido Nucleico , Nucleótidos/química , Nucleótidos/genética , ARN Mensajero/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Thermus thermophilus/genética
19.
Arch Biochem Biophys ; 602: 95-105, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26968773

RESUMEN

Transfer RNAs (tRNAs) play a key role in protein synthesis as adaptor molecules between messenger RNA and protein sequences on the ribosome. Their discovery in the early sixties provoked a worldwide infatuation with the study of their architecture and their function in the decoding of genetic information. tRNAs are also emblematic molecules in crystallography: the determination of the first tRNA crystal structures represented a milestone in structural biology and tRNAs were for a long period the sole source of information on RNA folding, architecture, and post-transcriptional modifications. Crystallographic data on tRNAs in complex with aminoacyl-tRNA synthetases (aaRSs) also provided the first insight into protein:RNA interactions. Beyond the translation process and the history of structural investigations on tRNA, this review also illustrates the renewal of tRNA biology with the discovery of a growing number of tRNA partners in the cell, the involvement of tRNAs in a variety of regulatory and metabolic pathways, and emerging applications in biotechnology and synthetic biology.


Asunto(s)
Modelos Moleculares , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Simulación por Computador , Conformación Proteica
20.
Nature ; 468(7324): 713-6, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21124459

RESUMEN

The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P site) on the 30S head and simultaneously establishes interaction with the exit site (E site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.


Asunto(s)
Movimiento , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Modelos Moleculares , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Subunidades Ribosómicas Pequeñas Bacterianas/ultraestructura , Thermus thermophilus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA