Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nitric Oxide ; 138-139: 70-84, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423418

RESUMEN

Dimethylarginine dimethylaminohydrolase-1 (DDAH1) expression is frequently elevated in different cancers including prostate cancer (PCa) and enhances nitric oxide (NO) production in tumor cells by metabolising endogenous nitric oxide synthase (NOS) inhibitors. DDAH1 protects the PCa cells from cell death and promotes survival. In this study, we have investigated the cytoprotective role of DDAH1 and determined the mechanism of DDAH1 in protecting the cells in tumor microenvironment. Proteomic analysis of PCa cells with stable overexpression of DDAH1 has identified that oxidative stress-related activity is altered. Oxidative stress promotes cancer cell proliferation, survival and causes chemoresistance. A known inducer of oxidative stress, tert-Butyl Hydroperoxide (tBHP) treatment to PCa cells led to elevated DDAH1 level that is actively involved in protecting the PCa cells from oxidative stress induced cell damage. In PC3-DDAH1- cells, tBHP treatment led to higher mROS levels indicating that the loss of DDAH1 increases the oxidative stress and eventually leads to cell death. Under oxidative stress, nuclear Nrf2 controlled by SIRT1 positively regulates DDAH1 expression in PC3 cells. In PC3-DDAH1+ cells, tBHP induced DNA damage is well tolerated compared to wild-type cells while PC3-DDAH1- became sensitive to tBHP. In PC3 cells, tBHPexposure has increased the production of NO and GSH which may be acting as an antioxidant defence to overcome oxidative stress. Furthermore, in tBHP treated PCa cells, DDAH1 is controlling the expression of Bcl2, active PARP and caspase 3. Taken together, these results confirm that DDAH1 is involved in the antioxidant defence system and promotes cell survival.


Asunto(s)
Amidohidrolasas , Óxido Nítrico , Estrés Oxidativo , Transducción de Señal , Humanos , Masculino , Amidohidrolasas/biosíntesis , Amidohidrolasas/metabolismo , Antioxidantes/metabolismo , Apoptosis , Arginina/metabolismo , Óxido Nítrico/metabolismo , Proteómica , Especies Reactivas de Oxígeno , terc-Butilhidroperóxido/farmacología , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas
2.
Am J Physiol Heart Circ Physiol ; 321(5): H825-H838, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533401

RESUMEN

Cardiovascular complications are the leading cause of death, and elevated levels of asymmetric dimethyarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are implicated in their pathophysiology. We investigated the role of dimethylarginine dimethylaminohydrolase 1 (DDAH1), an enzyme hydrolyzing ADMA, in prevention of cardiovascular remodeling during hypertension. We hypothesized that the animals overexpressing DDAH1 will be protected from angiotensin II (ANG II)-induced end organ damage. Angiotensin II (ANG II) was infused in two doses: 0.75 and 1.5 mg/kg/day in DDAH1 transgenic mice (DDAH1 TG) and wild-type (WT) littermates for 2 or 4 wk. Echocardiography was performed in the first and fourth weeks of the infusion, systolic blood pressure (SBP) was measured weekly, and cardiac hypertrophy and vascular remodeling was assessed by histology. Increase in SBP after 1 wk of ANG II infusion was not different between the groups, whereas TG mice had lower SBP at later time points. TG mice were protected from cardiovascular remodeling after 2 wk of ANG II infusion in the high dose and after 4 wk in the moderate dose. TG mice had higher left ventricular lumen-to-wall ratio, lower cardiomyocyte cross-sectional area, and less interstitial fibrosis compared with WT controls. In aorta, TG mice had less adventitial fibrosis, lower medial thickness with preserved elastin content, lower counts of inflammatory cells, lower levels of active matrix metalloproteinase-2, and showed better endothelium-dependent relaxation. We demonstrated that overexpression of DDAH1 protects from ANG II-induced cardiovascular remodeling and progression of hypertension by preserving endothelial function and limiting inflammation.NEW & NOTEWORTHY We showed that overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects from angiotensin II-induced cardiovascular damage, progression of hypertension, and adverse vascular remodeling in vivo. This protective effect is associated with decreased levels of asymmetric dimethylarginine, preservation of endothelial function, inhibition of cardiovascular inflammation, and lower activity of matrix metalloproteinase-2. Our findings are highly clinically relevant, because they suggest that upregulation of DDAH1 might be a promising therapeutic approach against angiotensin II-induced end organ damage.


Asunto(s)
Amidohidrolasas/biosíntesis , Aorta/enzimología , Presión Sanguínea , Ventrículos Cardíacos/enzimología , Hipertensión/enzimología , Hipertrofia Ventricular Izquierda/enzimología , Remodelación Vascular , Función Ventricular Izquierda , Remodelación Ventricular , Amidohidrolasas/genética , Angiotensina II , Animales , Aorta/patología , Aorta/fisiopatología , Modelos Animales de Enfermedad , Inducción Enzimática , Fibrosis , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/patología , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Tiempo , Vasodilatación
3.
J Neurosci ; 39(7): 1275-1292, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30573646

RESUMEN

Increased anandamide (AEA) signaling through inhibition of its catabolic enzyme fatty acid amide hydrolase (FAAH) in the basolateral complex of amygdala (BLA) is thought to buffer against the effects of stress and reduces behavioral signs of anxiety and fear. However, examining the role of AEA signaling in stress, anxiety, and fear through pharmacological depletion has been challenging due to the redundant complexity of its biosynthesis and the lack of a pharmacological synthesis inhibitor. We developed a herpes simplex viral vector to rapidly yet transiently overexpress FAAH specifically within the BLA to assess the impact of suppressing AEA signaling on stress, fear, and anxiety in male rats. Surprisingly, FAAH overexpression in BLA dampened stress-induced corticosterone release, reduced anxiety-like behaviors, and decreased conditioned fear expression. Interestingly, depleting AEA signaling in the BLA did not prevent fear conditioning itself or fear reinstatement. These effects were specific to the overexpression of FAAH because they were reversed by intra-BLA administration of an FAAH inhibitor. Moreover, the fear-suppressive effects of FAAH overexpression were also mitigated by intra-BLA administration of a low dose of a GABAA receptor antagonist, but not an NMDA/AMPA/kainate receptor antagonist, suggesting that they were mediated by an increase in GABAergic neurotransmission. Our data suggest that a permissive AEA tone within the BLA might gate GABA release and that loss of this tone through elevated AEA hydrolysis increases inhibition in the BLA, which in turn reduces stress, anxiety, and fear. These data provide new insights on the mechanisms by which amygdalar endocannabinoid signaling regulates emotional behavior.SIGNIFICANCE STATEMENT Amygdala endocannabinoid signaling is involved in the regulation of stress, anxiety, and fear. Our data indicate that viral-mediated augmentation of anandamide hydrolysis within the basolateral amygdala reduces behavioral indices of stress, anxiety, and conditioned fear expression. These same effects have been previously documented with inhibition of anandamide hydrolysis in the same brain region. Our results indicate that the ability of anandamide signaling to regulate emotional behavior is nonlinear and may involve actions at distinct neuronal populations, which could be influenced by the basal level of anandamide. Modulation of anandamide signaling is a current clinical therapeutic target for stress-related psychiatric illnesses, so these data underscore the importance of fully understanding the mechanisms by which anandamide signaling regulates amygdala-dependent changes in emotionality.


Asunto(s)
Ansiedad/psicología , Ácidos Araquidónicos/fisiología , Complejo Nuclear Basolateral/fisiología , Endocannabinoides/fisiología , Miedo/psicología , Memoria/fisiología , Estrés Psicológico/psicología , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/biosíntesis , Amidohidrolasas/genética , Animales , Ácidos Araquidónicos/metabolismo , Complejo Nuclear Basolateral/metabolismo , Conducta Animal/efectos de los fármacos , Corticosterona/metabolismo , Endocannabinoides/metabolismo , Extinción Psicológica , Miedo/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Masculino , Memoria/efectos de los fármacos , Alcamidas Poliinsaturadas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores AMPA/antagonistas & inhibidores , Regulación hacia Arriba , Ácido gamma-Aminobutírico/metabolismo
4.
Am J Physiol Renal Physiol ; 318(2): F509-F517, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31904280

RESUMEN

Endothelial dysfunction, characterized by reduced bioavailability of nitric oxide and increased oxidative stress, is a hallmark characteristic in diabetes and diabetic nephropathy (DN). High levels of asymmetric dimethylarginine (ADMA) are observed in several diseases including DN and are a strong prognostic marker for cardiovascular events in patients with diabetes and end-stage renal disease. ADMA, an endogenous endothelial nitric oxide synthase (NOS3) inhibitor, is selectively metabolized by dimethylarginine dimethylaminohydrolase (DDAH). Low DDAH levels have been associated with cardiac and renal dysfunction, but its effects on DN are unknown. We hypothesized that enhanced renal DDAH-1 expression would improve DN by reducing ADMA and restoring NOS3 levels. DBA/2J mice injected with multiple low doses of vehicle or streptozotocin were subsequently injected intrarenally with adenovirus expressing DDAH-1 (Ad-h-DDAH-1) or vector control [Ad-green fluorescent protein (GFP)], and mice were followed for 6 wk. Diabetes was associated with increased kidney ADMA and reduced kidney DDAH activity and DDAH-1 expression but had no effect on kidney DDAH-2 expression. Ad-GFP-treated diabetic mice showed significant increases in albuminuria, histological changes, glomerular macrophage recruitment, inflammatory cytokine and fibrotic markers, kidney ADMA levels, and urinary thiobarbituric acid reactive substances excretion as an indicator of oxidative stress, along with a significant reduction in kidney DDAH activity and kidney NOS3 mRNA compared with normal mice. In contrast, Ad-h-DDAH-1 treatment of diabetic mice reversed these effects. These data indicate, for the first time, that DDAH-1 mediates renal tissue protection in DN via the ADMA-NOS3-interaction. Enhanced renal DDAH-1 activity could be a novel therapeutic tool for treating patients with diabetes.


Asunto(s)
Adenoviridae/genética , Amidohidrolasas/biosíntesis , Arginina/análogos & derivados , Diabetes Mellitus Experimental/terapia , Nefropatías Diabéticas/prevención & control , Terapia Genética , Vectores Genéticos , Riñón/enzimología , Albuminuria/enzimología , Albuminuria/genética , Albuminuria/prevención & control , Amidohidrolasas/genética , Animales , Arginina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/genética , Nefropatías Diabéticas/enzimología , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/genética , Fibrosis , Mediadores de Inflamación/metabolismo , Riñón/patología , Masculino , Ratones Endogámicos DBA , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Transducción de Señal , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
5.
BMC Microbiol ; 19(1): 33, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736731

RESUMEN

BACKGROUND: Lactobacillus mucosae DPC 6426 has previously demonstrated potentially cardio-protective properties, in the form of dyslipidaemia and hypercholesterolemia correction in an apolipoprotein-E deficient mouse model. This study aims to characterise the manner in which this microbe may modulate host bile pool composition and immune response, in the context of cardiovascular disease. Lactobacillus mucosae DPC 6426 was assessed for bile salt hydrolase activity and specificity. The microbe was compared against several other enteric strains of the same species, as well as a confirmed bile salt hydrolase-active strain, Lactobacillus reuteri APC 2587. RESULTS: Quantitative bile salt hydrolase assays revealed that enzymatic extracts from Lactobacillus reuteri APC 2587 and Lactobacillus mucosae DPC 6426 demonstrate the greatest activity in vitro. Bile acid profiling of porcine and murine bile following incubation with Lactobacillus mucosae DPC 6426 confirmed a preference for hydrolysis of glyco-conjugated bile acids. In addition, the purified exopolysaccharide and secretome of Lactobacillus mucosae DPC 6426 were investigated for immunomodulatory capabilities using RAW264.7 macrophages. Gene expression data revealed that both fractions stimulated increases in interleukin-6 and interleukin-10 gene transcription in the murine macrophages, while the entire secretome was necessary to increase CD206 transcription. Moreover, the exopolysaccharide elicited a dose-dependent increase in nitric oxide and interleukin-10 production from RAW264.7 macrophages, concurrent with increased tumour necrosis factor-α secretion at all doses. CONCLUSIONS: This study indicates that Lactobacillus mucosae DPC 6426 modulates both bile pool composition and immune system tone in a manner which may contribute significantly to the previously identified cardio-protective phenotype.


Asunto(s)
Amidohidrolasas/biosíntesis , Bilis/metabolismo , Inmunomodulación , Lactobacillus/enzimología , Lactobacillus/inmunología , Macrófagos/inmunología , Animales , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/microbiología , Glicosiltransferasas/metabolismo , Hidrólisis , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Limosilactobacillus reuteri/enzimología , Lectinas Tipo C/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones , Óxido Nítrico/metabolismo , Polisacáridos Bacterianos/farmacología , Células RAW 264.7 , Receptores de Superficie Celular/metabolismo , Porcinos , Factor de Necrosis Tumoral alfa/metabolismo
6.
Mol Cell Biochem ; 453(1-2): 143-155, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30159798

RESUMEN

The expression level of TRPV1 is high in hippocampus which is a main epileptic area in the brain. In addition to the actions of capsaicin (CAP) and reactive oxygen species (ROS), the TRPV1 channel is activated in neurons by endogenous cannabinoid, anandamide (AEA). In the current study, we investigated the role of inhibitors of TRPV1 (capsazepine, CPZ), AEA transport (AM404), and FAAH (URB597) on the modulation of Ca2+ entry, apoptosis, and oxidative stress in in vitro seizure-induced rat hippocampus and human glioblastoma (DBTRG) cell line. The seizure was induced in the hippocampal and DBTRG neurons using in vitro 4-aminopyridine (4-AP) to trigger a seizure-like activity model. CPZ and AM404 were fully effective in reversing 4-AP-induced intracellular free Ca2+ concentration of the hippocampus and TRPV1 current density of DBTRG. However, AEA and CAP did not activate TRPV1 in the URB597-treated neurons. Hence, we observed TRPV1 blocker effects of URB597 in the DBTRG neurons. In addition, the AM404 and CPZ treatments decreased intracellular ROS production, mitochondrial membrane depolarization, apoptosis, caspases 3 and 9 values in the hippocampus. In conclusion, the results indicate that inhibition of AEA transport, FAAH synthesis, and TRPV1 activity can result in remarkable neuroprotective effects in the epileptic neurons. Possible molecular pathways of involvement of capsazepine (CPZ) and AM4040 in anandamide and capsaicin (CAP)-induced apoptosis, oxidative stress, and Ca2+ accumulation through TRPV1 channel in the seizure-induced rat hippocampus and human glioblastoma neurons. The TRPV1 channel is activated by different stimuli including reactive oxygen species (ROS), anandamide (AEA), and CAP and it is blocked by capsazepine (CPZ). Cannabinoid receptor type 1 (CB1) is also activated by AEA. The AEA levels in cytosol are decreased by fatty acid amide hydrolase (FAAH) enzyme. Inhibition of FAAH through URB597 induces stimulation of CB1 receptor through accumulation AEA. URB597 acts antiepileptic effects through inhibition of TRPV1. Overloaded Ca2+ concentration of mitochondria can induce an apoptotic program by stimulating the release of apoptosis-promoting factors such as caspases 3 and caspase 9 by generating ROS due to respiratory chain damage. AM404 and CPZ reduce TRPV1 channel activation and Ca2+ entry in the in vitro 4-AP seizure model-induced hippocampal and glioblastoma neurons.


Asunto(s)
Amidohidrolasas/biosíntesis , Apoptosis/efectos de los fármacos , Ácidos Araquidónicos , Endocannabinoides , Hipocampo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Alcamidas Poliinsaturadas , Convulsiones/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Amidohidrolasas/antagonistas & inhibidores , Animales , Ácidos Araquidónicos/farmacocinética , Ácidos Araquidónicos/farmacología , Señalización del Calcio , Capsaicina/análogos & derivados , Capsaicina/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Endocannabinoides/farmacocinética , Endocannabinoides/farmacología , Hipocampo/patología , Humanos , Masculino , Alcamidas Poliinsaturadas/farmacocinética , Alcamidas Poliinsaturadas/farmacología , Ratas , Ratas Wistar , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Canales Catiónicos TRPV/metabolismo
7.
J Biol Chem ; 291(47): 24352-24363, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27637332

RESUMEN

In the three-dimensional extracellular matrix of the insect cuticle, horizontally aligned microfibrils composed of the polysaccharide chitin and associated proteins are stacked either parallel to each other or helicoidally. The underlying molecular mechanisms that implement differential chitin organization are largely unknown. To learn more about cuticle organization, we sought to study the role of chitin deacetylases (CDA) in this process. In the body cuticle of nymphs of the migratory locust Locusta migratoria, helicoidal chitin organization is changed to an organization with unidirectional microfibril orientation when LmCDA2 expression is knocked down by RNA interference. In addition, the LmCDA2-deficient cuticle is less compact suggesting that LmCDA2 is needed for chitin packaging. Animals with reduced LmCDA2 activity die at molting, underlining that correct chitin organization is essential for survival. Interestingly, we find that LmCDA2 localizes only to the initially produced chitin microfibrils that constitute the apical site of the chitin stack. Based on our data, we hypothesize that LmCDA2-mediated chitin deacetylation at the beginning of chitin production is a decisive reaction that triggers helicoidal arrangement of subsequently assembled chitin-protein microfibrils.


Asunto(s)
Amidohidrolasas/biosíntesis , Quitina/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Proteínas de Insectos/biosíntesis , Locusta migratoria/enzimología , Muda/fisiología , Amidohidrolasas/genética , Animales , Quitina/genética , Proteínas de Insectos/genética , Locusta migratoria/genética
8.
J Biol Chem ; 291(36): 18600-18607, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27387504

RESUMEN

Analysis of heparan sulfate synthesized by HEK 293 cells overexpressing murine NDST1 and/or NDST2 demonstrated that the amount of heparan sulfate was increased in NDST2- but not in NDST1-overexpressing cells. Altered transcript expression of genes encoding other biosynthetic enzymes or proteoglycan core proteins could not account for the observed changes. However, the role of NDST2 in regulating the amount of heparan sulfate synthesized was confirmed by analyzing heparan sulfate content in tissues isolated from Ndst2(-/-) mice, which contained reduced levels of the polysaccharide. Detailed disaccharide composition analysis showed no major structural difference between heparan sulfate from control and Ndst2(-/-) tissues, with the exception of heparan sulfate from spleen where the relative amount of trisulfated disaccharides was lowered in the absence of NDST2. In vivo transcript expression levels of the heparan sulfate-polymerizing enzymes Ext1 and Ext2 were also largely unaffected by NDST2 levels, pointing to a mode of regulation other than increased gene transcription. Size estimation of heparan sulfate polysaccharide chains indicated that increased chain lengths in NDST2-overexpressing cells alone could explain the increased heparan sulfate content. A model is discussed where NDST2-specific substrate modification stimulates elongation resulting in increased heparan sulfate chain length.


Asunto(s)
Amidohidrolasas/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Heparitina Sulfato/biosíntesis , Modelos Biológicos , Sulfotransferasas/biosíntesis , Transcripción Genética/fisiología , Amidohidrolasas/genética , Animales , Células HEK293 , Heparitina Sulfato/genética , Humanos , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/biosíntesis , N-Acetilglucosaminiltransferasas/genética , Sulfotransferasas/genética
9.
Neurochem Res ; 42(4): 986-996, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28025800

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset, irreversible neurodegenerative disease that leads to progressive paralysis and inevitable death 3-5 years after diagnosis. The mechanisms underlying this process remain unknown, but new evidence indicates that accumulating levels of D-serine result from the downregulation of D-amino acid oxidase (DAO) and that this is a novel mechanism that leads to motoneuronal death in ALS via N-methyl-D-aspartate receptor-mediated cell toxicity. Here, we explored a new therapeutic approach to ALS by overexpressing DAO in the lumbar region of the mouse spinal cord using a single stranded adeno-associated virus serotype 9 (ssAAV9) vector. A single intrathecal injection of ssAAV9-DAO was made in SOD1G93A mice, a well-established mouse model of ALS. Treatment resulted in moderate expression of exogenous DAO in motorneurons in the lumbar spinal cord, reduced immunoreactivity of D-serine, alleviated motoneuronal loss and glial activation, and extended survival. The potential mechanisms underlying these effects were associated with the down-regulation of NF-κB and the restoration of the phosphorylation of Akt. In conclusion, administering ssAAV9-DAO may be an effective complementary approach to gene therapy to extend lifespans in symptomatic ALS.


Asunto(s)
Amidohidrolasas/biosíntesis , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/enzimología , Dependovirus , Técnicas de Transferencia de Gen , Superóxido Dismutasa , Amidohidrolasas/administración & dosificación , Amidohidrolasas/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Dependovirus/genética , Femenino , Células HEK293 , Humanos , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Superóxido Dismutasa/genética , Tasa de Supervivencia/tendencias
10.
Protein Expr Purif ; 129: 60-68, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27640050

RESUMEN

Amidase signature (AS) family amidases are known to exhibit broad substrate specificity. According to the available genome sequence data, a novel AS family amidase, Pl-Ami, was identified and cloned from the genome of Parvibaculum lavamentivorans ZJB14001. The recombinant amidase was overexpressed in Escherichia coli BL21, purified and functionally characterized. The optimal pH and temperature for Pl-Ami were 9.5 and 45 °C, respectively. Pl-Ami preferred long chain aliphatic amides as substrates, while no activity was detected towards aromatic, heterocyclic and other amides. The highest enzyme activity of 128 U/mg was obtained when hexanoamide was used as substrate. Kinetic analysis indicated that the extension of chain length of aliphatic amides considerably decreased the Km values, and the turnover number (kcat) was higher with long chain aliphatic amides as substrates. The obtained results provided a distinct understanding of substrate specificity of AS family amidases.


Asunto(s)
Alphaproteobacteria/genética , Amidohidrolasas , Proteínas Bacterianas , Clonación Molecular , Alphaproteobacteria/enzimología , Amidohidrolasas/biosíntesis , Amidohidrolasas/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Calor , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
Nephrol Dial Transplant ; 31(3): 413-23, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26516203

RESUMEN

BACKGROUND: The lipodystrophy-like phenotype has been suggested in early chronic kidney disease (CKD). It includes adipose tissue atrophy, systemic insulin resistance (IR), dyslipidemia and ectopic lipid accumulation. To elucidate its pathogenesis, we investigated the role of two uremic toxins that affect insulin sensitivity: an endogenous nitric oxide synthase inhibitor, and asymmetric dimethylarginine (ADMA) and indoxyl sulfate (IS). METHODS: Six-week-old Sprague-Dawley rats were rendered CKD by subtotal nephrectomy (Nx) and compared with sham-operated rats. Cultured 3T3-L1 fibroblasts were differentiated into mature adipocytes with or without ADMA. Transgenic (Tg) mice overexpressing each isoform of ADMA degrading enzyme, dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2 were subject to Nx and their phenotypes were investigated. RESULTS: In Nx rats, IR was evident and insulin stimulation failed to activate insulin signaling in adipose tissues. Adipose tissue weight, adipocyte size and adipocyte differentiation marker expressions decreased as a consequence of IR in Nx. Tissue lipid content in the liver and muscle increased in Nx rats. Tissue levels of ADMA, IS and oxidative stress increased in the adipose tissue of Nx rats. Both DDAH1 and DDAH2 expressions decreased, and a putative IS receptor, aryl hydrocarbon receptor, expression increased in the adipose tissue of Nx rats. ADMA inhibited adipocyte differentiation, triglyceride accumulation and insulin signaling, which were reversed by pretreatment with cGMP. In each type of Tg mice overexpressing DDAH1 or DDAH2, all lipodystrophy-like phenotypes induced by Nx were reversed. CONCLUSIONS: In mild CKD, dysregulation of the ADMA/DDAH pathway in adipose tissue triggers lipodystrophy-like phenotype changes, including ectopic fat depositions.


Asunto(s)
Tejido Adiposo/metabolismo , Amidohidrolasas/genética , Arginina/análogos & derivados , Regulación de la Expresión Génica , Estrés Oxidativo/genética , ARN/genética , Insuficiencia Renal Crónica/genética , Amidohidrolasas/biosíntesis , Animales , Arginina/biosíntesis , Arginina/genética , Western Blotting , Células Cultivadas , Masculino , Ratones , Ratones Transgénicos , Nefrectomía/efectos adversos , Fenotipo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal
12.
Microb Cell Fact ; 15(1): 154, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27618862

RESUMEN

BACKGROUND: The steadily growing world population and our ever luxurious life style, along with the simultaneously decreasing fossil resources has confronted modern society with the issue and need of finding renewable routes to accommodate for our demands. Shifting the production pipeline from raw oil to biomass requires efficient processes for numerous platform chemicals being produced with high yield, high titer and high productivity. RESULTS: In the present work, we established a de novo bio-based production process for the two carbon-5 platform chemicals 5-aminovalerate and glutarate on basis of the lysine-hyperproducing strain Corynebacterium glutamicum LYS-12. Upon heterologous implementation of the Pseudomonas putida genes davA, encoding 5-aminovaleramidase and davB, encoding lysine monooxygenase, 5-aminovalerate production was established. Related to the presence of endogenous genes coding for 5-aminovalerate transaminase (gabT) and glutarate semialdehyde dehydrogenase, 5-aminovalerate was partially converted to glutarate. Moreover, residual L-lysine was secreted as by-product. The issue of by-product formation was then addressed by deletion of the lysE gene, encoding the L-lysine exporter. Additionally, a putative gabT gene was deleted to enhance 5-aminovalerate production. To fully exploit the performance of the optimized strain, fed-batch fermentation was carried out producing 28 g L(-1) 5-aminovalerate with a maximal space-time yield of 0.9 g L(-1) h(-1). CONCLUSIONS: The present study describes the construction of a recombinant microbial cell factory for the production of carbon-5 platform chemicals. Beyond a basic proof-of-concept, we were able to specifically increase the production flux of 5-aminovalerate thereby generating a strain with excellent production performance. Additional improvement can be expected by removal of remaining by-product formation and bottlenecks, associated to the terminal pathway, to generate a strain being applicable as centerpiece for a bio-based production of 5-aminovalerate.


Asunto(s)
Amidohidrolasas/genética , Aminoácidos Neutros/biosíntesis , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Glutaratos/metabolismo , Ingeniería Metabólica/métodos , Amidohidrolasas/biosíntesis , Amidohidrolasas/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/deficiencia , Sistemas de Transporte de Aminoácidos Básicos/genética , Proteínas Bacterianas/genética , Carbono/metabolismo , Corynebacterium glutamicum/enzimología , Fermentación , Lisina/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Biología Sintética/métodos , Biología de Sistemas/métodos
13.
Food Microbiol ; 60: 29-38, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27554143

RESUMEN

This study aimed to select autochthonous lactic acid bacteria (LAB) with probiotic and functional properties from goat dairies and test their addition to artisanal cheese for the inhibition of Salmonella typhi. In vitro tests, including survival in the gastrointestinal tract (GIT), auto- and co-aggregation, the hemolytic test, DNase activity, antimicrobial susceptibility, antibacterial activity, tolerance to NaCl and exopolysaccharide (EPS), gas and diacetyl production were conducted for sixty isolates. Based on these tests, four LAB isolates (UNIVASF CAP 16, 45, 84 and 279) were selected and identified. Additional tests, such as production of lactic and citric acids by UNIVASF CAP isolates were performed in addition to assays of bile salt hydrolase (BSH), ß-galactosidase and decarboxylase activity. The four selected LAB produced high lactic acid (>17 g/L) and low citric acid (0.2 g/L) concentrations. All selected strains showed BSH and ß-galactosidase activity and none showed decarboxylase activity. Three goat cheeses (1, 2 and control) were produced and evaluated for the inhibitory action of selected LAB against Salmonella typhi. The cheese inoculated with LAB (cheese 2) decreased 0.38 log10 CFU/g of S. Typhy population while in the cheese without LAB inoculation (cheese 1) the pathogen population increased by 0.29 log units. Further, the pH value increased linearly over time, by 0.004 units per day in cheese 1. In the cheese 2, the pH value decreased linearly over time, by 0.066 units per day. The cocktail containing selected Lactobacillus strains with potential probiotic and technological properties showed antibacterial activity against S. typhi in vitro and in artisanal goat cheese. Thus, goat milk is important source of potential probiotic LAB which may be used to inhibit the growth of Salmonella population in cheese goat, contributing to safety and functional value of the product.


Asunto(s)
Antibiosis , Queso/microbiología , Lacticaseibacillus paracasei/fisiología , Levilactobacillus brevis/fisiología , Leche/microbiología , Salmonella typhi/fisiología , Amidohidrolasas/biosíntesis , Animales , Ácido Cítrico/metabolismo , Industria Lechera , Microbiología de Alimentos , Inocuidad de los Alimentos , Cabras , Concentración de Iones de Hidrógeno , Ácido Láctico/biosíntesis , Lactobacillaceae/clasificación , Lactobacillaceae/efectos de los fármacos , Lactobacillaceae/aislamiento & purificación , Lactobacillaceae/fisiología , Levilactobacillus brevis/aislamiento & purificación , Lacticaseibacillus paracasei/aislamiento & purificación , Probióticos/aislamiento & purificación , Probióticos/metabolismo , beta-Galactosidasa/biosíntesis
14.
J Basic Microbiol ; 56(5): 576-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26778162

RESUMEN

This study reports the identification of a chitin deacetylase gene in Cryptococcus laurentii strain RY1 over-expressing under nitrogen limitation by differential display. The up-regulation took place in robustly growing cells rather than in starving quiescent autophagic cells. Quantitative Real Time-PCR, enzyme activity in cell lysate and cell wall analysis corroborated the up-regulation of chitin deacetylase under nitrogen limitation. These results suggest chitin deacetylase might play a significant role in nitrogen limiting growth of Cryptococcus laurentii strain RY1.


Asunto(s)
Amidohidrolasas/genética , Cryptococcus/enzimología , Cryptococcus/crecimiento & desarrollo , Nitrógeno/deficiencia , Amidohidrolasas/biosíntesis , Cryptococcus/genética , Cryptococcus/metabolismo , Té de Kombucha/microbiología , Regulación hacia Arriba
15.
Molecules ; 21(5)2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27187323

RESUMEN

Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the DDAH family of enzymes as a potential therapeutic target in the regulation of nitric oxide (NO) production, mediated via its biochemical interaction with the nitric oxide synthase (NOS) family of enzymes. Increased DDAH expression and NO production have been linked to multiple pathological conditions, specifically, cancer, neurodegenerative disorders, and septic shock. As such, the discovery, chemical synthesis, and development of DDAH inhibitors as potential drug candidates represent a growing field of interest. This review article summarizes the current knowledge on DDAH inhibition and the derived pharmacokinetic parameters of the main DDAH inhibitors reported in the literature. Furthermore, current methods of development and chemical synthetic pathways are discussed.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Amidohidrolasas/biosíntesis , Animales , Inducción Enzimática , Inhibidores Enzimáticos/síntesis química , Humanos
16.
Prep Biochem Biotechnol ; 46(5): 501-8, 2016 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26474347

RESUMEN

Chitosan is a biopolymer obtained by deacetylation of chitin and has been proven to have various applications in industry and biomedicine. Deacetylation of chitin using the enzyme chitin deacetylase (CDA) is favorable in comparison to the hazardous chemical method involving strong alkali and high temperature. A fungal strain producing CDA was isolated from environmental samples collected from coastal regions of South Kerala, India. It was identified as Aspergillus flavus by morphological characteristics and ITS DNA analysis. Nutritional requirement for maximum production of CDA under submerged condition was optimized using statistical methods including Plackett-Burman and response surface methodology central composite design. A 5.98-fold enhancement in CDA production was attained in shake flasks when the fermentation process parameters were used at their optimum levels. The highest CDA activity was 57.69 ± 1.68 U under optimized bioprocess conditions that included 30 g L(-1) glucose, 40 g L(-1) yeast extract, 15 g L(-1) peptone, and 7 g L(-1) MgCl2 at initial media pH of 7 and incubation temperature of 32°C after 48 hr of incubation, while the unoptimized basal medium yielded 9.64 ± 2.04 U.


Asunto(s)
Amidohidrolasas/biosíntesis , Aspergillus flavus/enzimología , Aspergillus flavus/clasificación , Medios de Cultivo , Técnicas In Vitro , Filogenia , Propiedades de Superficie
17.
J Lipid Res ; 56(9): 1836-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26130766

RESUMEN

Lyso-glycosphingolipids (lyso-GSLs), the N-deacylated forms of glycosphingolipids (GSLs), are important synthetic intermediates for the preparation of GSL analogs. Although lyso-GSLs can be produced by hydrolyzing natural GSLs using sphingolipid ceramide N-deacylase (SCDase), the yield for this reaction is usually low because SCDase also catalyzes the reverse reaction, ultimately establishing an equilibrium between hydrolysis and synthesis. In the present study, we developed an efficient method for controlling the reaction equilibrium by introducing divalent metal cation and detergent in the enzymatic reaction system. In the presence of both Ca(2+) and taurodeoxycholate hydrate, the generated fatty acids were precipitated by the formation of insoluble stearate salts and pushing the reaction equilibrium toward hydrolysis. The yield of GM1 hydrolysis can be achieved as high as 96%, with an improvement up to 45% compared with the nonoptimized condition. In preparative scale, 75 mg of lyso-GM1 was obtained from 100 mg of GM1 with a 90% yield, which is the highest reported yield to date. The method can also be used for the efficient hydrolysis of a variety of GSLs and sphingomyelin. Thus, this method should serve as a facile, easily scalable, and general tool for lyso-GSL production to facilitate further GSL research.


Asunto(s)
Amidohidrolasas/biosíntesis , Amidohidrolasas/aislamiento & purificación , Gangliósido G(M1)/análogos & derivados , Glicoesfingolípidos/biosíntesis , Amidohidrolasas/química , Amidohidrolasas/genética , Catálisis , Endocitosis , Escherichia coli/genética , Gangliósido G(M1)/biosíntesis , Gangliósido G(M1)/química , Gangliósido G(M1)/aislamiento & purificación , Regulación Enzimológica de la Expresión Génica , Glicoesfingolípidos/química , Glicoesfingolípidos/metabolismo , Humanos , Espectrometría de Masas
18.
J Hepatol ; 62(2): 325-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25152204

RESUMEN

BACKGROUND & AIMS: Portal hypertension is characterized by reduced hepatic eNOS activity. Asymmetric-dimethylarginine (ADMA), an eNOS inhibitor, is elevated in cirrhosis and correlates with the severity of portal hypertension. Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is the key enzyme metabolizing hepatic ADMA. This study characterized DDAH-1 in cirrhosis, and explored hepatic DDAH-1 reconstitution through farnesoid X receptor (FXR) agonism and DDAH-1 gene therapy. METHODS: DDAH-1 immunohistochemistry was conducted on human cirrhosis and healthy liver tissue. Subsequently, sham-operated or bile-duct-ligated (BDL) cirrhosis rats were treated with the FXR agonist obeticholic acid (OA, 5 mg/kg) or vehicle for 5 days. Further, animals underwent hydrodynamic injection with DDAH-1-expressing plasmid or saline control, which resulted in the following groups: sham+saline, BDL+saline, BDL+DDAH-1-plasmid. Portal pressure (PP) measurements were performed. Plasma ALT was measured by COBAS INTEGRA, DDAH-1 expression by qPCR and Western blot, eNOS activity by radiometric assay. RESULTS: Immunohistochemistry and Western-blotting confirmed hepatic DDAH-1 was restricted to hepatocytes, and expression decreased significantly in cirrhosis. In BDL rats, reduced DDAH-1 expression was associated with elevated hepatic ADMA, reduced eNOS activity and high PP. OA treatment significantly increased DDAH-1 expression, reduced hepatic tissue ADMA, and increased liver NO generation. PP was significantly reduced in BDL+OA vs. BDL+vehicle (8±1 vs. 13.5±0.6 mmHg; p<0.01) with no change in the mean arterial pressure (MAP). Similarly, DDAH-1 hydrodynamic injection significantly increased hepatic DDAH-1 gene and protein expression, and significantly reduced PP in BDL+DDAH-1 vs. BDL+saline (p<0.01). CONCLUSIONS: This study demonstrates DDAH-1 is a specific molecular target for portal pressure reduction, through actions on ADMA-mediated regulation of eNOS activity. Our data support translational studies, targeting DDAH-1 in cirrhosis and portal hypertension.


Asunto(s)
Amidohidrolasas/genética , Regulación de la Expresión Génica , Terapia Genética/métodos , Hipertensión Portal/tratamiento farmacológico , Cirrosis Hepática/genética , Hígado/enzimología , ARN/genética , Amidohidrolasas/biosíntesis , Animales , Biomarcadores/metabolismo , Biopsia , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Hipertensión Portal/enzimología , Hipertensión Portal/etiología , Inmunohistoquímica , Hígado/patología , Cirrosis Hepática/complicaciones , Cirrosis Hepática/enzimología , Masculino , Reacción en Cadena de la Polimerasa , Ratas , Ratas Sprague-Dawley
19.
Amino Acids ; 47(9): 1975-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25792109

RESUMEN

Hyperhomocysteinemia induces vascular endothelial dysfunction, an early hallmark of atherogenesis. While higher levels of circulating asymmetric dimethylarginine (ADMA) and symmetric dimethyl arginine (SDMA), endogenous inhibitors of nitric oxide synthesis, have been associated with increased cardiovascular risk, the role that ADMA and SDMA play in the initiation of hyperhomocysteinemia-induced endothelial dysfunction remains still controversial. In the present study, we studied the changes of circulating ADMA and SDMA in a rat model of acutely hyperhomocysteinemia-induced endothelial dysfunction. In healthy rats, endothelium-related vascular reactivity (measured as acetylcholine-induced transient decrease in mean arterial blood pressure), plasma ADMA and SDMA, total plasma homocysteine (tHcy), cysteine and glutathione were measured before and 2, 4 and 6 h after methionine loading or vehicle. mRNA expression of hepatic dimethylarginine dimethylaminohydrolase-1 (DDAH1), a key protein responsible for ADMA metabolism, was measured 6 h after the methionine loading or the vehicle. Expectedly, methionine load induced a sustained increase in tHcy (up to 54.9 ± 1.9 µM) and a 30 % decrease in vascular reactivity compared to the baseline values. Plasma ADMA and SDMA decreased transiently after the methionine load. Hepatic mRNA expression of DDAH1, cathepsin D, and ubiquitin were significantly lower 6 h after the methionine load than after the vehicle. The absence of an elevation of circulating ADMA and SDMA in this model suggests that endothelial dysfunction induced by acute hyperhomocysteinemia cannot be explained by an up-regulation of protein arginine methyltransferases or a down-regulation of DDAH1. In experimental endothelial dysfunction induced by acute hyperhomocysteinemia, down-regulation of the proteasome is likely to dampen the release of ADMA and SDMA in the circulation.


Asunto(s)
Arginina/análogos & derivados , Endotelio Vascular/metabolismo , Hiperhomocisteinemia/sangre , Amidohidrolasas/biosíntesis , Animales , Arginina/sangre , Catepsina D/biosíntesis , Modelos Animales de Enfermedad , Endotelio Vascular/patología , Regulación de la Expresión Génica/efectos de los fármacos , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/patología , Hígado/metabolismo , Hígado/patología , Masculino , Metionina/efectos adversos , Metionina/farmacología , Ratas , Ratas Wistar , Ubiquitina/biosíntesis
20.
Can J Physiol Pharmacol ; 93(9): 755-63, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26176406

RESUMEN

Paraoxanase-1 (PON1) is an HDL-associated enzyme that contributes to the antioxidant and antiatherosclerotic properties of HDL. Lack of PON1 results in dysfunctional HDL. HHcy is a risk factor for cardiovascular disorders, and instigates vascular dysfunction and ECM remodeling. Although studies have reported HHcy during atherosclerosis, the exact mechanism is unclear. Here, we hypothesize that dysfunctional HDL due to lack of PON1 contributes to endothelial impairment and atherogenesis through HHcy-induced ECM re-modeling. To verify this hypothesis, we used C57BL6/J and PON1 knockout mice (KO) and fed them an atherogenic diet. The expression of Akt, ADMA, and DDAH, as well as endothelial gap junction proteins such as Cx-37 and Cx-40 and eNOS was measured for vascular dysfunction and inflammation. We observed that cardiac function was decreased and plasma Hcy levels were increased in PON1 KO mice fed the atherogenic diet compared with the controls. Expression of Akt, eNOS, DDAH, Cx-37, and Cx-40 was decreased, and the expression of MMP-9 and ADMA was increased in PON1 KO mice fed an atherogenic diet compared with the controls. Our results suggest that HHcy plays an intricate role in dysfunctional HDL, owing to the lack of PON1. This contributes to vascular endothelial impairment and atherosclerosis through MMP-9-induced vascular remodeling.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Aterosclerosis/fisiopatología , Hiperhomocisteinemia/sangre , Lipoproteínas HDL/sangre , Amidohidrolasas/biosíntesis , Animales , Arginina/análogos & derivados , Arginina/biosíntesis , Arildialquilfosfatasa/deficiencia , Arildialquilfosfatasa/genética , Aterosclerosis/sangre , Aterosclerosis/genética , Aterosclerosis/patología , Presión Sanguínea/genética , Presión Sanguínea/fisiología , Conexinas/biosíntesis , Dieta Aterogénica , Endotelio Vascular/metabolismo , Fibrosis/inducido químicamente , Fibrosis/patología , Masculino , Metaloproteinasa 9 de la Matriz/biosíntesis , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología , Proteína alfa-5 de Unión Comunicante , Proteína alfa-4 de Unión Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA