Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(11): 6586-6595, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38572748

RESUMEN

Ribosomal incorporation of ß-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved ß-amino acid incorporation. However, multiple/consecutive incorporations of ß-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of ß-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of ß-homophenylglycine (ßPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive ßPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for ß-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of ß-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple ß-amino acids.


Asunto(s)
Aminoácidos , Anticodón , Anticodón/genética , Anticodón/química , Aminoácidos/química , Aminoácidos/genética , ARN de Transferencia/genética , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Mutación , Codón/genética , Ribosomas/metabolismo , Ribosomas/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , ARN de Transferencia de Prolina/química , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Nucleic Acids Res ; 49(20): 11883-11899, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34718744

RESUMEN

In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.


Asunto(s)
Proteína Huntingtina/biosíntesis , Enfermedad de Huntington/genética , ARN de Transferencia de Prolina/genética , Acetamidas/farmacología , Animales , Línea Celular Tumoral , Codón/genética , Ciclohexilaminas/farmacología , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutación , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Células PC12 , Péptidos/toxicidad , Proteolisis , ARN de Transferencia de Prolina/metabolismo , Ratas
3.
Nucleic Acids Res ; 49(21): 12467-12485, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34761260

RESUMEN

The tRNA modification m1G37, introduced by the tRNA methyltransferase TrmD, is thought to be essential for growth in bacteria because it suppresses translational frameshift errors at proline codons. However, because bacteria can tolerate high levels of mistranslation, it is unclear why loss of m1G37 is not tolerated. Here, we addressed this question through experimental evolution of trmD mutant strains of Escherichia coli. Surprisingly, trmD mutant strains were viable even if the m1G37 modification was completely abolished, and showed rapid recovery of growth rate, mainly via duplication or mutation of the proline-tRNA ligase gene proS. Growth assays and in vitro aminoacylation assays showed that G37-unmodified tRNAPro is aminoacylated less efficiently than m1G37-modified tRNAPro, and that growth of trmD mutant strains can be largely restored by single mutations in proS that restore aminoacylation of G37-unmodified tRNAPro. These results show that inefficient aminoacylation of tRNAPro is the main reason for growth defects observed in trmD mutant strains and that proS may act as a gatekeeper of translational accuracy, preventing the use of error-prone unmodified tRNAPro in translation. Our work shows the utility of experimental evolution for uncovering the hidden functions of essential genes and has implications for the development of antibiotics targeting TrmD.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Mutación , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Prolina/genética , ARNt Metiltransferasas/genética , Adaptación Fisiológica/genética , Aminoacilación , Evolución Molecular Dirigida/métodos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Operón/genética , Plásmidos/genética , Plásmidos/metabolismo , ARN de Transferencia de Prolina/metabolismo , ARNt Metiltransferasas/deficiencia , ARNt Metiltransferasas/metabolismo
4.
Nucleic Acids Res ; 46(7): e37, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29361055

RESUMEN

Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3'-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.


Asunto(s)
Anticodón/genética , Conformación de Ácido Nucleico , ARN de Transferencia de Prolina/genética , ARN de Transferencia/genética , Secuencia de Bases , Codón/genética , Escherichia coli/genética , Metilación , ARN Bacteriano/genética , Uridina/análogos & derivados , Uridina/genética
5.
Proc Natl Acad Sci U S A ; 114(33): E6774-E6783, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28768811

RESUMEN

Molecular sieves ensure proper pairing of tRNAs and amino acids during aminoacyl-tRNA biosynthesis, thereby avoiding detrimental effects of mistranslation on cell growth and viability. Mischarging errors are often corrected through the activity of specialized editing domains present in some aminoacyl-tRNA synthetases or via single-domain trans-editing proteins. ProXp-ala is a ubiquitous trans-editing enzyme that edits Ala-tRNAPro, the product of Ala mischarging by prolyl-tRNA synthetase, although the structural basis for discrimination between correctly charged Pro-tRNAPro and mischarged Ala-tRNAAla is unclear. Deacylation assays using substrate analogs reveal that size discrimination is only one component of selectivity. We used NMR spectroscopy and sequence conservation to guide extensive site-directed mutagenesis of Caulobacter crescentus ProXp-ala, along with binding and deacylation assays to map specificity determinants. Chemical shift perturbations induced by an uncharged tRNAPro acceptor stem mimic, microhelixPro, or a nonhydrolyzable mischarged Ala-microhelixPro substrate analog identified residues important for binding and deacylation. Backbone 15N NMR relaxation experiments revealed dynamics for a helix flanking the substrate binding site in free ProXp-ala, likely reflecting sampling of open and closed conformations. Dynamics persist on binding to the uncharged microhelix, but are attenuated when the stably mischarged analog is bound. Computational docking and molecular dynamics simulations provide structural context for these findings and predict a role for the substrate primary α-amine group in substrate recognition. Overall, our results illuminate strategies used by a trans-editing domain to ensure acceptance of only mischarged Ala-tRNAPro, including conformational selection by a dynamic helix, size-based exclusion, and optimal positioning of substrate chemical groups.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Proteínas Bacterianas/genética , Caulobacter crescentus/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia de Prolina/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Caulobacter crescentus/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , Edición de ARN , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/metabolismo , Especificidad por Sustrato
6.
Nucleic Acids Res ; 45(6): 3407-3421, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27899648

RESUMEN

Despite the general requirement for translation fidelity, mistranslation can be an adaptive response. We selected spontaneous second site mutations that suppress the stress sensitivity caused by a Saccharomyces cerevisiae tti2 allele with a Leu to Pro mutation at residue 187, identifying a single nucleotide mutation at the same position (C70U) in four tRNAProUGG genes. Linkage analysis and suppression by SUF9G3:U70 expressed from a centromeric plasmid confirmed the causative nature of the suppressor mutation. Since the mutation incorporates the G3:U70 identity element for alanyl-tRNA synthetase into tRNAPro, we hypothesized that suppression results from mistranslation of Pro187 in Tti2L187P as Ala. A strain expressing Tti2L187A was not stress sensitive. In vitro, tRNAProUGG (C70U) was mis-aminoacylated with alanine by alanyl-tRNA synthetase, but was not a substrate for prolyl-tRNA synthetase. Mass spectrometry from protein expressed in vivo and a novel GFP reporter for mistranslation confirmed substitution of alanine for proline at a rate of ∼6%. Mistranslating cells expressing SUF9G3:U70 induce a partial heat shock response but grow nearly identically to wild-type. Introducing the same G3:U70 mutation in SUF2 (tRNAProAGG) suppressed a second tti2 allele (tti2L50P). We have thus identified a strategy that allows mistranslation to suppress deleterious missense Pro mutations in Tti2.


Asunto(s)
Sustitución de Aminoácidos , Chaperonas Moleculares/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Supresión Genética , Alelos , Intrones , Chaperonas Moleculares/biosíntesis , Proteínas de Saccharomyces cerevisiae/biosíntesis , Selección Genética
7.
Nucleic Acids Res ; 45(22): 12601-12610, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29155943

RESUMEN

A bacterial translation factor EF-P alleviates ribosomal stalling caused by polyproline sequence by accelerating Pro-Pro formation. EF-P recognizes a specific D-arm motif found in tRNAPro isoacceptors, 9-nt D-loop closed by a stable D-stem sequence, for Pro-selective peptidyl-transfer acceleration. It is also known that the T-stem sequence on aminoacyl-tRNAs modulates strength of the interaction with EF-Tu, giving enhanced incorporation of non-proteinogenic amino acids such as some N-methyl amino acids. Based on the above knowledge, we logically engineered tRNA's D-arm and T-stem sequences to investigate a series of tRNAs for the improvement of consecutive incorporation of d-amino acids and an α, α-disubstituted amino acid. We have devised a chimera of tRNAPro1 and tRNAGluE2, referred to as tRNAPro1E2, in which T-stem of tRNAGluE2 was engineered into tRNAPro1. The combination of EF-P with tRNAPro1E2NNN pre-charged with d-Phe, d-Ser, d-Ala, and/or d-Cys has drastically enhanced expression level of not only linear peptides but also a thioether-macrocyclic peptide consisting of the four consecutive d-amino acids over the previous method using orthogonal tRNAs.


Asunto(s)
Aminoácidos/genética , ADN Recombinante/genética , Aminoacil-ARN de Transferencia/genética , ARN de Transferencia/genética , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Secuencia de Bases , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Unión Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Ácido Glutámico/química , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo
8.
RNA Biol ; 15(4-5): 567-575, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28933646

RESUMEN

High-fidelity translation and a strictly accurate proteome were originally assumed as essential to life and cellular viability. Yet recent studies in bacteria and eukaryotic model organisms suggest that proteome-wide mistranslation can provide selective advantages and is tolerated in the cell at higher levels than previously thought (one error in 6.9 × 10-4 in yeast) with a limited impact on phenotype. Previously, we selected a tRNAPro containing a single mutation that induces mistranslation with alanine at proline codons in yeast. Yeast tolerate the mistranslation by inducing a heat-shock response and through the action of the proteasome. Here we found a homologous human tRNAPro (G3:U70) mutant that is not aminoacylated with proline, but is an efficient alanine acceptor. In live human cells, we visualized mistranslation using a green fluorescent protein reporter that fluoresces in response to mistranslation at proline codons. In agreement with measurements in yeast, quantitation based on the GFP reporter suggested a mistranslation rate of up to 2-5% in HEK 293 cells. Our findings suggest a stress-dependent phenomenon where mistranslation levels increased during nutrient starvation. Human cells did not mount a detectable heat-shock response and tolerated this level of mistranslation without apparent impact on cell viability. Because humans encode ∼600 tRNA genes and the natural population has greater tRNA sequence diversity than previously appreciated, our data also demonstrate a cell-based screen with the potential to elucidate mutations in tRNAs that may contribute to or alleviate disease.


Asunto(s)
Alanina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Mutación , Prolina/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Prolina/genética , Alanina/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacilación , Anticodón/química , Anticodón/metabolismo , Supervivencia Celular/efectos de los fármacos , Codón/química , Codón/metabolismo , Medios de Cultivo/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Reporteros , Glucosa/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Plásmidos/química , Plásmidos/metabolismo , Prolina/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN de Transferencia de Prolina/metabolismo , Transfección
9.
RNA Biol ; 15(4-5): 576-585, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28737471

RESUMEN

Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Aminobutiratos/metabolismo , Prolina/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Prolina/genética , Aminoacilación de ARN de Transferencia , Alanina/genética , Alanina/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Aminobutiratos/química , Anticodón/química , Anticodón/metabolismo , Sitios de Unión , Codón/química , Codón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Mutación , Conformación de Ácido Nucleico , Prolina/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/metabolismo , Rhodopseudomonas/genética , Rhodopseudomonas/metabolismo , Especificidad por Sustrato
10.
Methods ; 113: 72-82, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27729295

RESUMEN

Phosphorylation of many aminoacyl tRNA synthetases (AARSs) has been recognized for decades, but the contribution of post-translational modification to their primary role in tRNA charging and decryption of genetic code remains unclear. In contrast, phosphorylation is essential for performance of diverse noncanonical functions of AARSs unrelated to protein synthesis. Phosphorylation of glutamyl-prolyl tRNA synthetase (EPRS) has been investigated extensively in our laboratory for more than a decade, and has served as an archetype for studies of other AARSs. EPRS is a constituent of the IFN-γ-activated inhibitor of translation (GAIT) complex that directs transcript-selective translational control in myeloid cells. Stimulus-dependent phosphorylation of EPRS is essential for its release from the parental multi-aminoacyl tRNA synthetase complex (MSC), for binding to other GAIT complex proteins, and for regulating the binding to target mRNAs. Importantly, phosphorylation is the common driving force for the context- and stimulus-dependent release, and non-canonical activity, of other AARSs residing in the MSC, for example, lysyl tRNA synthetase (KARS). Here, we describe the concepts and experimental methodologies we have used to investigate the influence of phosphorylation on the structure and function of EPRS. We suggest that application of these approaches will help to identify new functional phosphorylation event(s) in other AARSs and elucidate their possible roles in noncanonical activities.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Bioensayo , Monocitos/metabolismo , Prolina/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Transferencia de Prolina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Animales , Anticuerpos/química , Línea Celular Tumoral , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Monocitos/citología , Radioisótopos de Fósforo , Fosforilación , Cultivo Primario de Células , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN de Transferencia de Prolina/genética
11.
Mol Microbiol ; 102(2): 221-232, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27350030

RESUMEN

Bacterial ribosome requires elongation factor P to translate fragments harbouring consecutive proline codons. Given the abundance of ORFs with potential EF-P regulated sites, EF-P was assumed to be constitutively expressed. Here, we report that the intracellular pathogen Salmonella enterica serovar Typhimurium decreases efp mRNA levels during course of infection. We determined that the decrease in efp mRNA is triggered by low levels of charged tRNAPro , a condition that Salmonella experiences when inside a macrophage phagosome. Surprisingly, downregulation of EF-P selectively promotes expression of the virulence mgtC gene and contributes to Salmonella's ability to survive inside macrophages. The decrease in EF-P levels induces ribosome stalling at the consecutive proline codons of the mgtP open reading frame in the mgtCBR leader RNA, and thus allows formation of a stem-loop structure promoting transcription of the mgtC gene. The substitution of proline codons in the mgtP gene eliminates EF-P-mediated mgtC expression and thus Salmonella's survival inside macrophages. Our findings indicate that Salmonella benefits virulence genes by decreasing EF-P levels and inducing the stringent response inside host.


Asunto(s)
Factores de Elongación de Péptidos/metabolismo , ARN de Transferencia de Prolina/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Línea Celular , Regulación hacia Abajo , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Macrófagos/microbiología , Ratones , Sistemas de Lectura Abierta , Factores de Elongación de Péptidos/genética , Fagosomas/metabolismo , ARN de Transferencia de Prolina/genética , Ribosomas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Virulencia , Factores de Virulencia/metabolismo
12.
Proc Natl Acad Sci U S A ; 111(8): 3140-5, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516160

RESUMEN

The intracellular pathogen Salmonella enterica serovar Typhimurium requires the mgtC gene to cause disease. The mgtC transcript includes a long leader region that harbors a short proline codon-rich ORF--termed mgtP--the translation of which is predicted to favor formation of one of two alternative stem-loop structures. We now report that the mgtP proline codons are critical for expression of the mgtC coding region inside host cells, for Salmonella survival inside macrophages, and for virulence in mice. We determine that the mgtP proline codons mediate the response to proline-charged tRNA(Pro), the levels of which decrease under proline limitation and/or hyperosmotic stress. The host compartment harboring Salmonella appears to be limited in proline because proline auxotrophs were defective for intramacrophage survival and virulence in mice. Salmonella seems to experience hyperosmotic stress during infection because osmotically regulated genes were highly induced inside phagocytic cells. Replacing mgtP proline codons with codons specifying threonine converted the mgtC leader into a threonine-responding element. Our findings indicate that an attenuation-like mechanism governs transcription elongation into the mgtCBR coding region. Moreover, they highlight how pathogens construe host signals by the effect they have on bacterial constituents.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Regulación Bacteriana de la Expresión Génica/genética , Interacciones Huésped-Patógeno/genética , ARN de Transferencia de Prolina/metabolismo , Salmonella typhimurium/patogenicidad , Secuencia de Aminoácidos , Animales , Emparejamiento Base , Secuencia de Bases , Codón/genética , Ratones , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/genética , Sistemas de Lectura Abierta/genética , Prolina/genética , Prolina/metabolismo , ARN de Transferencia de Prolina/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Virulencia
13.
EMBO Rep ; 14(1): 73-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23154467

RESUMEN

Embryonic stem cells repress retroviral infection through transcriptional silencing of proviral DNAs. We characterized two distinct mechanisms of silencing in embryonic mouse cells infected by Moloney murine leukaemia virus (MLV): a highly efficient one targeting the proline transfer RNA primer-binding site (PBSpro), and a less efficient one operating independently of the PBS. Rare virus-expressing populations were isolated, and the timing and efficiency of establishment of silencing were determined. Superinfection of the selected virus-expressing cells with a second virus carrying a distinguishable reporter revealed that the PBSpro-directed silencing was still largely intact, whereas the PBS-independent silencing was partially reduced. The timing and stability of silencing, and the associated chromatin modifications on newly established and endogenous proviruses were determined. The results indicate that epigenetic mechanisms with different specificity and efficiency are used to silence the exogenous retroviral sequences in embryonic cells.


Asunto(s)
ADN Viral/genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/virología , Epigénesis Genética , Virus de la Leucemia Murina de Moloney/genética , Provirus/genética , Animales , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN , ADN Viral/antagonistas & inhibidores , Células Madre Embrionarias/citología , Silenciador del Gen , Genes Reporteros , Proteínas Fluorescentes Verdes , Interacciones Huésped-Patógeno , Humanos , Ratones , Células 3T3 NIH , ARN Interferente Pequeño/genética , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Prolina/metabolismo , Transducción de Señal
14.
Int J Mol Sci ; 16(7): 14866-83, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26140378

RESUMEN

Native tRNAs often contain post-transcriptional modifications to the wobble position to expand the capacity of reading the genetic code. Some of these modifications, due to the ability to confer imperfect codon-anticodon pairing at the wobble position, can induce a high propensity for tRNA to shift into alternative reading frames. An example is the native UGG isoacceptor of E. coli tRNAPro whose wobble nucleotide U34 is post-transcriptionally modified to cmo5U34 to read all four proline codons (5'-CCA, 5'-CCC, 5'-CCG, and 5'-CCU). Because the pairing of the modified anticodon to CCC codon is particularly weak relative to CCA and CCG codons, this tRNA can readily shift into both the +1 and +2-frame on the slippery mRNA sequence CCC-CG. We show that the shift to the +2-frame is more dominant, driven by the higher stability of the codon-anticodon pairing at the wobble position. Kinetic analysis suggests that both types of shifts can occur during stalling of the tRNA in a post-translocation complex or during translocation from the A to the P-site. Importantly, while the +1-frame post complex is active for peptidyl transfer, the +2-frame complex is a poor peptidyl donor. Together with our recent work, we draw a mechanistic distinction between +1 and +2-frameshifts, showing that while the +1-shifts are suppressed by the additional post-transcriptionally modified m1G37 nucleotide in the anticodon loop, the +2-shifts are suppressed by the ribosome, supporting a role of the ribosome in the overall quality control of reading-frame maintenance.


Asunto(s)
Mutación del Sistema de Lectura , ARN de Transferencia de Prolina/genética , Emparejamiento Base , Codón/genética , Escherichia coli/genética , ARN Mensajero/genética
15.
J Cell Physiol ; 229(9): 1121-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24676899

RESUMEN

There is a critical need for techniques that directly monitor protein synthesis within cells isolated from normal and diseased tissue. Fibrotic disease, for which there is no drug treatment, is characterized by the overexpression of collagens. Here, we use a bioinformatics approach to identify a pair of glycine and proline isoacceptor tRNAs as being specific for the decoding of collagen mRNAs, leading to development of a FRET-based approach, dicodon monitoring of protein synthesis (DiCoMPS), that directly monitors the synthesis of collagen. DiCoMPS aimed at detecting collagen synthesis will be helpful in identifying novel anti-fibrotic compounds in cells derived from patients with fibrosis of any etiology, and, suitably adapted, should be widely applicable in monitoring the synthesis of other proteins in cells.


Asunto(s)
Colágeno/biosíntesis , Fibroblastos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Microscopía Confocal , ARN de Transferencia de Glicerina/metabolismo , ARN de Transferencia de Prolina/metabolismo , Animales , Carbocianinas/metabolismo , Células Cultivadas , Fibroblastos/patología , Fibrosis , Colorantes Fluorescentes/metabolismo , Humanos , Cinética , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , ARN de Transferencia de Glicerina/genética , ARN de Transferencia de Prolina/genética , Transfección
16.
Nat Genet ; 4(3): 284-8, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-7689388

RESUMEN

We have identified an unusual mitochondrial (mt) tRNA mutation in a seven year-old girl with a pure myopathy. This G to A transition at mtDNA position 15990 changed the anticodon normally found in proline tRNAs (UGG) to the one found in serine tRNAs (UGA), and is the first pathogenic anticodon alteration described in a higher eukaryote. The mutant mtDNA was heteroplasmic (85% mutant) in muscle but was undetectable in white blood cells from the patient and her mother. Analysis of single muscle fibres indicated that mutant mtDNAs severely impaired mitochondrial protein synthesis and respiratory chain activity, but only when present at greater than 90%. The recessive behaviour of this mtDNA alteration may explain the patient's relatively mild clinical phenotype.


Asunto(s)
Anticodón/genética , Miopatías Mitocondriales/genética , ARN/genética , Secuencia de Bases , Niño , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Humanos , Miopatías Mitocondriales/metabolismo , Datos de Secuencia Molecular , Proteínas Musculares/biosíntesis , Proteínas Musculares/genética , Músculos/metabolismo , Linaje , Fenotipo , Mutación Puntual , ARN Mitocondrial , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Serina/genética , Distribución Tisular
17.
Commun Biol ; 4(1): 589, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34002016

RESUMEN

The speed of mRNA translation depends in part on the amino acid to be incorporated into the nascent chain. Peptide bond formation is especially slow with proline and two adjacent prolines can even cause ribosome stalling. While previous studies focused on how the amino acid context of a Pro-Pro motif determines the stalling strength, we extend this question to the mRNA level. Bioinformatics analysis of the Escherichia coli genome revealed significantly differing codon usage between single and consecutive prolines. We therefore developed a luminescence reporter to detect ribosome pausing in living cells, enabling us to dissect the roles of codon choice and tRNA selection as well as to explain the genome scale observations. Specifically, we found a strong selective pressure against CCC/U-C, a sequon causing ribosomal frameshifting even under wild-type conditions. On the other hand, translation efficiency as positive evolutionary driving force led to an overrepresentation of CCG. This codon is not only translated the fastest, but the corresponding prolyl-tRNA reaches almost saturating levels. By contrast, CCA, for which the cognate prolyl-tRNA amounts are limiting, is used to regulate pausing strength. Thus, codon selection both in discrete positions but especially in proline codon pairs can tune protein copy numbers.


Asunto(s)
Codón , Escherichia coli/genética , Extensión de la Cadena Peptídica de Translación , Prolina/genética , Biosíntesis de Proteínas , ARN de Transferencia de Prolina/genética , Ribosomas/fisiología , Selección Genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo
18.
BMC Evol Biol ; 10: 141, 2010 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-20465814

RESUMEN

BACKGROUND: Acrodonta consists of Agamidae and Chamaeleonidae that have the characteristic acrodont dentition. These two families and Iguanidae sensu lato are members of infraorder Iguania. Phylogenetic relationships and historical biogeography of iguanian lizards still remain to be elucidated in spite of a number of morphological and molecular studies. This issue was addressed by sequencing complete mitochondrial genomes from 10 species that represent major lineages of acrodont lizards. This study also provided a good opportunity to compare molecular evolutionary modes of mitogenomes among different iguanian lineages. RESULTS: Acrodontan mitogenomes were found to be less conservative than iguanid counterparts with respect to gene arrangement features and rates of sequence evolution. Phylogenetic relationships were constructed with the mitogenomic sequence data and timing of gene rearrangements was inferred on it. The result suggested highly lineage-specific occurrence of several gene rearrangements, except for the translocation of the tRNAPro gene from the 5' to 3' side of the control region, which likely occurred independently in both agamine and chamaeleonid lineages. Phylogenetic analyses strongly suggested the monophyly of Agamidae in relation to Chamaeleonidae and the non-monophyly of traditional genus Chamaeleo within Chamaeleonidae. Uromastyx and Brookesia were suggested to be the earliest shoot-off of Agamidae and Chamaeleonidae, respectively. Together with the results of relaxed-clock dating analyses, our molecular phylogeny was used to infer the origin of Acrodonta and historical biogeography of its descendant lineages. Our molecular data favored Gondwanan origin of Acrodonta, vicariant divergence of Agamidae and Chamaeleonidae in the drifting India-Madagascar landmass, and migration of the Agamidae to Eurasia with the Indian subcontinent, although Laurasian origin of Acrodonta was not strictly ruled out. CONCLUSIONS: We detected distinct modes of mitogenomic evolution among iguanian families. Agamidae was highlighted in including a number of lineage-specific mitochondrial gene rearrangements. The mitogenomic data provided a certain level of resolution in reconstructing acrodontan phylogeny, although there still remain ambiguous relationships. Our biogeographic implications shed a light on the previous hypothesis of Gondwanan origin of Acrodonta by adding some new evidence and concreteness.


Asunto(s)
Evolución Molecular , Reordenamiento Génico , Genoma Mitocondrial , Lagartos/genética , Filogenia , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Geografía , Lagartos/clasificación , ARN de Transferencia de Prolina/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
19.
Proc Biol Sci ; 277(1692): 2331-7, 2010 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-20356891

RESUMEN

During the Late Pleistocene, the woolly mammoth (Mammuthus primigenius) experienced a series of local extinctions generally attributed to human predation or environmental change. Some small and isolated populations did however survive far into the Holocene. Here, we investigated the genetic consequences of the isolation of the last remaining mammoth population on Wrangel Island. We analysed 741 bp of the mitochondrial DNA and found a loss of genetic variation in relation to the isolation event, probably caused by a demographic bottleneck or a founder event. However, in spite of ca 5000 years of isolation, we did not detect any further loss of genetic variation. Together with the relatively high number of mitochondrial haplotypes on Wrangel Island near the final disappearance, this suggests a sudden extinction of a rather stable population.


Asunto(s)
Extinción Biológica , Variación Genética/genética , Mamuts/genética , Animales , Simulación por Computador , Citocromos b/química , Citocromos b/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , Evolución Molecular , Geografía , Haplotipos/genética , Reacción en Cadena de la Polimerasa , ARN de Transferencia de Prolina/química , ARN de Transferencia de Prolina/genética , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , Siberia
20.
Nucleic Acids Res ; 36(8): 2514-21, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18310681

RESUMEN

Aminoacyl-tRNA synthetases (AARS) are an essential family of enzymes that catalyze the attachment of amino acids to specific tRNAs during translation. Previously, we showed that base-specific recognition of the tRNA(Pro) acceptor stem is critical for recognition by Escherichia coli prolyl-tRNA synthetase (ProRS), but not for human ProRS. To further delineate species-specific differences in acceptor stem recognition, atomic group mutagenesis was used to probe the role of sugar-phosphate backbone interactions in recognition of human tRNA(Pro). Incorporation of site-specific 2'-deoxynucleotides, as well as phosphorothioate and methylphosphonate modifications within the tRNA acceptor stem revealed an extensive network of interactions with specific functional groups proximal to the first base pair and the discriminator base. Backbone functional groups located at the base of the acceptor stem, especially the 2'-hydroxyl of A66, are also critical for aminoacylation catalytic efficiency by human ProRS. Therefore, in contrast to the bacterial system, backbone-specific interactions contribute significantly more to tRNA recognition by the human enzyme than base-specific interactions. Taken together with previous studies, these data show that ProRS-tRNA acceptor stem interactions have co-adapted through evolution from a mechanism involving 'direct readout' of nucleotide bases to one relying primarily on backbone-specific 'indirect readout'.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Evolución Molecular , ARN de Transferencia de Prolina/química , Aminoacilación de ARN de Transferencia , Secuencia de Bases , Desoxirribonucleótidos/química , Humanos , Datos de Secuencia Molecular , Mutagénesis , Compuestos Organofosforados/química , Oligonucleótidos Fosforotioatos/química , ARN de Transferencia de Prolina/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA