Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.470
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2135-2150.e13, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765442

RESUMEN

Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.


Asunto(s)
Músculo Esquelético/metabolismo , Sarcómeros/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinina/química , Actinina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animales , Microscopía por Crioelectrón , Femenino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Tropomiosina/química , Tropomiosina/metabolismo
2.
Nature ; 583(7814): 133-138, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32528174

RESUMEN

Neutrophil extracellular traps (NETs), which consist of chromatin DNA filaments coated with granule proteins, are released by neutrophils to trap microorganisms1-3. Recent studies have suggested that the DNA component of NETs (NET-DNA) is associated with cancer metastasis in mouse models4-6. However, the functional role and clinical importance of NET-DNA in metastasis in patients with cancer remain unclear. Here we show that NETs are abundant in the liver metastases of patients with breast and colon cancers, and that serum NETs can predict the occurrence of liver metastases in patients with early-stage breast cancer. NET-DNA acts as a chemotactic factor to attract cancer cells, rather than merely acting as a 'trap' for them; in several mouse models, NETs in the liver or lungs were found to attract cancer cells to form distant metastases. We identify the transmembrane protein CCDC25 as a NET-DNA receptor on cancer cells that senses extracellular DNA and subsequently activates the ILK-ß-parvin pathway to enhance cell motility. NET-mediated metastasis is abrogated in CCDC25-knockout cells. Clinically, we show that the expression of CCDC25 on primary cancer cells is closely associated with a poor prognosis for patients. Overall, we describe a transmembrane DNA receptor that mediates NET-dependent metastasis, and suggest that targeting CCDC25 could be an appealing therapeutic strategy for the prevention of cancer metastasis.


Asunto(s)
Neoplasias de la Mama/patología , ADN/metabolismo , Trampas Extracelulares/genética , Proteínas de la Membrana/metabolismo , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neutrófilos/metabolismo , Actinina/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Hígado/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Proteínas de la Membrana/genética , Ratones , Pronóstico , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
3.
Eur J Immunol ; 54(3): e2350774, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299456

RESUMEN

The structure and dynamics of F-actin networks in the cortical area of B cells control the signal efficiency of B-cell antigen receptors (BCRs). Although antigen-induced signaling has been studied extensively, the role of cortical F-actin in antigen-independent tonic BCR signaling is less well understood. Because these signals are essential for the survival of B cells and are consequently exploited by several B-cell lymphomas, we assessed how the cortical F-actin structure influences tonic BCR signal transduction. We employed genetic variants of a primary cell-like B-cell line that can be rendered quiescent to show that cross-linking of actin filaments by α-actinin-4 (ACTN4), but not ACTN1, is required to preserve the dense architecture of F-actin in the cortical area of B cells. The reduced cortical F-actin density in the absence of ACTN4 resulted in increased lateral BCR diffusion. Surprisingly, this was associated with reduced tonic activation of BCR-proximal effector proteins, extracellular signal-regulated kinase, and pro-survival pathways. Accordingly, ACTN4-deficient B-cell lines and primary human B cells exhibit augmented apoptosis. Hence, our findings reveal that cortical F-actin architecture regulates antigen-independent tonic BCR survival signals in human B cells.


Asunto(s)
Actinas , Receptores de Antígenos de Linfocitos B , Humanos , Actinina/metabolismo , Actinas/metabolismo , Linfocitos B , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal
4.
Hum Mol Genet ; 31(9): 1417-1429, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34761268

RESUMEN

The common null polymorphism (R577X) in the ACTN3 gene is present in over 1.5 billion people worldwide and results in the absence of the protein α-actinin-3 from the Z-discs of fast-twitch skeletal muscle fibres. We have previously reported that this polymorphism is a modifier of dystrophin-deficient Duchenne Muscular Dystrophy. To investigate the mechanism underlying this, we use a double knockout (dk)Actn3KO/mdx (dKO) mouse model, which lacks both dystrophin and sarcomere α-actinin-3. We used dKO mice and mdx dystrophic mice at 12 months (aged) to investigate the correlation between morphological changes to the fast-twitch dKO EDL and the reduction in force deficit produced by an in vitro eccentric contraction protocol. In the aged dKO mouse, we found a marked reduction in fibre branching complexity that correlated with protection from eccentric contraction induced force deficit. Complex branches in the aged dKO EDL fibres (28%) were substantially reduced compared to aged mdx EDL fibres (68%), and this correlates with a graded force loss over three eccentric contractions for dKO muscles (~36% after first contraction, ~66% overall) compared to an abrupt drop in mdx upon the first eccentric contraction (~75% after first contraction, ~89% after three contractions). In dKO, protection from eccentric contraction damage was linked with a doubling of SERCA1 pump density the EDL. We propose that the increased oxidative metabolism of fast-twitch glycolytic fibres characteristic of the null polymorphism (R577X) and increase in SR Ca2+ pump proteins reduces muscle fibre branching and decreases susceptibility to eccentric injury in the dystrophinopathies.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Actinina/genética , Actinina/metabolismo , Anciano , Animales , Distrofina/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx , Contracción Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
5.
EMBO J ; 39(5): e102622, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31985069

RESUMEN

The L-type Ca2+ channel CaV 1.2 governs gene expression, cardiac contraction, and neuronal activity. Binding of α-actinin to the IQ motif of CaV 1.2 supports its surface localization and postsynaptic targeting in neurons. We report a bi-functional mechanism that restricts CaV 1.2 activity to its target sites. We solved separate NMR structures of the IQ motif (residues 1,646-1,664) bound to α-actinin-1 and to apo-calmodulin (apoCaM). The CaV 1.2 K1647A and Y1649A mutations, which impair α-actinin-1 but not apoCaM binding, but not the F1658A and K1662E mutations, which impair apoCaM but not α-actinin-1 binding, decreased single-channel open probability, gating charge movement, and its coupling to channel opening. Thus, α-actinin recruits CaV 1.2 to defined surface regions and simultaneously boosts its open probability so that CaV 1.2 is mostly active when appropriately localized.


Asunto(s)
Actinina/metabolismo , Canales de Calcio Tipo L/metabolismo , Calmodulina/metabolismo , Actinina/genética , Sustitución de Aminoácidos , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Calmodulina/genética , Humanos , Mutación , Neuronas/metabolismo , Unión Proteica
6.
Circ Res ; 130(1): 112-129, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34816743

RESUMEN

BACKGROUND: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RBM24 (RNA-binding motif protein 24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim is to study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. METHODS: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. RESULTS: Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (eg, ACTN2 [α-actinin 2], TTN [titin], and MYH10 [non-muscle myosin IIB]) were misspliced. Consequently, MYH6 (muscle myosin II) cannot replace nonmuscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the ABD (actin-binding domain; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. CONCLUSIONS: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.


Asunto(s)
Empalme Alternativo , Células Madre Embrionarias Humanas/metabolismo , Desarrollo de Músculos , Miocitos Cardíacos/metabolismo , Proteínas de Unión al ARN/metabolismo , Actinina/genética , Actinina/metabolismo , Diferenciación Celular , Línea Celular , Conectina/genética , Conectina/metabolismo , Células Madre Embrionarias Humanas/citología , Humanos , Miocitos Cardíacos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo IIB no Muscular/genética , Miosina Tipo IIB no Muscular/metabolismo , Proteínas de Unión al ARN/genética
7.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 275-283, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38814202

RESUMEN

Sport is a multifactorial phenomenon that is influenced by many factors. Although many factors affect sports performance, genetic factors may be important issues that need to be examined. In addition, the relationship between sports performance and genes is still unclear. Due to the developments in omics technologies, approximately 185 genetic markers have been identified for the relationship between sports performance and genes. These genes are expressed differently in metabolism according to the characteristics of sports performance. The aim of this study was to investigate the relationship between sports and genetics. Pubmed, Pubmed Central and Google Scholar internet search engines were used in current study. Additionally, the PRISMA technique was used in the study design. For this purpose, COL1A1, COL5A1, ACTN3 and ELN genes may be important regulators on soft tissues. For endurance sports, genes like ACE, ACTN3, ADRB2, HFE, COL5A1, BDKRB2, NOS3, HIF, VEGF, AMPD and PPARGC1A significantly may influence performance limits. ACE and ACTN3 genes, on the other hand, may determine power/strength and speed skills in athletes. As a result, knowing the athlete's genetic predisposition to sports can be effective in achieving success.


Asunto(s)
Rendimiento Atlético , Humanos , Rendimiento Atlético/fisiología , Actinina/genética , Actinina/metabolismo
8.
Cell Mol Biol Lett ; 29(1): 84, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822246

RESUMEN

BACKGROUND: Canine mammary tumors (CMTs) in intact female dogs provide a natural model for investigating metastatic human cancers. Our prior research identified elevated expression of Anterior Gradient 2 (AGR2), a protein disulfide isomerase (PDI) primarily found in the endoplasmic reticulum (ER), in CMT tissues, highly associated with CMT progression. We further demonstrated that increased AGR2 expression actively influences the extracellular microenvironment, promoting chemotaxis in CMT cells. Unraveling the underlying mechanisms is crucial for assessing the potential of therapeutically targeting AGR2 as a strategy to inhibit a pro-metastatic microenvironment and impede tumor metastasis. METHODS: To identify the AGR2-modulated secretome, we employed proteomics analysis of the conditioned media (CM) from two CMT cell lines ectopically expressing AGR2, compared with corresponding vector-expressing controls. AGR2-regulated release of 14-3-3ε (gene: YWHAE) and α-actinin 4 (gene: ACTN4) was validated through ectopic expression, knockdown, and knockout of the AGR2 gene in CMT cells. Extracellular vesicles derived from CMT cells were isolated using either differential ultracentrifugation or size exclusion chromatography. The roles of 14-3-3ε and α-actinin 4 in the chemotaxis driven by the AGR2-modulated CM were investigated through gene knockdown, antibody-mediated interference, and recombinant protein supplement. Furthermore, the clinical relevance of the release of 14-3-3ε and α-actinin 4 was assessed using CMT tissue-immersed saline and sera from CMT-afflicted dogs. RESULTS: Proteomics analysis of the AGR2-modulated secretome revealed increased abundance in 14-3-3ε and α-actinin 4. Ectopic expression of AGR2 significantly increased the release of 14-3-3ε and α-actinin 4 in the CM. Conversely, knockdown or knockout of AGR2 expression remarkably reduced their release. Silencing 14-3-3ε or α-actinin 4 expression diminished the chemotaxis driven by AGR2-modulated CM. Furthermore, AGR2 controls the release of 14-3-3ε and α-actinin 4 primarily via non-vesicular routes, responding to the endoplasmic reticulum (ER) stress and autophagy activation. Knockout of AGR2 resulted in increased α-actinin 4 accumulation and impaired 14-3-3ε translocation in autophagosomes. Depletion of extracellular 14-3-3ε or α-actinin 4 reduced the chemotaxis driven by AGR2-modulated CM, whereas supplement with recombinant 14-3-3ε in the CM enhanced the CM-driven chemotaxis. Notably, elevated levels of 14-3-3ε or α-actinin 4 were observed in CMT tissue-immersed saline compared with paired non-tumor samples and in the sera of CMT dogs compared with healthy dogs. CONCLUSION: This study elucidates AGR2's pivotal role in orchestrating unconventional secretion of 14-3-3ε and α-actinin 4 from CMT cells, thereby contributing to paracrine-mediated chemotaxis. The insight into the intricate interplay between AGR2-involved ER stress, autophagy, and unconventional secretion provides a foundation for refining strategies aimed at impeding metastasis in both canine mammary tumors and potentially human cancers.


Asunto(s)
Proteínas 14-3-3 , Actinina , Autofagia , Quimiotaxis , Estrés del Retículo Endoplásmico , Neoplasias Mamarias Animales , Mucoproteínas , Animales , Perros , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Femenino , Actinina/metabolismo , Actinina/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Línea Celular Tumoral , Quimiotaxis/genética , Autofagia/genética , Estrés del Retículo Endoplásmico/genética , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Oncogénicas/genética
9.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33361330

RESUMEN

The paucity of knowledge about cardiomyocyte maturation is a major bottleneck in cardiac regenerative medicine. In development, cardiomyocyte maturation is characterized by orchestrated structural, transcriptional, and functional specializations that occur mainly at the perinatal stage. Sarcomeres are the key cytoskeletal structures that regulate the ultrastructural maturation of other organelles, but whether sarcomeres modulate the signal transduction pathways that are essential for cardiomyocyte maturation remains unclear. To address this question, here we generated mice with cardiomyocyte-specific, mosaic, and hypomorphic mutations of α-actinin-2 (Actn2) to study the cell-autonomous roles of sarcomeres in postnatal cardiomyocyte maturation. Actn2 mutation resulted in defective structural maturation of transverse-tubules and mitochondria. In addition, Actn2 mutation triggered transcriptional dysregulation, including abnormal expression of key sarcomeric and mitochondrial genes, and profound impairment of the normal progression of maturational gene expression. Mechanistically, the transcriptional changes in Actn2 mutant cardiomyocytes strongly correlated with those in cardiomyocytes deleted of serum response factor (SRF), a critical transcription factor that regulates cardiomyocyte maturation. Actn2 mutation increased the monomeric form of cardiac α-actin, which interacted with the SRF cofactor MRTFA and perturbed its nuclear localization. Overexpression of a dominant-negative MRTFA mutant was sufficient to recapitulate the morphological and transcriptional defects in Actn2 and Srf mutant cardiomyocytes. Together, these data indicate that Actn2-based sarcomere organization regulates structural and transcriptional maturation of cardiomyocytes through MRTF-SRF signaling.


Asunto(s)
Actinina/genética , Miocitos Cardíacos/metabolismo , Sarcómeros/metabolismo , Actinina/metabolismo , Animales , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica/genética , Ratones , Mitocondrias/metabolismo , Morfogénesis , Mutación , Miocitos Cardíacos/patología , Sarcómeros/patología , Factor de Respuesta Sérica/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33941674

RESUMEN

Tissue-on-chip systems represent promising platforms for monitoring and controlling tissue functions in vitro for various purposes in biomedical research. The two-dimensional (2D) layouts of these constructs constrain the types of interactions that can be studied and limit their relevance to three-dimensional (3D) tissues. The development of 3D electronic scaffolds and microphysiological devices with geometries and functions tailored to realistic 3D tissues has the potential to create important possibilities in advanced sensing and control. This study presents classes of compliant 3D frameworks that incorporate microscale strain sensors for high-sensitivity measurements of contractile forces of engineered optogenetic muscle tissue rings, supported by quantitative simulations. Compared with traditional approaches based on optical microscopy, these 3D mechanical frameworks and sensing systems can measure not only motions but also contractile forces with high accuracy and high temporal resolution. Results of active tension force measurements of engineered muscle rings under different stimulation conditions in long-term monitoring settings for over 5 wk and in response to various chemical and drug doses demonstrate the utility of such platforms in sensing and modulation of muscle and other tissues. Possibilities for applications range from drug screening and disease modeling to biohybrid robotic engineering.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Imagenología Tridimensional/métodos , Músculos/metabolismo , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Acetilcolina/farmacología , Actinina/metabolismo , Animales , Cafeína/farmacología , Técnicas de Cultivo Tridimensional de Células/instrumentación , Diferenciación Celular , Línea Celular , Dantroleno/farmacología , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , Miosinas/metabolismo , Ingeniería de Tejidos/instrumentación , Vasodilatadores/farmacología
11.
J Mater Sci Mater Med ; 35(1): 43, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073623

RESUMEN

Collagen hydrogel has been shown promise as an inducer for chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), contributing to the repair of cartilage defects. However, the precise molecular mechanism underlying this phenomenon remains poorly elucidated. Here, we induced chondrogenic differentiation of BMSCs using collagen hydrogel and identified 4451 differentially expressed genes (DEGs) through transcriptomic sequencing. Our analysis revealed that DEGs were enriched in the focal adhesion pathway, with a notable decrease in expression levels in the collagen hydrogel group compared to the control group. Protein-protein interaction network analysis suggested that actinin alpha 1 (ACTN1) and actinin alpha 4 (ACTN4), two proteins also involved in cytoskeletal recombination, may be crucial in collagen hydrogel-induced chondrogenic differentiation of BMSCs. Additionally, we found that N6-methyladenosine RNA methylation (m6A) modification was involved in collagen hydrogel-mediated chondrogenic differentiation, with fat mass and obesity-associated protein (FTO) implicated in regulating the expression of ACTN1 and ACTN4. These findings suggest that collagen hydrogel might regulate focal adhesion and actin cytoskeletal signaling pathways through down-regulation of ACTN1 and ACTN4 mRNA via FTO-mediated m6A modification, ultimately driving chondrogenic differentiation of BMSCs. In conclusion, our study provides valuable insights into the molecular mechanisms of collagen hydrogel-induced chondrogenic differentiation of BMSCs, which may aid in developing more effective strategies for cartilage regeneration.


Asunto(s)
Diferenciación Celular , Condrogénesis , Colágeno , Perfilación de la Expresión Génica , Hidrogeles , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Condrogénesis/genética , Diferenciación Celular/efectos de los fármacos , Hidrogeles/química , Colágeno/química , Animales , Adenosina/análogos & derivados , Adenosina/farmacología , Adenosina/química , Transcriptoma/efectos de los fármacos , Actinina/metabolismo , Actinina/genética , Células Cultivadas , Metilación , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Ratas
12.
Lab Invest ; 103(8): 100156, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37119854

RESUMEN

Paraneoplastic nephrotic syndrome (PNS) is a complication seen in cancer patients. Ultrastructural examination shows the accumulation of proteins and the presence of foot process (FP) effacement in the glomeruli of PNS patients. Previously, we reported that orthotopic xenografts of Lewis lung carcinoma 1 in C57BL/6 mice caused them to develop lung cancer with albuminuria. This implies that these mice can be used as a model of human disease and suggests that Lewis lung carcinoma 1 cell-secreted proteins (LCSePs) contain nephrotoxic molecules and cause inflammation in renal cells. As podocyte effacement was present in glomeruli in this model, such podocyte injury may be attributable to either soluble LCSeP or LCSeP deposits triggering pathological progression. LCSePs in conditioned media was concentrated for nephrotoxicity testing. Integrin-focal adhesion kinase (FAK) signaling and inflammatory responses were evaluated in podocytes either exposed to soluble LCSePs or seeded onto substrates with immobilized LCSePs. FAK phosphorylation and interleukin-6 expression were higher in podocytes attached to LCSePs substrates than in those exposed to soluble LCSePs. Notably, LCSeP-based haptotaxis gave rise to altered signaling in podocytes. When podocytes were stimulated by immobilized LCSePs, FAK accumulated at focal adhesions, synaptopodin dissociated from F-actin, and disrupting the interactions between synaptopodin and α-actinin was observed. When FAK was inhibited by PF-573228 in immobilized LCSePs, the association between synaptopodin and α-actinin was observed in the podocytes. The association of synaptopodin and α-actinin with F-actin allowed FP stretching, establishing a functional glomerular filtration barrier. Therefore, in this mouse model of lung cancer, FAK signaling prompts podocyte FP effacement and proteinuria, indicative of PNS.


Asunto(s)
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Podocitos , Ratones , Humanos , Animales , Actinas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Actinina/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Ratones Endogámicos C57BL , Proteinuria/metabolismo , Podocitos/metabolismo , Neoplasias Pulmonares/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 324(5): H675-H685, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930654

RESUMEN

Obesity and hypertension, independently and combined, are associated with increased risk of heart failure and heart failure-related morbidity and mortality. Interest in circulating endothelial cell-derived microvesicles (EMVs) has intensified because of their involvement in the development and progression of endothelial dysfunction, atherosclerosis, and cardiomyopathy. The experimental aim of this study was to determine, in vitro, the effects of EMVs isolated from obese/hypertensive adults on key proteins regulating cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF)-ß, collagen1-α1], as well as endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were isolated from plasma by flow cytometry in 12 normal weight/normotensive [8 males/4 females; age: 56 ± 5 yr; body mass index (BMI): 23.3 ± 2.0 kg/m2; blood pressure (BP): 117/74 ± 4/5 mmHg] and 12 obese/hypertensive (8 males/4 females; 57 ± 5 yr; 31.7 ± 1.8 kg/m2; 138/83 ± 8/7 mmHg) adults. Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were cultured and treated with EMVs from either normal weight/normotensive or obese/hypertensive adults for 24 h. Expression of cTnT (64.1 ± 13.9 vs. 29.5 ± 7.8 AU), α-actinin (66.0 ± 14.7 vs. 36.2 ± 10.3 AU), NF-kB (166.3 ± 13.3 vs. 149.5 ± 8.8 AU), phosphorylated-NF-kB (226.1 ± 25.2 vs. 179.1 ± 25.5 AU), and TGF-ß (62.1 ± 13.3 vs. 23.5 ± 8.8 AU) were significantly higher and eNOS activation (16.4 ± 4.3 vs. 24.8 ± 3.7 AU) and nitric oxide production (6.8 ± 1.2 vs. 9.6 ± 1.3 µmol/L) were significantly lower in iPSC-CMs treated with EMVs from obese/hypertensive compared with normal weight/normotensive adults. These data indicate that EMVs from obese/hypertensive adults induce a cardiomyocyte phenotype prone to hypertrophy, fibrosis, and reduced nitric oxide production, central factors associated with heart failure risk and development.NEW & NOTEWORTHY In the present study we determined the effect of endothelial microvesicles (EMVs) isolated from obese/hypertensive adults on mediators of cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF-ß), collagen1-α1] as well as endothelial nitric oxide synthase (eNOS) expression and NO production. EMVs from obese/hypertensive induced significantly higher expression of hypertrophic (cTnT, α-actinin, NF-kB) and fibrotic (TGF-ß) proteins as well as significantly lower eNOS activation and NO production in cardiomyocytes than EMVs from normal weight/normotensive adults. EMVs are a potential mediating factor in the increased risk of cardiomyopathy and heart failure with obesity/hypertension.


Asunto(s)
Micropartículas Derivadas de Células , Insuficiencia Cardíaca , Hipertensión , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Miocitos Cardíacos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Troponina T/metabolismo , Óxido Nítrico/metabolismo , Actinina/metabolismo , Actinina/farmacología , FN-kappa B/metabolismo , Hipertensión/metabolismo , Hipertrofia/metabolismo , Hipertrofia/patología , Micropartículas Derivadas de Células/metabolismo , Obesidad/metabolismo , Insuficiencia Cardíaca/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis
14.
Biochem Biophys Res Commun ; 670: 12-18, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37271035

RESUMEN

Hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM) are characterized by thickening, thinning, or stiffening, respectively, of the ventricular myocardium, resulting in diastolic or systolic dysfunction that can lead to heart failure and sudden cardiac death. Recently, variants in the ACTN2 gene, encoding the protein α-actinin-2, have been reported in HCM, DCM, and RCM patients. However, functional data supporting the pathogenicity of these variants is limited, and potential mechanisms by which these variants cause disease are largely unexplored. Currently, NIH ClinVar lists 34 ACTN2 missense variants, identified in cardiomyopathy patients, which we predict are likely to disrupt actin binding, based on their localization to specific substructures in the α-actinin-2 actin binding domain (ABD). We investigated the molecular consequences of three ABD localized, HCM-associated variants: A119T, M228T and T247 M. Using circular dichroism, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all three mutations are destabilizing, suggesting a structural disruption. Importantly, A119T decreased actin binding, and M228T and T247M cause increased actin binding. We suggest that altered actin binding underlies pathogenesis for cardiomyopathy mutations localizing to the ABD of α-actinin-2.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Humanos , Actinina/genética , Actinina/metabolismo , Actinas/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Mutación
15.
J Transl Med ; 21(1): 399, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337244

RESUMEN

BACKGROUND: Bone marrow metastasis (BMM) is underestimated in gastric cancer (GC). GC with BMM frequently complicate critical hematological abnormalities like diffused intravascular coagulation and microangiopathic hemolytic anemia, which constitute a highly aggressive GC (HAGC) subtype. HAGC present a very poor prognosis with peculiar clinical and pathological features when compared with not otherwise specified advanced GC (NAGC). But the molecular mechanisms underlying BMM from GC remain rudimentary. METHODS: The transcriptomic difference between HAGC and NAGC were analyzed. Genes that were specifically upregulated in HAGC were identified, and their effect on cell migration and invasion was studied. The function of ACTN2 gene were confirmed by GC cell lines, bone-metastatic animal model and patients' tissues. Furthermore, the molecular mechanism of ACTN2 derived-BMM was explored by multiple immunofluorescence staining, western blot, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: We elucidated the key mechanisms of BMM depending on the transcriptomic difference between HAGC and NAGC. Five genes specifically upregulated in HAGC were assessed their effect on cell migration and invasion. The ACTN2 gene encoding protein α-Actinin-2 was detected enhanced the metastatic capability and induced BMM of GC cells in mouse models. Mechanically, α-Actinin-2 was involved in filopodia formation where it promoted the Actin filament cross-linking by replacing α-Actinin-1 to form α-Actinin-2:α-Actinin-4 complexes in GC cells. Moreover, NF-κB subunit RelA and α-Actinin-2 formed heterotrimers in the nuclei of GC cells. As a direct target of RelA:α-Actinin-2 heterotrimers, the ACTN2 gene was a positive auto-regulatory loop for α-Actinin-2 expression. CONCLUSIONS: We demonstrated a link between filopodia, BMM and ACTN2 activation, where a feedforward activation loop between ACTN2 and RelA is established via actin in response to distant metastasis. Given the novel filopodia formation function and the new mechanism of BMM in GC, we propose ACTN2 as a druggable molecular vulnerability that may provide potential therapeutic benefit against BMM of GC.


Asunto(s)
Actinina , Neoplasias de la Médula Ósea , Neoplasias Gástricas , Animales , Ratones , Actinina/genética , Actinina/metabolismo , Línea Celular Tumoral , FN-kappa B/metabolismo , Seudópodos/metabolismo , Seudópodos/patología , Neoplasias Gástricas/patología
16.
Biochem Soc Trans ; 51(6): 2005-2016, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38095060

RESUMEN

The PDZ and LIM domain (PDLIM) proteins are associated with the actin cytoskeleton and have conserved in roles in metazoan actin organisation and function. They primarily function as scaffolds linking various proteins to actin and its binding partner α-actinin via two conserved domains; an N-terminal postsynaptic density 95, discs large and zonula occludens-1 (PDZ) domain, and either single or multiple C-terminal LIN-11, Isl-1 and MEC-3 (LIM) domains in the actinin-associated LIM protein (ALP)- and Enigma-related proteins, respectively. While their role in actin organisation, such as in stress fibres or in the Z-disc of muscle fibres is well known, emerging evidence also suggests a role in actin-dependent membrane trafficking in the endosomal system. This is mediated by a recently identified interaction with the sorting nexin 17 (SNX17) protein, an adaptor for the trafficking complex Commander which is itself intimately linked to actin-directed formation of endosomal recycling domains. In this review we focus on the currently understood structural basis for PDLIM function. The PDZ domains mediate direct binding to distinct classes of PDZ-binding motifs (PDZbms), including α-actinin and other actin-associated proteins, and a highly specific interaction with the type III PDZbm such as the one found in the C-terminus of SNX17. The structures of the LIM domains are less well characterised and how they engage with their ligands is completely unknown. Despite the lack of experimental structural data, we find that recently developed machine learning-based structure prediction methods provide insights into their potential interactions and provide a template for further studies of their molecular functions.


Asunto(s)
Actinina , Actinas , Animales , Actinas/metabolismo , Actinina/química , Actinina/metabolismo , Dominios PDZ , Citoesqueleto de Actina/metabolismo , Proteínas con Dominio LIM/metabolismo , Unión Proteica
17.
Nat Chem Biol ; 17(5): 540-548, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33603247

RESUMEN

Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality. We characterize the performance of the motors using in vitro motility assays, single-molecule tracking and live-cell imaging. Bidirectional processive motors move efficiently toward the tips of cellular protrusions in the presence of blue light, and can transport molecular cargo in cells. Robust gearshifting myosins will further enable programmable transport in contexts ranging from in vitro active matter reconstitutions to microfabricated systems that harness molecular propulsion.


Asunto(s)
Actinina/química , Células Epiteliales/metabolismo , Miosinas/química , Neuronas/metabolismo , Ingeniería de Proteínas/métodos , Espectrina/química , Actinina/genética , Actinina/metabolismo , Animales , Avena , Línea Celular , Chara , Pollos , Clonación Molecular , Dictyostelium , Células Epiteliales/citología , Células Epiteliales/efectos de la radiación , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Luz , Modelos Moleculares , Movimiento (Física) , Miosinas/genética , Miosinas/metabolismo , Neuronas/citología , Neuronas/efectos de la radiación , Óptica y Fotónica/métodos , Cultivo Primario de Células , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrina/genética , Espectrina/metabolismo , Nicotiana
18.
J Muscle Res Cell Motil ; 44(3): 209-215, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37133758

RESUMEN

The techniques of X-ray protein crystallography, NMR and high-resolution cryo-electron microscopy have all been used to determine the high-resolution structure of proteins. The most-commonly used method, however, remains X-ray crystallography but it does rely heavily on the production of suitable crystals. Indeed, the production of diffraction quality crystals remains the rate-limiting step for most protein systems. This mini-review highlights the crystallisation trials that used existing and newly developed crystallisation methods on two muscle protein targets - the actin binding domain (ABD) of α-actinin and the C0-C1 domain of human cardiac myosin binding protein C (cMyBP-C). Furthermore, using heterogenous nucleating agents the crystallisation of the C1 domain of cMyBP-C was successfully achieved in house along with preliminary actin binding studies using electron microscopy and co-sedimentation assays .


Asunto(s)
Actinas , Proteínas Musculares , Humanos , Actinas/metabolismo , Proteínas Musculares/metabolismo , Microscopía por Crioelectrón , Unión Proteica , Actinina/metabolismo
19.
J Muscle Res Cell Motil ; 44(4): 271-286, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37661214

RESUMEN

The Z-disk of striated muscle defines the ends of the sarcomere, which repeats many times within the muscle fiber. Here we report application of cryoelectron tomography and subtomogram averaging to Z-disks isolated from the flight muscles of the large waterbug Lethocerus indicus. We use high salt solutions to remove the myosin containing filaments and use gelsolin to remove the actin filaments of the A- and I-bands leaving only the thin filaments within the Z-disk which were then frozen for cryoelectron microscopy. The Lethocerus Z-disk structure is similar in many ways to the previously studied Z-disk of the honeybee Apis mellifera. At the corners of the unit cell are positioned trimers of paired antiparallel F-actins defining a large solvent channel, whereas at the trigonal positions are positioned F-actin trimers converging slowly towards their (+) ends defining a small solvent channel through the Z-disk. These near parallel F-actins terminate at different Z-heights within the Z-disk. The two types of solvent channel in Lethocerus are similar in size compared to those of Apis which are very different in size. Two types of α-actinin crosslinks were observed between oppositely oriented actin filaments. In one of these, the α-actinin long axis is almost parallel to the F-actins it crosslinks. In the other, the α-actinins are at a small but distinctive angle with respect to the crosslinked actin filaments. The utility of isolated Z-disks for structure determination is discussed.


Asunto(s)
Actinas , Sarcómeros , Animales , Sarcómeros/metabolismo , Actinas/metabolismo , Actinina/metabolismo , Proteínas Musculares/metabolismo , Microscopía por Crioelectrón , Músculo Esquelético/metabolismo , Solventes/metabolismo , Procesamiento de Imagen Asistido por Computador
20.
Cell ; 134(2): 353-64, 2008 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-18662549

RESUMEN

Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the (13)C(6)-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood cells and organs. The F2 generation was completely labeled in all organs tested. SILAC analysis from various organs lacking expression of beta1 integrin, beta-Parvin, or the integrin tail-binding protein Kindlin-3 confirmed their absence and disclosed a structural defect of the red blood cell membrane skeleton in Kindlin-3-deficient erythrocytes. The SILAC-mouse approach is a versatile tool by which to quantitatively compare proteomes from knockout mice and thereby determine protein functions under complex in vivo conditions.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Eritrocitos/metabolismo , Proteómica/métodos , Actinina/metabolismo , Alimentación Animal , Animales , Plaquetas/metabolismo , Membrana Celular/química , Proteínas del Citoesqueleto/análisis , Eritrocitos/química , Femenino , Integrina beta1/metabolismo , Marcaje Isotópico , Masculino , Espectrometría de Masas , Ratones , Ratones Noqueados , Ratones Transgénicos , Miocardio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA