Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(20): 11755-11774, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350636

RESUMEN

Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.


Asunto(s)
Aminoacil-ARNt Sintetasas , COVID-19 , Serina-ARNt Ligasa , Humanos , Ratones , Animales , ARN de Transferencia de Serina/genética , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacilación
2.
Nucleic Acids Res ; 48(19): 11113-11129, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33045734

RESUMEN

In this report, we investigated the molecular mechanism underlying a deafness-associated m.7516delA mutation affecting the 5' end processing sites of mitochondrial tRNAAsp and tRNASer(UCN). An in vitro processing experiment demonstrated that m.7516delA mutation caused the aberrant 5' end processing of tRNASer(UCN) and tRNAAsp precursors, catalyzed by RNase P. Using cytoplasmic hybrids (cybrids) derived from one hearing-impaired Chinese family bearing the m.7516delA mutation and control, we demonstrated the asymmetrical effects of m.7516delA mutation on the processing of tRNAs in the heavy (H)-strand and light (L)-strand polycistronic transcripts. Specially, the m.7516delA mutation caused the decreased levels of tRNASer(UCN) and downstream five tRNAs, including tRNATyr from the L-strand transcripts and tRNAAsp from the H-strand transcripts. Strikingly, mutant cybrids exhibited the lower level of COX2 mRNA and accumulation of longer and uncleaved precursors of COX2 from the H-strand transcripts. Aberrant RNA metabolisms yielded variable reductions in the mitochondrial proteins, especially marked reductions in the levels of ND4, ND5, CO1, CO2 and CO3. The impairment of mitochondrial translation caused the proteostasis stress and respiratory deficiency, diminished ATP production and membrane potential, increased production of reactive oxygen species and promoted apoptosis. Our findings provide new insights into the pathophysiology of deafness arising from mitochondrial tRNA processing defects.


Asunto(s)
ADN Mitocondrial/genética , Sordera/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Serina/metabolismo , Apoptosis , Línea Celular , Respiración de la Célula , Humanos , Potencial de la Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Mutación , Procesamiento Postranscripcional del ARN , Especies Reactivas de Oxígeno/metabolismo
3.
RNA ; 25(5): 645-655, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30803999

RESUMEN

External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.


Asunto(s)
Proteínas de la Cápside/genética , Citomegalovirus/genética , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , ARN de Transferencia de Serina/genética , ARN Viral/genética , Ribonucleasa P/metabolismo , Emparejamiento Base , Proteínas de la Cápside/biosíntesis , Línea Celular Transformada , Línea Celular Tumoral , Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virología , Regulación Viral de la Expresión Génica , Marcación de Gen/métodos , Ingeniería Genética/métodos , Interacciones Huésped-Patógeno/genética , Humanos , Terapia Molecular Dirigida , Neuroglía/metabolismo , Neuroglía/virología , Conformación de Ácido Nucleico , Cultivo Primario de Células , División del ARN , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia de Serina/química , ARN de Transferencia de Serina/metabolismo , ARN Viral/química , ARN Viral/metabolismo , Ribonucleasa P/química , Ribonucleasa P/genética , Replicación Viral/fisiología
4.
J Biol Chem ; 294(50): 19292-19305, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31685661

RESUMEN

Nuclear modifier genes have been proposed to modify the phenotypic expression of mitochondrial DNA mutations. Using a targeted exome-sequencing approach, here we found that the p.191Gly>Val mutation in mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) interacts with the tRNASer(UCN) 7511A>G mutation in causing deafness. Strikingly, members of a Chinese family bearing both the YARS2 p.191Gly>Val and m.7511A>G mutations displayed much higher penetrance of deafness than those pedigrees carrying only the m.7511A>G mutation. The m.7511A>G mutation changed the A4:U69 base-pairing to G4:U69 pairing at the aminoacyl acceptor stem of tRNASer(UCN) and perturbed tRNASer(UCN) structure and function, including an increased melting temperature, altered conformation, instability, and aberrant aminoacylation of mutant tRNA. Using lymphoblastoid cell lines derived from symptomatic and asymptomatic members of these Chinese families and control subjects, we show that cell lines harboring only the m.7511A>G or p.191Gly>Val mutation revealed relatively mild defects in tRNASer(UCN) or tRNATyr metabolism, respectively. However, cell lines harboring both m.7511A>G and p.191Gly>Val mutations displayed more severe defective aminoacylations and lower tRNASer(UCN) and tRNATyr levels, aberrant aminoacylation, and lower levels of other tRNAs, including tRNAThr, tRNALys, tRNALeu(UUR), and tRNASer(AGY), than those in the cell lines carrying only the m.7511A>G or p.191Gly>Val mutation. Furthermore, mutant cell lines harboring both m.7511A>G and p.191Gly>Val mutations exhibited greater decreases in the levels of mitochondrial translation, respiration, and mitochondrial ATP and membrane potentials, along with increased production of reactive oxygen species. Our findings provide molecular-level insights into the pathophysiology of maternally transmitted deafness arising from the synergy between tRNASer(UCN) and mitochondrial YARS mutations.


Asunto(s)
Mitocondrias/enzimología , Mutación , ARN de Transferencia de Serina/genética , Tirosina-ARNt Ligasa/genética , Pueblo Asiatico , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo , Tirosina-ARNt Ligasa/metabolismo
5.
Nucleic Acids Res ; 46(15): 7831-7843, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30007351

RESUMEN

To develop a system for conditional amino acid misincorporation, we engineered tRNAs in the yeast Saccharomyces cerevisiae to be substrates of the rapid tRNA decay (RTD) pathway, such that they accumulate when RTD is turned off. We used this system to test the effects on growth of a library of tRNASer variants with all possible anticodons, and show that many are lethal when RTD is inhibited and the tRNA accumulates. Using mass spectrometry, we measured serine misincorporation in yeast containing each of six tRNA variants, and for five of them identified hundreds of peptides with serine substitutions at the targeted amino acid sites. Unexpectedly, we found that there is not a simple correlation between toxicity and the level of serine misincorporation; in particular, high levels of serine misincorporation can occur at cysteine residues without obvious growth defects. We also showed that toxic tRNAs can be used as a tool to identify sequence variants that reduce tRNA function. Finally, we generalized this method to another tRNA species, and generated conditionally toxic tRNATyr variants in a similar manner. This method should facilitate the study of tRNA biology and provide a tool to probe the effects of amino acid misincorporation on cellular physiology.


Asunto(s)
Sustitución de Aminoácidos/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia de Serina/genética , ARN de Transferencia de Tirosina/genética , Saccharomyces cerevisiae/metabolismo , Anticodón/genética , Estabilidad del ARN/genética , Saccharomyces cerevisiae/genética , Serina/metabolismo , Tirosina/metabolismo
6.
RNA ; 23(11): 1685-1699, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28808125

RESUMEN

Seryl-tRNA synthetase (SerRS) attaches L-serine to the cognate serine tRNA (tRNASer) and the noncognate selenocysteine tRNA (tRNASec). The latter activity initiates the anabolic cycle of selenocysteine (Sec), proper decoding of an in-frame Sec UGA codon, and synthesis of selenoproteins across all domains of life. While the accuracy of SerRS is important for overall proteome integrity, it is its substrate promiscuity that is vital for the integrity of the selenoproteome. This raises a question as to what elements in the two tRNA species, harboring different anticodon sequences and adopting distinct folds, facilitate aminoacylation by a common aminoacyl-tRNA synthetase. We sought to answer this question by analyzing the ability of human cytosolic SerRS to bind and act on tRNASer, tRNASec, and 10 mutant and chimeric constructs in which elements of tRNASer were transposed onto tRNASec We show that human SerRS only subtly prefers tRNASer to tRNASec, and that discrimination occurs at the level of the serylation reaction. Surprisingly, the tRNA mutants predicted to adopt either the 7/5 or 8/5 fold are poor SerRS substrates. In contrast, shortening of the acceptor arm of tRNASec by a single base pair yields an improved SerRS substrate that adopts an 8/4 fold. We suggest that an optimal tertiary arrangement of structural elements within tRNASec and tRNASer dictate their utility for serylation. We also speculate that the extended acceptor-TΨC arm of tRNASec evolved as a compromise for productive binding to SerRS while remaining the major recognition element for other enzymes involved in Sec and selenoprotein synthesis.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/metabolismo , ARN de Transferencia de Serina/metabolismo , Serina-ARNt Ligasa/metabolismo , Secuencia de Bases , Sitios de Unión , Citosol/enzimología , Humanos , Cinética , Modelos Moleculares , Mutagénesis , Conformación de Ácido Nucleico , Pliegue del ARN , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia Aminoácido-Específico/genética , ARN de Transferencia de Serina/química , ARN de Transferencia de Serina/genética , Especificidad por Sustrato
7.
RNA ; 23(3): 406-419, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28003514

RESUMEN

The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.


Asunto(s)
Anticodón/química , Citidina/análogos & derivados , Proteínas de Microfilamentos/metabolismo , ARN de Transferencia de Serina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Anticodón/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Citidina/genética , Citidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de Microfilamentos/genética , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , ARNt Metiltransferasas/genética
8.
Nature ; 500(7460): 107-10, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23812587

RESUMEN

During normal translation, the binding of a release factor to one of the three stop codons (UGA, UAA or UAG) results in the termination of protein synthesis. However, modification of the initial uridine to a pseudouridine (Ψ) allows efficient recognition and read-through of these stop codons by a transfer RNA (tRNA), although it requires the formation of two normally forbidden purine-purine base pairs. Here we determined the crystal structure at 3.1 Å resolution of the 30S ribosomal subunit in complex with the anticodon stem loop of tRNA(Ser) bound to the ΨAG stop codon in the A site. The ΨA base pair at the first position is accompanied by the formation of purine-purine base pairs at the second and third positions of the codon, which show an unusual Watson-Crick/Hoogsteen geometry. The structure shows a previously unsuspected ability of the ribosomal decoding centre to accommodate non-canonical base pairs.


Asunto(s)
Emparejamiento Base , Codón de Terminación/genética , Codón de Terminación/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Secuencia de Bases , Codón de Terminación/química , Cristalografía por Rayos X , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , Seudouridina/química , Seudouridina/genética , Seudouridina/metabolismo , ARN de Transferencia de Serina/química , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/química , Subunidades Ribosómicas Pequeñas Bacterianas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/genética
9.
Nucleic Acids Res ; 45(12): 7441-7454, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28499021

RESUMEN

The RNase P family comprises structurally diverse endoribonucleases ranging from complex ribonucleoproteins to single polypeptides. We show that the organellar (AtPRORP1) and the two nuclear (AtPRORP2,3) single-polypeptide RNase P isoenzymes from Arabidopsis thaliana confer viability to Escherichia coli cells with a lethal knockdown of its endogenous RNA-based RNase P. RNA-Seq revealed that AtPRORP1, compared with bacterial RNase P or AtPRORP3, cleaves several precursor tRNAs (pre-tRNAs) aberrantly in E. coli. Aberrant cleavage by AtPRORP1 was mainly observed for pre-tRNAs that can form short acceptor-stem extensions involving G:C base pairs, including tRNAAsp(GUC), tRNASer(CGA) and tRNAHis. However, both AtPRORP1 and 3 were defective in processing of E. coli pre-tRNASec carrying an acceptor stem expanded by three G:C base pairs. Instead, pre-tRNASec was degraded, suggesting that tRNASec is dispensable for E. coli under laboratory conditions. AtPRORP1, 2 and 3 are also essentially unable to process the primary transcript of 4.5S RNA, a hairpin-like non-tRNA substrate processed by E. coli RNase P, indicating that PRORP enzymes have a narrower, more tRNA-centric substrate spectrum than bacterial RNA-based RNase P enzymes. The cells' viability also suggests that the essential function of the signal recognition particle can be maintained with a 5΄-extended 4.5S RNA.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Precursores del ARN/genética , Ribonucleasa P/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Emparejamiento Base , Secuencia de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Prueba de Complementación Genética , Viabilidad Microbiana , Conformación de Ácido Nucleico , Precursores del ARN/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Aspártico/genética , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Histidina/genética , ARN de Transferencia de Histidina/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , Ribonucleasa P/deficiencia , Ribonucleasa P/metabolismo , Transgenes
10.
J Biol Chem ; 292(35): 14695-14703, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28655767

RESUMEN

Chemical RNA modifications are central features of epitranscriptomics, highlighted by the discovery of modified ribonucleosides in mRNA and exemplified by the critical roles of RNA modifications in normal physiology and disease. Despite a resurgent interest in these modifications, the biochemistry of 3-methylcytidine (m3C) formation in mammalian RNAs is still poorly understood. However, the recent discovery of trm141 as the second gene responsible for m3C presence in RNA in fission yeast raises the possibility that multiple enzymes are involved in m3C formation in mammals as well. Here, we report the discovery and characterization of three distinct m3C-contributing enzymes in mice and humans. We found that methyltransferase-like (METTL) 2 and 6 contribute m3C in specific tRNAs and that METTL8 only contributes m3C to mRNA. MS analysis revealed that there is an ∼30-40% and ∼10-15% reduction, respectively, in METTL2 and -6 null-mutant cells, of m3C in total tRNA, and primer extension analysis located METTL2-modified m3C at position 32 of tRNAThr isoacceptors and tRNAArg(CCU) We also noted that METTL6 interacts with seryl-tRNA synthetase in an RNA-dependent manner, suggesting a role for METTL6 in modifying serine tRNA isoacceptors. METTL8, however, modified only mRNA, as determined by biochemical and genetic analyses in Mettl8 null-mutant mice and two human METTL8 mutant cell lines. Our findings provide the first evidence of the existence of m3C modification in mRNA, and the discovery of METTL8 as an mRNA m3C writer enzyme opens the door to future studies of other m3C epitranscriptomic reader and eraser functions.


Asunto(s)
Citidina/análogos & derivados , Hígado/metabolismo , Metiltransferasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Animales , Línea Celular , Citidina/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/enzimología , Metilación , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/genética , Ratones , Ratones Noqueados , Ratones Mutantes , Mutación , Interferencia de ARN , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Serina-ARNt Ligasa/química , Serina-ARNt Ligasa/metabolismo , Especificidad por Sustrato
11.
RNA ; 22(9): 1400-10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27354703

RESUMEN

Post-transcriptional modifications of anticodon loop (ACL) nucleotides impact tRNA structure, affinity for the ribosome, and decoding activity, and these activities can be fine-tuned by interactions between nucleobases on either side of the anticodon. A recently discovered ACL modification circuit involving positions 32, 34, and 37 is disrupted by a human disease-associated mutation to the gene encoding a tRNA modification enzyme. We used tRNA-HydroSeq (-HySeq) to examine (3)methyl-cytidine-32 (m(3)C32), which is found in yeast only in the ACLs of tRNAs(Ser) and tRNAs(Thr) In contrast to that reported for Saccharomyces cerevisiae in which all m(3)C32 depends on a single gene, TRM140, the m(3)C32 of tRNAs(Ser) and tRNAs(Thr) of the fission yeast S. pombe, are each dependent on one of two related genes, trm140(+) and trm141(+), homologs of which are found in higher eukaryotes. Interestingly, mammals and other vertebrates contain a third homolog and also contain m(3)C at new sites, positions 32 on tRNAs(Arg) and C47:3 in the variable arm of tRNAs(Ser) More significantly, by examining S. pombe mutants deficient for other modifications, we found that m(3)C32 on the three tRNAs(Ser) that contain anticodon base A36, requires N(6)-isopentenyl modification of A37 (i(6)A37). This new C32-A37 ACL circuitry indicates that i(6)A37 is a pre- or corequisite for m(3)C32 on these tRNAs. Examination of the tRNA database suggests that such circuitry may be more expansive than observed here. The results emphasize two contemporary themes, that tRNA modifications are interconnected, and that some specific modifications on tRNAs of the same anticodon identity are species-specific.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia de Serina/metabolismo , Schizosaccharomyces/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , ARN de Transferencia de Serina/genética , Schizosaccharomyces/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
12.
PLoS Genet ; 11(12): e1005671, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26720005

RESUMEN

Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP) III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR) that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(2)2G26) modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(2)2G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(2)2G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(2)2G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(2)2G26 modification and that this response is conserved among highly divergent yeasts and human cells.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , ARNt Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Células HEK293/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Mutación , ARN Polimerasa III/genética , ARN de Transferencia/biosíntesis , ARN de Transferencia de Serina/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Sirolimus/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARNt Metiltransferasas/genética
13.
J Biol Chem ; 291(7): 3613-25, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26677220

RESUMEN

Leucyl-tRNA synthetase (LeuRS) is a multidomain enzyme that catalyzes Leu-tRNA(Leu) formation and is classified into bacterial and archaeal/eukaryotic types with significant diversity in the C-terminal domain (CTD). CTDs of both bacterial and archaeal LeuRSs have been reported to recognize tRNA(Leu) through different modes of interaction. In the human pathogen Candida albicans, the cytoplasmic LeuRS (CaLeuRS) is distinguished by its capacity to recognize a uniquely evolved chimeric tRNA(Ser) (CatRNA(Ser)(CAG)) in addition to its cognate CatRNA(Leu), leading to CUG codon reassignment. Our previous study showed that eukaryotic but not archaeal LeuRSs recognize this peculiar tRNA(Ser), suggesting the significance of their highly divergent CTDs in tRNA(Ser) recognition. The results of this study provided the first evidence of the indispensable function of the CTD of eukaryotic LeuRS in recognizing non-cognate CatRNA(Ser) and cognate CatRNA(Leu). Three lysine residues were identified as involved in mediating enzyme-tRNA interaction in the leucylation process: mutation of all three sites totally ablated the leucylation activity. The importance of the three lysine residues was further verified by gel mobility shift assays and complementation of a yeast leuS gene knock-out strain.


Asunto(s)
Candida albicans/enzimología , Proteínas Fúngicas/metabolismo , Leucina-ARNt Ligasa/metabolismo , Modelos Moleculares , ARN de Hongos/metabolismo , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Serina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Candida albicans/metabolismo , Secuencia Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Técnicas de Inactivación de Genes , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Lisina/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformación de Ácido Nucleico , Filogenia , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , ARN de Hongos/química , ARN de Transferencia de Leucina/química , ARN de Transferencia de Serina/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
14.
Hum Mol Genet ; 24(10): 2841-7, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652405

RESUMEN

Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.


Asunto(s)
Mitocondrias/genética , Enfermedades Mitocondriales/genética , Mutación , Biosíntesis de Proteínas/genética , ARN Nucleotidiltransferasas/genética , ARN de Transferencia de Serina/metabolismo , Niño , Preescolar , Exoma , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Análisis de Secuencia de ADN , Síndrome
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 34(1): 128-132, 2017 Feb 10.
Artículo en Zh | MEDLINE | ID: mdl-28186612

RESUMEN

Mitochondrial tRNASer(UCN) gene mutation is closely related to acoustic nerve deafness. Some mutations can affect the structure and transcriptional processing of tRNASer(UCN), for instance m.7444G>A mutation in tRNASer(UCN) precursor 3' side, m.7472 insC as well as m.7511T>C mutations in the stem and ring of tRNASer(UCN), may influence tRNASer(UCN) stability, thus affect the synthesis of mitochondrial peptides, reduce the production of ATP and cause deafness. This article focuses on mitochondrial tRNASer(UCN) gene mutations as well as the mechanism underlying hearing loss.


Asunto(s)
Pérdida Auditiva/genética , Mutación , ARN de Transferencia de Serina/genética , ARN/genética , Secuencia de Aminoácidos , Secuencia de Bases , Predisposición Genética a la Enfermedad/genética , Humanos , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Conformación de Ácido Nucleico , ARN/química , ARN Mitocondrial , ARN de Transferencia de Serina/química
16.
Ann Hum Genet ; 80(5): 257-73, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27530448

RESUMEN

Mitochondria play a critical role in the generation of metabolic energy in the form of ATP. Tissues and organs that are highly dependent on aerobic metabolism are involved in mitochondrial disorders including nonsyndromic hearing loss (NSHL). Seven pathogenic variants leading to NSHL have so far been reported on two mitochondrial genes: MT-RNR1 encoding 12SrRNA and MT-TS1 encoding tRNA for Ser((UCN)) . We screened 729 prelingual NSHL subjects to determine the prevalence of MT-RNR1 variants at position m.961, m.1555A>G and m.1494C>T, and MT-TS1 m.7445A>G, m.7472insC m.7510T>C and m.7511T>C variants. Mitochondrial pathogenic variants were found in eight probands (1.1%). Five of them were found to have the m.1555A>G variant, two others had m.7472insC and one proband had m.7444G>A. The extended relatives of these probands showed variable degrees of hearing loss and age at onset. This study shows that mitochondrial pathogenic alleles contribute to about 1% prelingual hearing loss. This study will henceforth provide the reference for the prevalence of mitochondrial pathogenic alleles in the South Indian population, which to date has not been estimated. The m.1555A>G variant is a primary predisposing genetic factor for the development of hearing loss. Our study strongly suggests that mitochondrial genotyping should be considered for all hearing impaired individuals and particularly in families where transmission is compatible with maternal inheritance, after ruling out the most common variants.


Asunto(s)
Sordera/genética , Adolescente , Adulto , Anciano , Secuencia de Bases , Estudios de Casos y Controles , Niño , Consanguinidad , Análisis Mutacional de ADN , Sordera/epidemiología , Femenino , Frecuencia de los Genes , Genes Mitocondriales , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Haplotipos , Humanos , India/epidemiología , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Epidemiología Molecular , Linaje , Polimorfismo de Nucleótido Simple , ARN Ribosómico/genética , ARN de Transferencia de Serina/genética , Adulto Joven
17.
Nucleic Acids Res ; 42(14): 9350-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063302

RESUMEN

Methylation is a versatile reaction involved in the synthesis and modification of biologically active molecules, including RNAs. N(6)-methyl-threonylcarbamoyl adenosine (m(6)t(6)A) is a post-transcriptional modification found at position 37 of tRNAs from bacteria, insect, plants, and mammals. Here, we report that in Escherichia coli, yaeB (renamed as trmO) encodes a tRNA methyltransferase responsible for the N(6)-methyl group of m(6)t(6)A in tRNA(Thr) specific for ACY codons. TrmO has a unique single-sheeted ß-barrel structure and does not belong to any known classes of methyltransferases. Recombinant TrmO employs S-adenosyl-L-methionine (AdoMet) as a methyl donor to methylate t(6)A to form m(6)t(6)A in tRNA(Thr). Therefore, TrmO/YaeB represents a novel category of AdoMet-dependent methyltransferase (Class VIII). In a ΔtrmO strain, m(6)t(6)A was converted to cyclic t(6)A (ct(6)A), suggesting that t(6)A is a common precursor for both m(6)t(6)A and ct(6)A. Furthermore, N(6)-methylation of t(6)A enhanced the attenuation activity of the thr operon, suggesting that TrmO ensures efficient decoding of ACY. We also identified a human homolog, TRMO, indicating that m(6)t(6)A plays a general role in fine-tuning of decoding in organisms from bacteria to mammals.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , ARN de Transferencia de Treonina/metabolismo , ARNt Metiltransferasas/metabolismo , Adenosina/química , Adenosina/metabolismo , Sitios de Unión , Codón , Proteínas de Escherichia coli/genética , Células HeLa , Humanos , Metilación , Proteínas/metabolismo , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/química , S-Adenosilmetionina/metabolismo , Especificidad por Sustrato , ARNt Metiltransferasas/genética
18.
J Biol Chem ; 289(22): 15350-62, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24719327

RESUMEN

S-adenosylhomocysteine (SAH) is a negative regulator of most methyltransferases and the precursor for the cardiovascular risk factor homocysteine. We have previously identified a link between the homocysteine-induced suppression of the selenoprotein glutathione peroxidase 1 (GPx-1) and endothelial dysfunction. Here we demonstrate a specific mechanism by which hypomethylation, promoted by the accumulation of the homocysteine precursor SAH, suppresses GPx-1 expression and leads to inflammatory activation of endothelial cells. The expression of GPx-1 and a subset of other selenoproteins is dependent on the methylation of the tRNA(Sec) to the Um34 form. The formation of methylated tRNA(Sec) facilitates translational incorporation of selenocysteine at a UGA codon. Our findings demonstrate that SAH accumulation in endothelial cells suppresses the expression of GPx-1 to promote oxidative stress. Hypomethylation stress, caused by SAH accumulation, inhibits the formation of the methylated isoform of the tRNA(Sec) and reduces GPx-1 expression. In contrast, under these conditions, the expression and activity of thioredoxin reductase 1, another selenoprotein, is increased. Furthermore, SAH-induced oxidative stress creates a proinflammatory activation of endothelial cells characterized by up-regulation of adhesion molecules and an augmented capacity to bind leukocytes. Taken together, these data suggest that SAH accumulation in endothelial cells can induce tRNA(Sec) hypomethylation, which alters the expression of selenoproteins such as GPx-1 to contribute to a proatherogenic endothelial phenotype.


Asunto(s)
Células Endoteliales/enzimología , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Metiltransferasas/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , S-Adenosilhomocisteína/metabolismo , Adhesión Celular/fisiología , Células Endoteliales/efectos de los fármacos , Homocisteína/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/metabolismo , Leucocitos/citología , Metilación , Estrés Oxidativo/fisiología , ARN de Transferencia de Serina/metabolismo , S-Adenosilmetionina/metabolismo , Selenio/farmacología , Selenoproteínas/metabolismo , Glutatión Peroxidasa GPX1
19.
Nucleic Acids Res ; 41(21): 9825-38, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23969415

RESUMEN

Aminoacyl-tRNA synthetases should ensure high accuracy in tRNA aminoacylation. However, the absence of significant structural differences between amino acids always poses a direct challenge for some aminoacyl-tRNA synthetases, such as leucyl-tRNA synthetase (LeuRS), which require editing function to remove mis-activated amino acids. In the cytoplasm of the human pathogen Candida albicans, the CUG codon is translated as both Ser and Leu by a uniquely evolved CatRNA(Ser)(CAG). Its cytoplasmic LeuRS (CaLeuRS) is a crucial component for CUG codon ambiguity and harbors only one CUG codon at position 919. Comparison of the activity of CaLeuRS-Ser(919) and CaLeuRS-Leu(919) revealed yeast LeuRSs have a relaxed tRNA recognition capacity. We also studied the mis-activation and editing of non-cognate amino acids by CaLeuRS. Interestingly, we found that CaLeuRS is naturally deficient in tRNA-dependent pre-transfer editing for non-cognate norvaline while displaying a weak tRNA-dependent pre-transfer editing capacity for non-cognate α-amino butyric acid. We also demonstrated that post-transfer editing of CaLeuRS is not tRNA(Leu) species-specific. In addition, other eukaryotic but not archaeal or bacterial LeuRSs were found to recognize CatRNA(Ser)(CAG). Overall, we systematically studied the aminoacylation and editing properties of CaLeuRS and established a characteristic LeuRS model with naturally deficient tRNA-dependent pre-transfer editing, which increases LeuRS types with unique editing patterns.


Asunto(s)
Leucina-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia , Secuencia de Aminoácidos , Aminobutiratos/metabolismo , Archaea/enzimología , Bacterias/enzimología , Candida albicans/enzimología , Código Genético , Humanos , Leucina-ARNt Ligasa/química , Datos de Secuencia Molecular , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Serina/metabolismo , Alineación de Secuencia , Especificidad de la Especie , Valina/análogos & derivados , Valina/metabolismo
20.
Nucleic Acids Res ; 40(5): 2107-18, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22102571

RESUMEN

Pseudouridine synthase 1 (Pus1p) is an unusual site-specific modification enzyme in that it can modify a number of positions in tRNAs and can recognize several other types of RNA. No consensus recognition sequence or structure has been identified for Pus1p. Human Pus1p was used to determine which structural or sequence elements of human tRNA(Ser) are necessary for pseudouridine (Ψ) formation at position 28 in the anticodon stem-loop (ASL). Some point mutations in the ASL stem of tRNA(Ser) had significant effects on the levels of modification and compensatory mutation, to reform the base pair, restored a wild-type level of Ψ formation. Deletion analysis showed that the tRNA(Ser) TΨC stem-loop was a determinant for modification in the ASL. A mini-substrate composed of the ASL and TΨC stem-loop exhibited significant Ψ formation at position 28 and a number of mutants were tested. Substantial base pairing in the ASL stem (3 out of 5 bp) is required, but the sequence of the TΨC loop is not required for modification. When all nucleotides in the ASL stem other than U28 were changed in a single mutant, but base pairing was retained, a near wild-type level of modification was observed.


Asunto(s)
Hidroliasas/metabolismo , ARN de Transferencia de Serina/química , Emparejamiento Base , Secuencia de Bases , Humanos , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Seudouridina/metabolismo , ARN de Transferencia de Serina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA