Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 79(6): 934-949.e14, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32822587

RESUMEN

Although ADP-ribosylation of histones by PARP-1 has been linked to genotoxic stress responses, its role in physiological processes and gene expression has remained elusive. We found that NAD+-dependent ADP-ribosylation of histone H2B-Glu35 by small nucleolar RNA (snoRNA)-activated PARP-1 inhibits AMP kinase-mediated phosphorylation of adjacent H2B-Ser36, which is required for the proadipogenic gene expression program. The activity of PARP-1 on H2B requires NMNAT-1, a nuclear NAD+ synthase, which directs PARP-1 catalytic activity to Glu and Asp residues. ADP-ribosylation of Glu35 and the subsequent reduction of H2B-Ser36 phosphorylation inhibits the differentiation of adipocyte precursors in cultured cells. Parp1 knockout in preadipocytes in a mouse lineage-tracing genetic model increases adipogenesis, leading to obesity. Collectively, our results demonstrate a functional interplay between H2B-Glu35 ADP-ribosylation and H2B-Ser36 phosphorylation that controls adipogenesis.


Asunto(s)
ADP-Ribosilación/genética , Adipogénesis/genética , Histonas/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Adenosina Difosfato Ribosa/genética , Adipocitos/metabolismo , Adipocitos/patología , Animales , Línea Celular , Daño del ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Fosforilación/genética , ARN Nucleolar Pequeño/genética
2.
J Virol ; 98(2): e0177723, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289106

RESUMEN

Rubella virus encodes a nonstructural polyprotein with RNA polymerase, methyltransferase, and papain-like cysteine protease activities, along with a putative macrodomain of unknown function. Macrodomains bind ADP-ribose adducts, a post-translational modification that plays a key role in host-virus conflicts. Some macrodomains can also remove the mono-ADP-ribose adduct or degrade poly-ADP-ribose chains. Here, we report high-resolution crystal structures of the macrodomain from rubella virus nonstructural protein p150, with and without ADP-ribose binding. The overall fold is most similar to macroD-type macrodomains from various nonviral species. The specific composition and structure of the residues that coordinate ADP-ribose in the rubella virus macrodomain are most similar to those of macrodomains from alphaviruses. Isothermal calorimetry shows that the rubella virus macrodomain binds ADP-ribose in solution. Enzyme assays show that the rubella virus macrodomain can hydrolyze both mono- and poly-ADP-ribose adducts. Site-directed mutagenesis identifies Asn39 and Cys49 required for mono-ADP-ribosylhydrolase (de-MARylation) activity.IMPORTANCERubella virus remains a global health threat. Rubella infections during pregnancy can cause serious congenital pathology, for which no antiviral treatments are available. Our work demonstrates that, like alpha- and coronaviruses, rubiviruses encode a mono-ADP-ribosylhydrolase with a structurally conserved macrodomain fold to counteract MARylation by poly (ADP-ribose) polymerases (PARPs) in the host innate immune response. Our structural data will guide future efforts to develop novel antiviral therapeutics against rubella or infections with related viruses.


Asunto(s)
Coronavirus , Rubéola (Sarampión Alemán) , Humanos , Virus de la Rubéola/genética , Virus de la Rubéola/metabolismo , Ribosa , Poli(ADP-Ribosa) Polimerasas/genética , Poli Adenosina Difosfato Ribosa , Coronavirus/metabolismo , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo
3.
Nucleic Acids Res ; 48(22): 12746-12750, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33264406

RESUMEN

As nucleotidyl transferases, formation of a covalent enzyme-adenylate intermediate is a common first step of all DNA ligases. While it has been shown that eukaryotic DNA ligases utilize ATP as the adenylation donor, it was recently reported that human DNA ligase IV can also utilize NAD+ and, to a lesser extent ADP-ribose, as the source of the adenylate group and that NAD+, unlike ATP, enhances ligation by supporting multiple catalytic cycles. Since this unexpected finding has significant implications for our understanding of the mechanisms and regulation of DNA double strand break repair, we attempted to confirm that NAD+ and ADP-ribose can be used as co-factors by human DNA ligase IV. Here, we provide evidence that NAD+ does not enhance ligation by pre-adenylated DNA ligase IV, indicating that this co-factor is not utilized for re-adenylation and subsequent cycles of ligation. Moreover, we find that ligation by de-adenylated DNA ligase IV is dependent upon ATP not NAD+ or ADP-ribose. Thus, we conclude that human DNA ligase IV cannot use either NAD+ or ADP-ribose as adenylation donor for ligation.


Asunto(s)
Adenosina Difosfato Ribosa/genética , ADN Ligasa (ATP)/genética , ADN/genética , NAD/genética , Adenosina Monofosfato/genética , Adenosina Trifosfato/genética , Secuencia de Aminoácidos/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Humanos
4.
Am J Hum Genet ; 103(5): 817-825, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30401461

RESUMEN

ADP-ribosylation is a reversible posttranslational modification used to regulate protein function. ADP-ribosyltransferases transfer ADP-ribose from NAD+ to the target protein, and ADP-ribosylhydrolases, such as ADPRHL2, reverse the reaction. We used exome sequencing to identify five different bi-allelic pathogenic ADPRHL2 variants in 12 individuals from 8 families affected by a neurodegenerative disorder manifesting in childhood or adolescence with key clinical features including developmental delay or regression, seizures, ataxia, and axonal (sensori-)motor neuropathy. ADPRHL2 was virtually absent in available affected individuals' fibroblasts, and cell viability was reduced upon hydrogen peroxide exposure, although it was rescued by expression of wild-type ADPRHL2 mRNA as well as treatment with a PARP1 inhibitor. Our findings suggest impaired protein ribosylation as another pathway that, if disturbed, causes neurodegenerative diseases.


Asunto(s)
Ataxia Cerebelosa/genética , Discapacidades del Desarrollo/genética , Glicósido Hidrolasas/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , ADP-Ribosilación/genética , Adenosina Difosfato Ribosa/genética , Adolescente , Alelos , Niño , Preescolar , Exoma/genética , Femenino , Humanos , Lactante , Masculino , Malformaciones del Sistema Nervioso/genética , Procesamiento Proteico-Postraduccional/genética
5.
J Recept Signal Transduct Res ; 40(2): 97-108, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32019426

RESUMEN

Background: Cisplatin (CiSP), a chemotherapeutic agent, is widely used to treat several types of cancers. However, its clinical use is limited due to adverse side effects caused by excessive production of reactive oxygen species (ROS) and death of neurons. The transient receptor potential (TRP) melastatin 2 (TRPM2) cation channel is activated by ADP-ribose (ADPR) and ROS. The protective effect of curcumin (CURCU) against CiSP-induced apoptosis and mitochondrial ROS through inhibition of TRP channels in several types of neuron except optic nerve, was recently reported. The aim of the current study is to clarify the protective effect of CURCU on CiSP-induced mitochondrial oxidative injury and TRPM2 activation in the mice optic nerve and SH-SY5Y human derived neuronal cells.Material and methods: The SH-SY5Y cells and mice were divided into four groups: Control, CURCU, CiSP, and CURCU + CiSP. The mice were treated for 14 days and the cells were incubated with CiSP and CURCU for 24 h.Results: CURCU and PARP-1 inhibitor (PJ34) treatments ameliorated CiSP-induced mitochondrial membrane depolarization, mitochondrial and cytosolic ROS levels and neuronal death in the optic nerve. In the patch-clamp of SH-SY5Y cells and laser confocal microscopy experiments of optic nerve, CURCU and TRPM2 blocker treatments also decreased ADPR-induced TRPM2 currents and cytosolic free calcium ion (Ca2+) concentration, suggesting a suppression of Ca2+ influx and neuronal death.Conclusion: CURCU prevents CiSP-induced optic nerve oxidative injury and cell death by suppressing mitochondrial ROS production via regulating TRPM2 signaling pathways. CURCU may serve as a potential therapeutic target against CiSP-induced toxicity in the optic nerve of CiSP-treated patients.


Asunto(s)
Curcumina/farmacología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Nervio Óptico/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Canales Catiónicos TRPM/genética , Adenosina Difosfato Ribosa/genética , Animales , Apoptosis/efectos de los fármacos , Cisplatino/toxicidad , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Nervio Óptico/patología , Traumatismos del Nervio Óptico/inducido químicamente , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/patología , Técnicas de Placa-Clamp , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
6.
EMBO Rep ; 19(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30177554

RESUMEN

MacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics. By solving the crystal structure of the macrodomain of human macroH2A2 at 1.7 Å, we find that its putative binding pocket exhibits marked structural differences compared with the macroH2A1.1 isoform, rendering macroH2A2 unable to bind ADP-ribose. Quantitative binding assays show that this specificity is conserved among vertebrate macroH2A isoforms. We further find that macroH2A histones reduce the transient, PARP1-dependent chromatin relaxation that occurs in living cells upon DNA damage through two distinct mechanisms. First, macroH2A1.1 mediates an isoform-specific effect through its ability to suppress PARP1 activity. Second, the unstructured linker region exerts an additional repressive effect that is common to all macroH2A proteins. In the absence of DNA damage, the macroH2A linker is also sufficient for rescuing heterochromatin architecture in cells deficient for macroH2A.


Asunto(s)
Cromatina/genética , Epigénesis Genética/genética , Histonas/química , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Cromatina/química , Cristalografía por Rayos X , Daño del ADN/genética , Heterocromatina/química , Heterocromatina/genética , Histonas/genética , Humanos , Poli(ADP-Ribosa) Polimerasa-1/química , Poli(ADP-Ribosa) Polimerasa-1/genética , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética
7.
Mol Microbiol ; 108(5): 519-535, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29505111

RESUMEN

The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro-domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus.


Asunto(s)
Mitocondrias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Toxoplasma/fisiología , Toxoplasmosis/parasitología , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Animales , Femenino , Fibroblastos/citología , Fibroblastos/parasitología , Prepucio/citología , Sitios Genéticos , Interacciones Huésped-Parásitos/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Toxoplasma/genética
8.
Biochem Soc Trans ; 46(6): 1681-1695, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30420415

RESUMEN

The poly(ADP-ribose) polymerase (PARP) superfamily of enzymes catalyses the ADP-ribosylation (ADPr) of target proteins by using nicotinamide adenine dinucleotide (NAD+) as a donor. ADPr reactions occur either in the form of attachment of a single ADP-ribose nucleotide unit on target proteins or in the form of ADP-ribose chains, with the latter called poly(ADP-ribosyl)ation. PARPs regulate many cellular processes, including the maintenance of genome stability and signal transduction. In this review, we focus on the PARP family members that possess the ability to modify proteins by poly(ADP-ribosyl)ation, namely PARP1, PARP2, Tankyrase-1, and Tankyrase-2. Here, we detail the cellular functions of PARP1 and PARP2 in the regulation of DNA damage response and describe the function of Tankyrases in Wnt-mediated signal transduction. Furthermore, we discuss how the understanding of these pathways has provided some major breakthroughs in the treatment of human cancer.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Neoplasias/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Adenosina Difosfato Ribosa/genética , Animales , Daño del ADN/genética , Daño del ADN/fisiología , Inestabilidad Genómica/genética , Inestabilidad Genómica/fisiología , Humanos , Neoplasias/genética , Poli(ADP-Ribosa) Polimerasas/genética
9.
Biochem J ; 474(13): 2159-2175, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28515263

RESUMEN

TRPM2 (transient receptor potential channel, subfamily melastatin, member 2) is a Ca2+-permeable non-selective cation channel activated by the binding of adenosine 5'-diphosphoribose (ADPR) to its cytoplasmic NUDT9H domain (NUDT9 homology domain). Activation of TRPM2 by ADPR downstream of oxidative stress has been implicated in the pathogenesis of many human diseases, rendering TRPM2 an attractive novel target for pharmacological intervention. However, the structural basis underlying this activation is largely unknown. Since ADP (adenosine 5'-diphosphate) alone did not activate or antagonize the channel, we used a chemical biology approach employing synthetic analogues to focus on the role of the ADPR terminal ribose. All novel ADPR derivatives modified in the terminal ribose, including that with the seemingly minor change of methylating the anomeric-OH, abolished agonist activity at TRPM2. Antagonist activity improved as the terminal substituent increasingly resembled the natural ribose, indicating that gating by ADPR might require specific interactions between hydroxyl groups of the terminal ribose and the NUDT9H domain. By mutating amino acid residues of the NUDT9H domain, predicted by modelling and docking to interact with the terminal ribose, we demonstrate that abrogating hydrogen bonding of the amino acids Arg1433 and Tyr1349 interferes with activation of the channel by ADPR. Taken together, using the complementary experimental approaches of chemical modification of the ligand and site-directed mutagenesis of TRPM2, we demonstrate that channel activation critically depends on hydrogen bonding of Arg1433 and Tyr1349 with the terminal ribose. Our findings allow for a more rational design of novel TRPM2 antagonists that may ultimately lead to compounds of therapeutic potential.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Arginina/metabolismo , Canales Catiónicos TRPM/metabolismo , Tirosina/metabolismo , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Secuencia de Aminoácidos , Arginina/química , Arginina/genética , Calcio/metabolismo , Señalización del Calcio , Células HEK293 , Humanos , Activación del Canal Iónico , Mutagénesis Sitio-Dirigida , Mutación/genética , Técnicas de Placa-Clamp , Unión Proteica , Conformación Proteica , Pirofosfatasas/metabolismo , Homología de Secuencia de Aminoácido , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética , Tirosina/química , Tirosina/genética
10.
FASEB J ; 30(11): 3786-3799, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27494941

RESUMEN

Dysfunction of homologous recombination is a common denominator of changes associated with breast cancer-predisposing mutations. In our previous work, we identified a functional signature in peripheral blood lymphocytes from women who were predisposed that indicated a shift from homologous recombination to alternative, error-prone DNA double-strand break (DSB) repair pathways. To capture both hereditary and nonhereditary factors, we newly established a protocol for isolation and ex vivo analysis of epithelial cells, epithelial-mesenchymal transition cells (EMTs), and fibroblasts from breast cancer specimens (147 patients). By applying a fluorescence-based test system, we analyzed the error-prone DSB repair pathway microhomology-mediated end joining in these tumor-derived cell types and peripheral blood lymphocytes. In parallel, we investigated DNA lesion processing by quantitative immunofluorescence microscopy of histone H2AX phosphorylated on Ser139 focus after radiomimetic treatment. Our study reveals elevated histone H2AX phosphorylated on Ser139 damage removal in epithelial cells, not EMTs, and poly(ADP-ribose)polymerase inhibitor sensitivities, which suggested a DSB repair pathway shift with increasing patient age. Of interest, we found elevated microhomology-mediated end joining in EMTs, not epithelial cells, from patients who received a treatment recommendation of adjuvant chemotherapy, that is, those with high-risk tumors. Our discoveries of altered DSB repair activities in cells may serve as a method to further classify breast cancer to predict responsiveness to adjuvant chemotherapy and/or therapeutics that target DSB repair-dysfunctional tumors.-Deniz, M., Kaufmann, J., Stahl, A., Gundelach, T., Janni, W., Hoffmann, I., Keimling, M., Hampp, S., Ihle, M., Wiesmüller, L. In vitro model for DNA double-strand break repair analysis in breast cancer reveals cell type-specific associations with age and prognosis.


Asunto(s)
Adenosina Difosfato Ribosa/genética , Neoplasias de la Mama/genética , Roturas del ADN de Doble Cadena , Transición Epitelial-Mesenquimal/genética , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Mama/metabolismo , Línea Celular Tumoral , Reparación del ADN/fisiología , Femenino , Predisposición Genética a la Enfermedad , Recombinación Homóloga/genética , Humanos , Persona de Mediana Edad , Mutación/genética , Pronóstico
11.
Biochem J ; 473(7): 899-910, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26814197

RESUMEN

Members of the poly-ADP-ribose polymerase (PARP) family catalyse the ADP-ribosylation of target proteins and are known to play important roles in many cellular processes, including DNA repair, differentiation and transcription. The majority of PARPs exhibit mono-ADP-ribosyltransferase activity rather than PARP activity; however, little is known about their biological activity. In the present study, we report that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP), mono-ADP-ribosylates and positively regulates liver X receptor α (LXRα) and LXRß activity. Overexpression of TIPARP enhanced LXR-reporter gene activity. TIPARP knockdown or deletion reduced LXR regulated target gene expression levels in HepG2 cells and in Tiparp(-/-)mouse embryonic fibroblasts (MEFs) respectively. Deletion and mutagenesis studies showed that TIPARP's zinc-finger and catalytic domains were required to enhance LXR activity. Protein interaction studies using TIPARP and LXRα/ß peptide arrays revealed that LXRs interacted with an N-terminal sequence (a.a. 209-236) of TIPARP, which also overlapped with a putative co-activator domain of TIPARP (a.a. 200-225). Immunofluorescence studies showed that TIPARP and LXRα or LXRß co-localized in the nucleus.In vitroribosylation assays provided evidence that TIPARP mono-ADP-ribosylated both LXRα and LXRß. Co-immunoprecipitation (co-IP) studies revealed that ADP-ribosylase macrodomain 1 (MACROD1), but not MACROD2, interacted with LXRs in a TIPARP-dependent manner. This was complemented by reporter gene studies showing that MACROD1, but not MACROD2, prevented the TIPARP-dependent increase in LXR activity. GW3965-dependent increases in hepatic Srebp1 mRNA and protein expression levels were reduced in Tiparp(-/-)mice compared with Tiparp(+/+)mice. Taken together, these data identify a new mechanism of LXR regulation that involves TIPARP, ADP-ribosylation and MACROD1.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Núcleo Celular/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , ADP Ribosa Transferasas/genética , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Animales , Células COS , Núcleo Celular/genética , Chlorocebus aethiops , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Células Hep G2 , Humanos , Hidrolasas/genética , Hidrolasas/metabolismo , Receptores X del Hígado , Ratones , Ratones Noqueados , Proteínas de Transporte de Nucleósidos , Receptores Nucleares Huérfanos/genética , Poli(ADP-Ribosa) Polimerasas/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
12.
PLoS Genet ; 10(5): e1004403, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24875882

RESUMEN

Post-translational protein modifications such as phosphorylation and ubiquitinylation are common molecular targets of conflict between viruses and their hosts. However, the role of other post-translational modifications, such as ADP-ribosylation, in host-virus interactions is less well characterized. ADP-ribosylation is carried out by proteins encoded by the PARP (also called ARTD) gene family. The majority of the 17 human PARP genes are poorly characterized. However, one PARP protein, PARP13/ZAP, has broad antiviral activity and has evolved under positive (diversifying) selection in primates. Such evolution is typical of domains that are locked in antagonistic 'arms races' with viral factors. To identify additional PARP genes that may be involved in host-virus interactions, we performed evolutionary analyses on all primate PARP genes to search for signatures of rapid evolution. Contrary to expectations that most PARP genes are involved in 'housekeeping' functions, we found that nearly one-third of PARP genes are evolving under strong recurrent positive selection. We identified a >300 amino acid disordered region of PARP4, a component of cytoplasmic vault structures, to be rapidly evolving in several mammalian lineages, suggesting this region serves as an important host-pathogen specificity interface. We also found positive selection of PARP9, 14 and 15, the only three human genes that contain both PARP domains and macrodomains. Macrodomains uniquely recognize, and in some cases can reverse, protein mono-ADP-ribosylation, and we observed strong signatures of recurrent positive selection throughout the macro-PARP macrodomains. Furthermore, PARP14 and PARP15 have undergone repeated rounds of gene birth and loss during vertebrate evolution, consistent with recurrent gene innovation. Together with previous studies that implicated several PARPs in immunity, as well as those that demonstrated a role for virally encoded macrodomains in host immune evasion, our evolutionary analyses suggest that addition, recognition and removal of ADP-ribosylation is a critical, underappreciated currency in host-virus conflicts.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Evolución Molecular , Inmunidad Innata/genética , Virus/patogenicidad , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Adenosina Difosfato Ribosa/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional , Virus/genética
13.
Nat Methods ; 10(10): 981-4, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23955771

RESUMEN

Poly(ADP-ribosyl)ation is catalyzed by a family of enzymes known as PARPs. We describe a method to characterize the human aspartic acid- and glutamic acid-ADP-ribosylated proteome. We identified 1,048 ADP-ribosylation sites on 340 proteins involved in a wide array of nuclear functions; among these were many previously unknown PARP downstream targets whose ADP-ribosylation was sensitive to PARP inhibitor treatment. We also confirmed that iniparib had a negligible effect on PARP activity in intact cells.


Asunto(s)
Adenosina Difosfato Ribosa/química , Ácido Aspártico/química , Ácido Glutámico/química , Poli(ADP-Ribosa) Polimerasas/química , Proteoma/química , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Ácido Aspártico/metabolismo , Sitios de Unión , Daño del ADN , Técnicas de Silenciamiento del Gen , Ácido Glutámico/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Células HCT116 , Humanos , Peróxido de Hidrógeno/farmacología , Modelos Moleculares , Poli(ADP-Ribosa) Polimerasa-1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteoma/genética , Proteoma/metabolismo
14.
J Biol Chem ; 286(8): 5995-6005, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21148312

RESUMEN

Mono-ADP-ribosylation is a reversible post-translational modification that can modulate the functions of target proteins. We have previously demonstrated that the ß subunit of heterotrimeric G proteins is endogenously mono-ADP-ribosylated, and once modified, the ßγ dimer is inactive toward its effector enzymes. To better understand the physiological relevance of this post-translational modification, we have studied its hormonal regulation. Here, we report that Gß subunit mono-ADP-ribosylation is differentially modulated by G protein-coupled receptors. In intact cells, hormone stimulation of the thrombin receptor induces Gß subunit mono-ADP-ribosylation, which can affect G protein signaling. Conversely, hormone stimulation of the gonadotropin-releasing hormone receptor (GnRHR) inhibits Gß subunit mono-ADP-ribosylation. We also provide the first demonstration that activation of the GnRHR can activate the ADP-ribosylation factor Arf6, which in turn inhibits Gß subunit mono-ADP-ribosylation. Indeed, removal of Arf6 from purified plasma membranes results in loss of GnRHR-mediated inhibition of Gß subunit mono-ADP-ribosylation, which is fully restored by re-addition of purified, myristoylated Arf6. We show that Arf6 acts as a competitive inhibitor of the endogenous ADP-ribosyltransferase and is itself modified by this enzyme. These data provide further understanding of the mechanisms that regulate endogenous ADP-ribosylation of the Gß subunit, and they demonstrate a novel role for Arf6 in hormone regulation of Gß subunit mono-ADP-ribosylation.


Asunto(s)
ADP Ribosa Transferasas/antagonistas & inhibidores , Factores de Ribosilacion-ADP/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Adenosina Difosfato Ribosa/genética , Animales , Células CHO , Bovinos , Cricetinae , Cricetulus , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Hormonas/metabolismo , Hormonas/farmacología , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Receptores LHRH/genética , Receptores LHRH/metabolismo
15.
J Biol Chem ; 285(40): 30411-8, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20660597

RESUMEN

Transient receptor potential melastatin 2 (TRPM2) channel fulfills an important role in oxidative stress signaling in immune and other cells, to which local extracellular acidosis is known to occur under physiological or pathological conditions and impose significant effects on their functions. Here, we investigated whether the ADP-ribose-activated TRPM2 channel is a target for modulation by extracellular acidic pH by patch clamp recording of HEK293 cells expressing hTRPM2 channel. Induced whole cell or single channel currents were rapidly inhibited upon subsequent exposure to acidic pH. The inhibition in the steady state was complete, voltage-independent, and pH-independent in the range of pH 4.0-6.0. The inhibition was irreversible upon returning to pH 7.3, suggesting channel inactivation. In contrast, exposure of closed channels to acidic pH reduced the subsequent channel activation in a pH-dependent manner with an IC(50) for H(+) of 20 µm (pH 4.7) and rendered subsequent current inhibition largely reversible, indicating differential or state-dependent inhibition and inactivation. Alanine substitution of residues in the outer vestibule of the pore including Lys(952) and Asp(1002) significantly slowed down or reduced acidic pH-induced inhibition and prevented inactivation. The results suggest that acidic pH acts as a negative feedback mechanism where protons bind to the outer vestibule of the TRPM2 channel pore and inhibit the TRPM2 channels in a state-dependent manner.


Asunto(s)
Protones , Canales Catiónicos TRPM/metabolismo , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Sustitución de Aminoácidos , Línea Celular , Humanos , Concentración de Iones de Hidrógeno , Estrés Oxidativo/fisiología , Unión Proteica/fisiología , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética
16.
J Biol Chem ; 285(8): 5683-94, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20018886

RESUMEN

The gram-positive pathogen Streptococcus pyogenes injects a beta-NAD(+) glycohydrolase (SPN) into the cytosol of an infected host cell using the cytolysin-mediated translocation pathway. In this compartment, SPN accelerates the death of the host cell by an unknown mechanism that may involve its beta-NAD(+)-dependent enzyme activities. SPN has been reported to possess the unique characteristic of not only catalyzing hydrolysis of beta-NAD(+), but also carrying out ADP-ribosyl cyclase and ADP-ribosyltransferase activities, making SPN the only beta-NAD(+) glycohydrolase that can catalyze all of these reactions. With the long term goal of understanding how these activities may contribute to pathogenesis, we have further characterized the enzymatic activity of SPN using highly purified recombinant protein. Kinetic studies of the multiple activities of SPN revealed that SPN possessed only beta-NAD(+) hydrolytic activity and lacked detectable ADP-ribosyl cyclase and ADP-ribosyltransferase activities. Similarly, SPN was unable to catalyze cyclic ADPR hydrolysis, and could not catalyze methanolysis or transglycosidation. Kinetic analysis of product inhibition by recombinant SPN demonstrated an ordered uni-bi mechanism, with ADP-ribose being released as a second product. SPN was unaffected by product inhibition using nicotinamide, suggesting that this moiety contributes little to the binding energy of the substrate. Upon transformation, SPN was toxic to Saccharomyces cerevisiae, whereas a glycohydrolase-inactive SPN allowed for viability. Taken together, these data suggest that SPN functions exclusively as a strict beta-NAD(+) glycohydrolase during pathogenesis.


Asunto(s)
NAD+ Nucleosidasa/química , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Cinética , NAD+ Nucleosidasa/genética , NAD+ Nucleosidasa/metabolismo , Niacinamida/química , Niacinamida/genética , Niacinamida/metabolismo , Perforina/química , Perforina/genética , Perforina/metabolismo , Transporte de Proteínas/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Streptococcus pyogenes/genética
17.
Genes Cells ; 15(4): 315-25, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20236182

RESUMEN

DEC1 (BHLHB2/Stra13/Sharp2) and DEC2 (BHLHB3/Sharp1) are basic helix-loop-helix (bHLH) transcription factors that are involved in circadian rhythms, differentiation and the responses to hypoxia. We examined whether DEC1 and DEC2 are involved in apoptosis regulation, in human breast cancer MCF-7 cells. We found that siRNA-mediated knockdown of DEC2 resulted in marked enhancement of apoptosis compared with that in control cells transfected with nonspecific siRNA. However, knockdown of DEC1 by siRNA did not affect cell survival. Knockdown of DEC2 affected the expression of mRNA or proteins related to apoptosis, such as Fas, c-Myc, caspase-8, poly (ADP-ribose) polymerase (PARP) and Bax. We also showed that tumor necrosis factor-alpha (TNF-alpha) up-regulates the expression of DEC1 and DEC2. DEC2 over-expression caused by the transfection of an expression vector reduced the amounts of cleaved PARP and caspase-8 induced by TNF-alpha treatment, whereas DEC1 over-expression increased it. Finally, we revealed that treatment with double knockdown against both DEC1 and DEC2 decreased the amounts of cleaved PARP and caspase-8 induced by DEC2 siRNA with or without TNF-alpha. These data indicate that DEC2 has an anti-apoptotic effect, whereas DEC1 has a pro-apoptotic effect, which are involved in the balance of survival of human breast cancer MCF-7 cells.


Asunto(s)
Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias de la Mama/genética , Caspasa 8/genética , Caspasa 8/metabolismo , Línea Celular Tumoral , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Femenino , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/fisiología , Transfección , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/genética
18.
Biochemistry ; 49(34): 7360-6, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20687516

RESUMEN

Poly(ADP-ribose) (PAR) is a therapeutic target primarily identified through inhibiting its synthesis by PAR polymerase-1 (PARP-1). However, inhibiting its hydrolysis by PAR glycohydrolase (PARG) has therapeutic potential in cancer. Unknown is the effect of elevated PAR levels on cellular processes and if this effect can enhance the therapeutic value of PARG. Here, we demonstrate in PARG null embryonic trophoblast stem (TS) cells that the absence of PAR hydrolysis led to PAR-modified histones H1, H2A, and H2B. To determine if this led to the differential vulnerability of DNA to modification, TS cells were treated with DNA-modifying agents. The results demonstrate increased DNA laddering by micrococcal nuclease and an increased amount of DNA intercalation by acridine orange in PARG null-TS cells. This increased access to PARG null-TS cell DNA was further verified by the detection of increased DNA damage following treatment with UV radiation and a minimal dose of the DNA-alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. Further, this DNA damage was predominantly unrepaired 12 h after treatment in PARG null-TS cells. Finally, TS cells were treated with DNA-modifying chemotherapeutic agents. The results demonstrate up to 4-fold increases in cell death in PARG null-TS cells after treatment with epirubicin or sub-IC(50) doses of cisplatin and cyclophosphamide. Taken together, we provide compelling evidence that increased DNA access induced by the absence of PARG enhances the efficacy of DNA-modifying agents. Thus, this study demonstrates that greater DNA accessibility, increased DNA damage, and increased cell death all contribute to the PARG null cell phenotype in response to genotoxic stress.


Asunto(s)
Daño del ADN , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , ADN/genética , ADN/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Histonas/genética , Histonas/metabolismo , Hidrólisis , Metilnitronitrosoguanidina/metabolismo , Metilnitronitrosoguanidina/farmacología , Neutrófilos/metabolismo , Poli Adenosina Difosfato Ribosa/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Células Madre/metabolismo , Trofoblastos/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 299(1): R215-21, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20427721

RESUMEN

Activation of poly(ADP-ribose) polymerase (PARP) and subsequent translocation of apoptosis-inducing factor contribute to caspase-independent neuronal injury from N-methyl-d-aspartate, oxygen-glucose deprivation, and ischemic stroke. Some studies have implicated endonuclease G in the DNA fragmentation associated with caspase-independent cell death. Here, we compared wild-type and endonuclease G null mice to investigate whether endonuclease G plays a role in the PARP-dependent injury that results from transient focal cerebral ischemia. Latex casts did not reveal differences in the cerebral arterial distribution territory or posterior communicating arterial diameter, and the decrease in laser-Doppler flux during middle cerebral artery occlusion was similar in wild-type and endonuclease G null mice. After 90 min of occlusion and 1 day of reperfusion, similar degrees of nuclear translocation of apoptosis-inducing factor and DNA degradation were evident in male wild-type and null mice. At 3 days of reperfusion, infarct volume and neurological deficit scores were not different between male wild-type and endonuclease G null mice or between female wild-type and endonuclease G null mice. These data demonstrate that endonuclease G is not required for the pathogenesis of transient focal ischemia in either male or female mice. Treatment with a PARP inhibitor decreased infarct volume and deficit scores equivalently in male wild-type and endonuclease G null mice, indicating that the injury in endonuclease G null mice remains dependent on PARP. Thus endonuclease G is not obligatory for executing PARP-dependent injury during ischemic stroke.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Ataque Isquémico Transitorio/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Adenosina Difosfato Ribosa/genética , Adenosina Difosfato Ribosa/metabolismo , Animales , Factor Inductor de la Apoptosis/genética , Caspasas/genética , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Muerte Celular/fisiología , Ácido D-Aspártico/genética , Ácido D-Aspártico/metabolismo , Fragmentación del ADN/efectos de los fármacos , Endodesoxirribonucleasas , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Ataque Isquémico Transitorio/genética , Ratones , Ratones Noqueados , N-Metilaspartato/genética , N-Metilaspartato/metabolismo , Neuronas/metabolismo , Neuronas/patología , Poli Adenosina Difosfato Ribosa/genética , Poli Adenosina Difosfato Ribosa/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/fisiología , Reperfusión , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo
20.
Nat Commun ; 11(1): 5199, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060572

RESUMEN

Protein ADP-ribosylation is a reversible post-translational modification that regulates important cellular functions. The identification of modified proteins has proven challenging and has mainly been achieved via enrichment methodologies. Random mutagenesis was used here to develop an engineered Af1521 ADP-ribose binding macro domain protein with 1000-fold increased affinity towards ADP-ribose. The crystal structure reveals that two point mutations K35E and Y145R form a salt bridge within the ADP-ribose binding domain. This forces the proximal ribose to rotate within the binding pocket and, as a consequence, improves engineered Af1521 ADPr-binding affinity. Its use in our proteomic ADP-ribosylome workflow increases the ADP-ribosylated protein identification rates and yields greater ADP-ribosylome coverage. Furthermore, generation of an engineered Af1521 Fc fusion protein confirms the improved detection of cellular ADP-ribosylation by immunoblot and immunofluorescence. Thus, this engineered isoform of Af1521 can also serve as a valuable tool for the analysis of cellular ADP-ribosylation under in vivo conditions.


Asunto(s)
ADP-Ribosilación/fisiología , Adenosina Difosfato Ribosa/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/genética , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutagénesis , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas/química , Proteínas/aislamiento & purificación , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA