Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 606
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 593(7860): 570-574, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953396

RESUMEN

A balanced intake of macronutrients-protein, carbohydrate and fat-is essential for the well-being of organisms. An adequate calorific intake but with insufficient protein consumption can lead to several ailments, including kwashiorkor1. Taste receptors (T1R1-T1R3)2 can detect amino acids in the environment, and cellular sensors (Gcn2 and Tor)3 monitor the levels of amino acids in the cell. When deprived of dietary protein, animals select a food source that contains a greater proportion of protein or essential amino acids (EAAs)4. This suggests that food selection is geared towards achieving the target amount of a particular macronutrient with assistance of the EAA-specific hunger-driven response, which is poorly understood. Here we show in Drosophila that a microbiome-gut-brain axis detects a deficit of EAAs and stimulates a compensatory appetite for EAAs. We found that the neuropeptide CNMamide (CNMa)5 was highly induced in enterocytes of the anterior midgut during protein deprivation. Silencing of the CNMa-CNMa receptor axis blocked the EAA-specific hunger-driven response in deprived flies. Furthermore, gnotobiotic flies bearing an EAA-producing symbiotic microbiome exhibited a reduced appetite for EAAs. By contrast, gnotobiotic flies with a mutant microbiome that did not produce leucine or other EAAs showed higher expression of CNMa and a greater compensatory appetite for EAAs. We propose that gut enterocytes sense the levels of diet- and microbiome-derived EAAs and communicate the EAA-deprived condition to the brain through CNMa.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Eje Cerebro-Intestino , Drosophila/fisiología , Preferencias Alimentarias , Microbioma Gastrointestinal , Aminoácidos Esenciales/deficiencia , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Modificados Genéticamente , Apetito , Enterocitos , Femenino , Vida Libre de Gérmenes , Hambre , Leucina , Simbiosis
2.
Br J Nutr ; 131(9): 1540-1553, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38220222

RESUMEN

Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l-1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l-1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l-1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.


Asunto(s)
Aminoácidos , Estudios Cruzados , Proteínas en la Dieta , Insulina , Periodo Posprandial , Spirulina , Humanos , Masculino , Femenino , Anciano , Adulto Joven , Aminoácidos/sangre , Proteínas en la Dieta/administración & dosificación , Método Doble Ciego , Insulina/sangre , Aminoácidos Esenciales/sangre , Aminoácidos Esenciales/administración & dosificación , Chlorella , Glucemia/metabolismo , Glucemia/análisis , Adulto , Animales , Proteínas de Vegetales Comestibles/administración & dosificación , Pisum sativum/química , Proteínas de Guisantes/sangre , Leche/química , Proteínas de la Leche/administración & dosificación , Factores de Edad
3.
Fish Shellfish Immunol ; 149: 109555, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615703

RESUMEN

Developing a low-protein feed is important for the sustainable advancement of aquaculture. The aim of this study was to investigate the effects of essential amino acid (EAA) supplementation in a low-protein diet on the growth, intestinal health, and microbiota of the juvenile blotched snakehead, Channa maculata in an 8-week trial conducted in a recirculating aquaculture system. Three isoenergetic diets were formulated to include a control group (48.66 % crude protein (CP), HP), a low protein group (42.54 % CP, LP), and a low protein supplementation EAA group (44.44 % CP, LP-AA). The results showed that significantly lower weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), and feed efficiency ratio (FER) were observed in fish that were fed LP than in the HP and LP-AA groups (P < 0.05). The HP and LP-AA groups exhibited a significant increase in intestinal villus length, villus width, and muscular thickness compared to the LP group (P < 0.05). Additionally, the HP and LP-AA groups demonstrated significantly higher levels of intestinal total antioxidant capacity (T-AOC), catalase (CAT), and superoxide dismutase (SOD) and lower levels of malondialdehyde (MDA) compared to the LP group (P < 0.05). The apoptosis rate of intestinal cells in the LP group was significantly higher than those in the LP and HP groups (P < 0.05). The mRNA expression levels of superoxide dismutase (sod), nuclear factor kappa B p65 subunit (nfκb-p65), heat shock protein 70 (hsp70), and inhibitor of NF-κBα (iκba) in the intestine were significantly higher in the LP group than those in the HP and LP-AA groups (P < 0.05). The 16s RNA analysis indicated that EAA supplementation significantly increased the growth of Desulfovibrio and altered the intestinal microflora. The relative abundances of Firmicutes and Cyanobacteria were positively correlated with antioxidant parameters (CAT and T-AOC), whereas Desulfobacterota was negatively correlated with sod and T-AOC. The genera Bacillus, Bacteroides, and Rothia were associated with the favorable maintenance of gut health. In conclusion, dietary supplementation with EAAs to achieve a balanced amino acid profile could potentially reduce the dietary protein levels from 48.66 % to 44.44 % without adversely affecting the growth and intestinal health of juvenile blotched snakeheads.


Asunto(s)
Aminoácidos Esenciales , Alimentación Animal , Suplementos Dietéticos , Microbioma Gastrointestinal , Intestinos , Animales , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Aminoácidos Esenciales/administración & dosificación , Perciformes/crecimiento & desarrollo , Perciformes/inmunología , Dieta con Restricción de Proteínas/veterinaria , Dieta/veterinaria , Distribución Aleatoria , Peces/crecimiento & desarrollo , Acuicultura , Channa punctatus
4.
Artículo en Inglés | MEDLINE | ID: mdl-39276852

RESUMEN

Evidence suggests that fish are more tolerant than mammals to imbalanced dietary amino acid profiles. However, the behavioral and physiological responses of fish to individual deficiencies in dietary indispensable amino acids (IDAA) remain unclear. This study examined how stomachless fish respond to diets deficient in limiting IDAA (lysine, methionine, and threonine), using Zebrafish (Danio rerio) as a model. The response to deficient diets was assessed based on; 1) growth performance and feeding efficiency; 2) feed intake; 3) expression of appetite-regulating hormones and nutrient-sensing receptors; and 4) muscle postprandial free amino acid (FAA) levels. There were 6 treatments, each with 3 replicate tanks. A semi-purified diet was formulated for each group. The CG diet was based on casein and gelatin, while the FAA50 diet had 50 % of dietary protein supplied with crystalline amino acids. Both were formulated to contain matching, balanced amino acid profiles. The remaining diets were formulated the same as the FAA50 diet, with minor adjustments to create deficiencies in selected IDAA. The (-) Lys, (-) Met, and (-) Thr diets had lysine, methionine, and threonine withheld from the FAA mix, respectively, and the Def diet was deficient in all three. The juvenile Zebrafish were fed to satiation 3 times daily from 21 to 50 days-post-hatch. Results showed that 50 % replacement of dietary protein with crystalline amino acids significantly reduced growth of juvenile Zebrafish. There were no significant differences in growth between the FAA50 group and groups that received deficient diets. The deficiency of singular IDAA did not induce significant changes in feed intake; however, the combined deficiency in the Def diet caused a significant increase in feed intake. This increased feed intake led to decreased feeding efficiency. A significant decrease in feeding efficiency was also observed in the (-) Lys group. There was an observed upregulation of neuropeptide Y (NPY), an orexigenic hormone, in the Def group. Overall, results from this study suggest stomachless fish increase feed intake when challenged with IDAA-deficient diets, and the regulation of NPY might play a role in this response.


Asunto(s)
Pez Cebra , Animales , Pez Cebra/fisiología , Alimentación Animal/análisis , Metionina/deficiencia , Metionina/administración & dosificación , Metionina/metabolismo , Ingestión de Alimentos , Aminoácidos/metabolismo , Aminoácidos Esenciales/deficiencia , Aminoácidos Esenciales/administración & dosificación , Aminoácidos Esenciales/metabolismo , Dieta/veterinaria , Treonina/deficiencia , Treonina/metabolismo , Lisina/deficiencia , Lisina/metabolismo , Lisina/administración & dosificación , Conducta Alimentaria
7.
J Nutr ; 151(3): 540-547, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33561270

RESUMEN

BACKGROUND: Breakfast cereals contain low-quality proteins and are often consumed with milk. The digestible indispensable amino acid score (DIAAS) has been used to evaluate protein quality, but it is not known if DIAAS obtained in individual foods is additive in combined meals. OBJECTIVES: The following hypotheses were tested: amino acids (AAs) in milk complement AAs in breakfast cereals to provide a balanced meal, and DIAAS in individual foods is additive in combined meals. METHODS: Six ileal cannulated gilts [body weight mean: 55.6 ± 3.7 (SD) kg] were allotted to a 6 × 6 Latin square with six 7-d periods. Ileal digesta were collected for 9 h on days 6 and 7 of each period. Three diets contained a breakfast cereal (i.e., cornflakes or quick oats) or dry milk as the sole source of AAs. Two additional diets contained a combination of dry milk and cornflakes or quick oats. A nitrogen-free diet was also used, and DIAAS was calculated for cornflakes, quick oats, dry milk, and the 2 combined meals for children aged 6 to 36 mo and individuals older than 36 mo through adulthood. For the combined meals, DIAAS was also predicted from the individual ingredient DIAAS. RESULTS: Dry milk had greater (P < 0.05) DIAAS (123 and 144) than quick oats (57 and 67), but cornflakes had less (P < 0.05) DIAAS (16 and 19) than the other ingredients. Both breakfast cereal-dry milk meals had DIAAS close to or greater than 100 for children aged 6 mo to 3 y and for older children, adolescents, and adults, but there were no differences between measured and predicted DIAAS. CONCLUSIONS: The combination of milk and breakfast cereals results in a meal that is balanced in indispensable AAs for humans, and DIAAS obtained from individual ingredients is additive in mixed meals.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Alimentación Animal/análisis , Desayuno , Dieta/veterinaria , Grano Comestible/química , Porcinos/fisiología , Aminoácidos Esenciales/metabolismo , Animales , Avena , Digestión , Leche/química , Polvos , Zea mays
8.
Fish Shellfish Immunol ; 109: 20-33, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32991991

RESUMEN

This study was performed to determine effects of dietary isoleucine (Ile) on growth performance, and intestinal immunological and physical barrier function of hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. Six hundred and thirty fish (33.11 ± 0.09 g) were randomly divided into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile kg-1 diets for 8 weeks. The results showed improvement of growth performance, feed intake, feed utilization, relative gut length (RGL), and intestinal fold height and width by dietary Ile (P < 0.05). Meanwhile, dietary Ile (12.5 g kg-1 diet) improved the activities of lysozyme (LZM), acid phosphatase, alkaline phosphatase and the contents of complement 3 (C3), C4, and immunoglobulin M (IgM) (P < 0.05). The c-type-lectin, c-LZM, g-LZM, and hepcidin mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0-20.0 g Ile kg-1 diet (P < 0.05). Dietary Ile (10.0-12.5 g Ile kg-1 diet) increased intestinal ß-defensin mRNA expression partially in association with Sirt1/ERK/90RSK signaling pathway. Dietary Ile (12.5-15.0 g Ile kg-1 diet) decreased oxidative damage and improved antioxidant ability by increasing activities and expressions of superoxide dismutase, glutathione peroxidase, and glutathione reductase, glutathione-S-transferase (P < 0.05). The occludin, ZO-1, ZO-2, claudin3, and claudin 7 mRNA expressions in the intestine were up-regulated in fish fed diets with 10.0 and 12.5 g Ile kg-1 diet (P < 0.05), whereas the myosin light chain kinase gene expression was decreased in fish fed diets with 7.5-17.5 g Ile kg-1 diet. Dietary Ile (10-12.5 g Ile kg-1 diet) decreased apoptotic responses by reducing the expression of caspase3 and caspase 9 via the AKT/TOR signaling pathway. Based on the quadratic regression analysis of PWG, the dietary Ile requirement of hybrid catfish was estimated to be 12.43 g Ile kg-1 diet, corresponding to 32.05 g Ile kg-1 dietary protein. Collectively, dietary Ile improved growth performance and immunological and physical barrier function of intestine in hybrid catfish.


Asunto(s)
Aminoácidos Esenciales/metabolismo , Bagres/inmunología , Intestinos/inmunología , Isoleucina/metabolismo , Aminoácidos Esenciales/administración & dosificación , Alimentación Animal/análisis , Animales , Apoptosis/inmunología , Bagres/crecimiento & desarrollo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Hibridación Genética , Isoleucina/administración & dosificación , Distribución Aleatoria , Transducción de Señal/inmunología , beta-Defensinas/inmunología , beta-Defensinas/metabolismo
9.
Eur J Appl Physiol ; 121(12): 3297-3311, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34427732

RESUMEN

High-intensity interval training (HIIT) promotes positive cardiometabolic and body composition changes. Essential amino acids (EAA) may support changes associated with HIIT, but evaluation of potential synergistic effects is lacking. The purpose of this study was to compare independent and combined effects of HIIT and EAA on total body composition and metabolism in men and women considered overweight/obese; an exploratory aim was to evaluate the modulatory effects of sex. Sixty-six healthy adults (50% female; Age: 36.7 ± 6.0 years; BMI: 32.0 ± 4.2 kg/m2) completed 8 weeks of: (1) HIIT, 2 days/weeks; (2) EAA supplementation, 3.6 g twice daily; (3) HIIT + EAA; or (4) control. Body composition, resting metabolic rate (RMR), substrate metabolism (respiratory exchange ratio; RER), and cardiorespiratory fitness were measured at baseline, 4 weeks, and 8 weeks; cardiometabolic blood markers were measured at baseline and 8 weeks. Differences between groups were assessed by linear mixed models covaried for baseline values, followed by 95% confidence intervals (CI) on adjusted mean change scores. There were no significant changes in body composition (p > 0.05) for any group. Changes in RER, but not RMR, occurred with HIIT (mean change; [95% CI]: - 0.04; [- 0.07, - 0.02]) and EAA (- 0.03; [- 0.06, - 0.01]) after 8 weeks. Cardiorespiratory fitness increased following 8 weeks of HIIT (+ 5.1 ml/kg/min [3.3,6.8]) and HIIT + EAA (+ 4.1 ml/kg/min [1.0,6.4]). Changes with HIIT + EAA were not significantly different from HIIT. There were no changes in cardiometabolic markers (p > 0.05) and no sex interaction (p > 0.05). HIIT is efficacious for promoting positive changes in cardiorespiratory fitness and resting substrate metabolism in adults considered overweight/obese. Addition of EAA did not significantly enhance HIIT-induced adaptations. ClinicalTrials.gov ID#NCT04080102.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Entrenamiento de Intervalos de Alta Intensidad , Obesidad/metabolismo , Sobrepeso/metabolismo , Adulto , Biomarcadores/sangre , Composición Corporal , Índice de Masa Corporal , Capacidad Cardiovascular , Metabolismo Energético , Femenino , Humanos , Masculino , Persona de Mediana Edad
10.
J Dairy Sci ; 104(2): 1777-1793, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33309365

RESUMEN

The objective of this study was to extend a stable isotope-based assessment of AA absorption from rumen-degradable protein (RDP) sources to include determination of essential AA (EAA) availability from microbial protein (MCP). To demonstrate the technique, a study using a 2 × 2 factorial arrangement of treatments applied in a repeated 4 × 4 Latin square design was undertaken. Factors were high and low rumen-degradable protein and high and low starch. Twelve lactating cows were blocked into 3 groups according to days in milk and randomly assigned to the 4 treatment sequences. Each period was 14 d in length with 10 d of adaption followed by 4 d of ruminal infusions of 15N-labeled ammonium sulfate. On the last day of each period, a 13C-labeled AA mixture was infused into the jugular vein over a 6-h period to assess total AA entry. Rumen, blood, urine, and milk samples were collected during the infusions. Ruminal bacteria and blood samples were assessed for AA enrichment. Total plasma AA absorption rates were derived for 6 EAA from plasma 13C AA enrichment. Absorption of 6 EAA from MCP was calculated from total AA absorption based on 15N enrichment in blood and rumen bacteria. Essential AA absorption rates from total protein, MCP, and rumen-undegradable protein were derived with standard errors of the mean of 6, 14, and 14%, respectively. An average of 45% of absorbed EAA were from MCP, which varied among 6 EAA and was interactively affected by starch and RDP in diets. Microbial AA availability measured by isotope dilution method increased with the high RDP diets and was unaffected by starch level, except for Met, which decreased with high starch. Microbial protein outflow, estimated from urinary purine derivatives, increased with RDP and was not significantly affected by starch. This was consistent with measurements from the isotope dilution method. Total AA absorption rates measured from isotope dilution were similar to estimates from CNCPS (v. 6.55), but a lower proportion of absorbed AA was derived from MCP for the former method. Compared with the isotope and CNCPS estimates, the Fleming model underestimated microbial EAA and total EAA availability. An average of 58% of the absorbed EAA was converted into milk, which varied among individual AA and was interactively affected by starch and RDP in diets. The isotope dilution approach is advantageous because it provides estimates of EAA availability for individual EAA from rumen-undegradable protein and MCP directly with fewer errors of measurement than can be achieved with intestinal disappearance methods.


Asunto(s)
Aminoácidos Esenciales/farmacocinética , Bacterias/metabolismo , Bovinos/fisiología , Proteínas en la Dieta/metabolismo , Rumen/metabolismo , Rumen/microbiología , Aminoácidos Esenciales/administración & dosificación , Aminoácidos Esenciales/metabolismo , Animales , Disponibilidad Biológica , Dieta/veterinaria , Femenino , Lactancia/fisiología , Leche/química , Almidón/metabolismo
11.
J Nutr ; 150(9): 2398-2404, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32879983

RESUMEN

BACKGROUND: Nutritionally, there is a dietary requirement for indispensable amino acids (IAAs) but also a requirement for nitrogen (N) intake for the de novo synthesis of the dispensable amino acids (DAAs). It has been suggested that there might be a dietary requirement for specific DAAs. OBJECTIVES: Experiment 1 tested whether 9 of the DAAs (Ala, Arg, Asn, Asp, Gln, Glu, Gly, Pro, Ser) are ideal N sources using the indicator amino acid oxidation (IAAO) technique. Experiment 2 examined whether there is a dietary requirement for Glu in adult men. METHODS: Seven healthy men (aged 20-24 y) participated in 11 or 2 test diet intakes, in experiment 1 and 2, respectively, in a repeated measures design. In experiment 1, a base diet consisting of the IAA provided at the RDA was compared with test intakes with the base diet plus addition of individual DAAs to meet a 50:50 ratio of IAA:DAA on an N basis. In experiment 2, the diets corresponded to the amino acid pattern present in egg protein, in which all Glu and Gln was present as Glu, or removed, with Ser used to make the diets isonitrogenous. On each study day the IAAO protocol with l-[1-13C]phenylalanine was used to measure whole-body protein synthesis. RESULTS: In experiment 1, repeated measures ANOVA with post hoc multiple comparisons showed that 7 of the 9 DAAs (Ala, Arg, Asn, Asp, Glu, Gly, Ser) decreased IAAO significantly (P < 0.05) compared with base IAA diet, the exceptions being Gln and Pro. In experiment 2, a paired t test did not find significant (P > 0.05) differences in the IAAO in response to removal and replacement of Glu intake. CONCLUSIONS: The results suggest that in healthy men most DAAs are ideal N sources for protein synthesis, in the presence of adequate IAAs, and that endogenous synthesis of Glu is sufficient.Registered clinicaltrials.gov identifier: NCT02009917.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Glutamina/metabolismo , Nitrógeno/metabolismo , Necesidades Nutricionales , Prolina/metabolismo , Biosíntesis de Proteínas/fisiología , Aminoácidos Esenciales/metabolismo , Dieta , Glutamina/administración & dosificación , Humanos , Masculino , Prolina/administración & dosificación , Adulto Joven
12.
PLoS Biol ; 15(4): e2000862, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28441450

RESUMEN

Choosing the right nutrients to consume is essential to health and wellbeing across species. However, the factors that influence these decisions are poorly understood. This is particularly true for dietary proteins, which are important determinants of lifespan and reproduction. We show that in Drosophila melanogaster, essential amino acids (eAAs) and the concerted action of the commensal bacteria Acetobacter pomorum and Lactobacilli are critical modulators of food choice. Using a chemically defined diet, we show that the absence of any single eAA from the diet is sufficient to elicit specific appetites for amino acid (AA)-rich food. Furthermore, commensal bacteria buffer the animal from the lack of dietary eAAs: both increased yeast appetite and decreased reproduction induced by eAA deprivation are rescued by the presence of commensals. Surprisingly, these effects do not seem to be due to changes in AA titers, suggesting that gut bacteria act through a different mechanism to change behavior and reproduction. Thus, eAAs and commensal bacteria are potent modulators of feeding decisions and reproductive output. This demonstrates how the interaction of specific nutrients with the microbiome can shape behavioral decisions and life history traits.


Asunto(s)
Acetobacter/fisiología , Aminoácidos Esenciales/metabolismo , Drosophila melanogaster/microbiología , Conducta Alimentaria , Microbioma Gastrointestinal , Lactobacillus/fisiología , Simbiosis , Acetobacter/genética , Acetobacter/crecimiento & desarrollo , Acetobacteraceae/genética , Acetobacteraceae/crecimiento & desarrollo , Acetobacteraceae/fisiología , Aminoácidos Esenciales/administración & dosificación , Aminoácidos Esenciales/análisis , Aminoácidos Esenciales/deficiencia , Animales , Animales Modificados Genéticamente , Regulación del Apetito , Conducta Animal , Mezclas Complejas/administración & dosificación , Mezclas Complejas/química , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecalis/fisiología , Femenino , Preferencias Alimentarias , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Lactobacillus/genética , Lactobacillus/crecimiento & desarrollo , Oviposición , Especificidad de la Especie , Levadura Seca/química
13.
J Dairy Sci ; 102(9): 7936-7947, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31255267

RESUMEN

Objectives of this study were to investigate the effects of supplementing rumen-protected methionine (RP-Met), threonine (RP-Thr), isoleucine (RP-Ile), and leucine (RP-Leu) individually or jointly to a low-protein diet, on the performance of lactating dairy cows, as well as to determine the effects of these amino acids (AA) on the mammalian target of rapamycin (mTOR) in vivo. Ten lactating Holstein cows were randomly allocated to a repeated 5 × 5 Latin square experiment with five 19-d periods. Treatments were high-protein diet (16% crude protein, positive control; HP), low-protein diet (12% crude protein, negative control; LP), LP plus RP-Met (LPM), LP plus RP-Met and RP-Thr (LPMT), and LP plus RP-Met, RP-Thr, RP-Ile, and RP-Leu (LPMTIL). The dry matter intakes (DMI) of the LP, LPM, and LPMT diets were lower than that of the HP diet, whereas the DMI of the LPMTIL diet was intermediate between the HP diet and the other LP diets. Supplementing RP-Met to the LP diet increased the yields of milk and milk protein, increased the content of milk urea N, and tended to increase milk N efficiency. Co-supplementation of RP-Thr with RP-Met resulted in no further milk production increase. Co-supplementation of all 4 rumen-protected amino acids (RP-AA) increased milk and lactose yields to the level of the HP diet and tended to increase milk protein yield compared with the LPMT diet. We found no significant differences in the contents and yields of milk components between the LPMTIL and HP diets except for a lower milk urea N content in the LPMTIL diet. Venous concentrations of the measured AA were similar across the LP and LP diets supplemented with RP-AA. Relative to levels of the HP diet, LP diets had higher venous concentrations of Met and Gly and tended to have higher Phe concentration and lower concentrations of Val and BCAA. The LPMTIL diet had higher venous concentrations of Arg, Lys, Met, Phe, and Glu, and a lower Val concentration. Phosphorylation status of the measured mTOR components in LPM and LPMT treatments were similar to those in the LP treatment but phosphorylation status of mTOR and eIF4E-binding protein 1 (4eBP1) in LPMTIL treatment were higher. The phosphorylation rates of eukaryotic elongation factor 2 (eEF2) in the 4 LP and LP plus RP-AA diets were higher than that of the HP diet. Overall, results of the present study supported the concept that under the relatively short time of this experiment, supplementing RP-AA, which are believed to stimulate the mTOR signal pathway, can lead to increased milk protein yield. This increase appears to be due to increased DMI, greater mTOR signaling, and greater eEF2 activity.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Bovinos/fisiología , Suplementos Dietéticos/análisis , Proteínas de la Leche/análisis , Leche/metabolismo , Nitrógeno/metabolismo , Aminoácidos Esenciales/análisis , Animales , Industria Lechera , Dieta/veterinaria , Dieta con Restricción de Proteínas/veterinaria , Femenino , Lactancia/efectos de los fármacos , Lactosa/metabolismo , Metionina/administración & dosificación , Leche/química , Nitrógeno/análisis , Rumen/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Urea/análisis
14.
Res Sports Med ; 27(2): 204-218, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30348016

RESUMEN

ß-Hydroxy-ß-Methylbutyrate (HMB) is a metabolite of the branched-chain amino acid leucine and its ketoacid α-ketoisocaproate. HMB has been widely used as an ergogenic supplement to increase muscle strength, muscle hypertrophy and enhance recovery. The physiological mechanisms that underlie these benefits are related to HMB's ability to stimulate muscle protein synthesis and minimize muscle breakdown. Although evidence supporting the benefits of HMB supplementation is not conclusive, many of these studies have suffered from methodological flaws including different formulations, supplement duration and population studied. HMB in its free acid formulation is suggestive of having a greater potential for efficacy in both trained and untrained populations than its calcium-salt form. However, the evidence regarding HMB's role in limiting muscle degradation and increasing muscle protein synthesis has created an exciting interest in examining its efficacy among untrained individuals. Recent investigations examining intense training have demonstrated efficacy in maintaining muscle mass and attenuating the inflammatory response.


Asunto(s)
Rendimiento Atlético/fisiología , Músculo Esquelético/efectos de los fármacos , Fenómenos Fisiológicos en la Nutrición Deportiva/efectos de los fármacos , Fenómenos Fisiológicos en la Nutrición Deportiva/fisiología , Valeratos/administración & dosificación , Aminoácidos Esenciales/administración & dosificación , Atletas , Composición Corporal/efectos de los fármacos , Suplementos Dietéticos , Humanos , Leucina/administración & dosificación , Desarrollo de Músculos/efectos de los fármacos , Fuerza Muscular/efectos de los fármacos
15.
J Nutr ; 148(7): 1118-1125, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29901723

RESUMEN

Background: Current recommendations for protein levels in infant formula are intended to ensure that growth matches or exceeds growth of breastfed infants, but may provide a surplus of amino acids (AAs). Recent infant studies with AA-based formulas support specific adjustment of the essential amino acid (EAA) composition allowing for potential lowering of total protein levels. With the use of a combination of intact protein and free EAAs, we designed a formula that meets these adjusted EAA requirements for infants. Objective: Our objective was to test whether this adjusted formula is safe and supports growth in a protein-restricted piglet model, and whether it shows better growth than an isonitrogenous formula based on free AAs. Methods: Term piglets (Landrace × Yorkshire × Duroc, n = 72) were fed 1 of 4 isoenergetic formulas containing 70% intact protein and 30% of an EAA mixture or a complete AA-based control for 20 d: standard formula (ST-100), ST-100 with 25% reduction in proteinaceous nitrogen (ST-75), ST-75 with an adjusted EAA composition (O-75), or a diet as O-75, given as a complete AA-based diet (O-75AA). Results: After an initial adaptation period, ST-75 and O-75 pigs showed similar growth rates, both lower than ST-100 pigs (∼25 compared with 31 g · kg-1 · d-1, respectively). The O-75AA pigs showed further reduced growth rate (15 g · kg-1 · d-1) and fat proportion (both P < 0.05, relative to O-75). Conclusions: Formula based partly on intact protein is superior to AA-based formula in this experimental setting. The 25% lower, but EAA-adjusted, partially intact protein-based formula resulted in similar weight gain with a concomitant increased AA catabolism, compared with the standard 25% lower standard formula in artificially reared, protein-restricted piglets. Further studies should investigate if and how the specific EAA adjustments that allow for lowering of total protein levels will affect growth and body composition development in formula-fed infants.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Dieta/veterinaria , Proteínas en la Dieta/administración & dosificación , Nitrógeno/administración & dosificación , Porcinos/crecimiento & desarrollo , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal , Suplementos Dietéticos , Femenino , Distribución Aleatoria , Porcinos/sangre
16.
J Nutr ; 148(7): 1109-1117, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29901732

RESUMEN

Background: Excess protein intake in early life has been linked to obesity and metabolic syndrome in later life. Yet protein, and in particular the essential amino acids (EAAs), need to be present in adequate quantity to support growth. Objective: With the use of a piglet model restricted in dietary amino acids (AAs), we compared the efficacy and safety of a standard formula with a low-AA formula containing an adjusted AA composition. Methods: Female piglets (3-7 d old; Landrace × Yorkshire × Duroc) were fed 1 of 4 isoenergetic AA-based formulas for 14 d (700 kJ · kg body weight-1 · d-1). The formulas contained a set control amount (44 g/L) and AA compositions referred to as the experimental standard (ST-100, n = 22), or 20% or 50% lower total AAs (respectively, ST-80, n = 19 and ST-50, n = 13), or 20% lower total AAs with an optimally adjusted EAA composition (O-80, n = 17). A series of clinical and paraclinical endpoints were measured. Results: Growth rates were similar for ST-100, O-80 and ST-80 piglets (all ∼15 g · kg-1 · d-1), whereas ST-50 had a markedly lower weight gain relative to all groups (all P < 0.05). Relative to ST-100, all groups with reduced AA intake showed ∼16% reduction in plasma albumin and ∼30% reduction in plasma urea (both P < 0.05). The absolute leucine oxidation rate was ∼30% lower for O-80 than for ST-100 piglets (P < 0.05). Conclusions: These data show that a 20% reduction in total AA intake for both the control (ST-80) and the adjusted AA (O-80) formula did not have any short-term adverse effects on growth in artificially reared, AA-restricted piglets. The lower absolute leucine oxidation rate observed in O-80 supports the development of an infant formula with an improved AA composition and a moderate reduction in total protein to support adequate growth in healthy infants.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Alimentación Animal/análisis , Dieta/veterinaria , Porcinos/crecimiento & desarrollo , Aminoácidos Esenciales/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Distribución Aleatoria
17.
Amino Acids ; 50(12): 1679-1684, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30145710

RESUMEN

The increased protein requirement of endurance athletes may be related to the need to replace exercise-induced oxidative losses, especially of the branched-chain amino acids (BCAA). However, it is unknown if non-essential amino acids (NEAA) influence the requirement for essential amino acids (EAA) during post-exercise recovery. Seven endurance-trained males ran 20 km prior to consuming [13C]phenylalanine, sufficient energy, and: (1) deficient protein (BASE); (2) BASE supplemented with sufficient BCAA (BCAAsup); (3) an equivalent EAA intake as BCAA (LowEAA), and; (4) sufficient EAA intake (HighEAA). [13C]Phenylalanine oxidation (the reciprocal of protein synthesis) for BCAAsup and HighEAA (0.54 ± 0.15, 0.49 ± 0.11 µmol kg-1 h-1; Mean ± SD) were significantly lower than BASE (0.74 ± 0.14 µmol kg-1 h-1; P < 0.01 for both) and LowEAA (0.70 ± 0.11 µmol kg-1 h-1; P < 0.05 and 0.01, respectively). Our results suggest that exogenous NEAA are dispensable for whole-body protein synthesis during recovery from endurance exercise provided sufficient EAA are consumed. Endurance athletes who may be at risk of not meeting their elevated protein requirements should prioritize the intake of EAA-enriched foods and/or supplements.


Asunto(s)
Aminoácidos Esenciales/metabolismo , Proteínas en la Dieta/metabolismo , Entrenamiento Aeróbico , Necesidades Nutricionales , Resistencia Física , Biosíntesis de Proteínas , Adulto , Aminoácidos Esenciales/administración & dosificación , Atletas , Suplementos Dietéticos , Alimentos Fortificados , Humanos , Masculino , Fenilalanina/administración & dosificación , Fenilalanina/metabolismo , Carrera , Adulto Joven
18.
Clin Exp Nephrol ; 22(6): 1351-1359, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29948444

RESUMEN

BACKGROUND: A low protein diet (LPD) with essential amino acid ketoanalogue supplementation (KA) may contribute in improving of chronic kidney disease (CKD), while the exact mechanisms of KA's effect are not established yet. We have conducted a prospective, randomized, controlled comparative study of LPD + KA and LPD alone in relation to serum Klotho, FGF-23 levels in CKD patients. METHODS: 79 non-diabetic CKD 3b-4 stage patients, compliant with LPD diet (0.6 g/kg of body weight/day), had been selected. The patients were randomized into two groups. The first group (42 patients) received LPD + КA. The second group (37 patients) continued the LРD alone. In addition to routine tests, serum Klotho, FGF-23 levels, as well as bioimpedance analysis, sphygmography (stiffness (augmentation) indices (AI), central (aortal) blood pressure) with a «SphygmaCor¼ device; echocardiography (valvular calcification score (VCS) and LVMMI), were performed. RESULTS: There were body mass indices' decrease (p = 0.046), including muscle body mass in men (p = 0.027) and woman (p = 0.044) in the LPD group to the end of study (14th month). In addition, lower FGF-23 (p = 0.029), and higher sKlotho (p = 0.037) were detected in the LPD + KA group compared to the LPD one. The increase in AI (p = 0.034), VCS (p = 0.048), and LVMMI (p = 0.023) was detected more often in the LPD group at the end of study. CONCLUSION: LPD + KA provides support for nutrition status and contributes to more efficient correction of FGF-23 and Klotho abnormalities that may result in cardiovascular calcification and cardiac remodeling decreasing in CKD. At the same time, a prolonged LPD alone may lead to malnutrition.


Asunto(s)
Aminoácidos Esenciales/administración & dosificación , Dieta con Restricción de Proteínas , Factores de Crecimiento de Fibroblastos/sangre , Glucuronidasa/sangre , Insuficiencia Renal Crónica/complicaciones , Dieta con Restricción de Proteínas/efectos adversos , Femenino , Factor-23 de Crecimiento de Fibroblastos , Humanos , Hipertrofia Ventricular Izquierda/etiología , Proteínas Klotho , Masculino , Desnutrición/etiología , Proyectos Piloto , Estudios Prospectivos , Insuficiencia Renal Crónica/sangre , Calcificación Vascular/etiología
19.
Curr Opin Clin Nutr Metab Care ; 20(1): 77-85, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27801685

RESUMEN

PURPOSE OF REVIEW: High-protein intake may lead to increased intraglomerular pressure and glomerular hyperfiltration. This can cause damage to glomerular structure leading to or aggravating chronic kidney disease (CKD). Hence, a low-protein diet (LPD) of 0.6-0.8 g/kg/day is often recommended for the management of CKD. We reviewed the effect of protein intake on incidence and progression of CKD and the role of LPD in the CKD management. RECENT FINDINGS: Actual dietary protein consumption in CKD patients remains substantially higher than the recommendations for LPD. Notwithstanding the inconclusive results of the 'Modification of Diet in Renal Disease' (MDRD) study, the largest randomized controlled trial to examine protein restriction in CKD, several prior and subsequent studies and meta-analyses appear to support the role of LPD on retarding progression of CKD and delaying initiation of maintenance dialysis therapy. LPD can also be used to control metabolic derangements in CKD. Supplemented LPD with essential amino acids or their ketoanalogs may be used for incremental transition to dialysis especially on nondialysis days. The LPD management in lieu of dialysis therapy can reduce costs, enhance psychological adaptation, and preserve residual renal function upon transition to dialysis. Adherence and adequate protein and energy intake should be ensured to avoid protein-energy wasting. SUMMARY: A balanced and individualized dietary approach based on LPD should be elaborated with periodic dietitian counseling and surveillance to optimize management of CKD, to assure adequate protein and energy intake, and to avoid or correct protein-energy wasting.


Asunto(s)
Dieta Rica en Proteínas/efectos adversos , Dieta con Restricción de Proteínas/métodos , Proteínas en la Dieta/administración & dosificación , Insuficiencia Renal Crónica/dietoterapia , Insuficiencia Renal Crónica/etiología , Aminoácidos Esenciales/administración & dosificación , Proteínas en la Dieta/efectos adversos , Suplementos Dietéticos , Progresión de la Enfermedad , Humanos , Incidencia , Insuficiencia Renal Crónica/epidemiología , Resultado del Tratamiento
20.
Amino Acids ; 49(1): 33-47, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27807658

RESUMEN

Supplementation with whey and other dietary protein, mainly associated with exercise training, has been proposed to be beneficial for the elderly to gain and maintain lean body mass and improve health parameters. The main objective of this review is to examine the evidence provided by the scientific literature indicating benefit from such supplementation and to define the likely best strategy of protein uptake for optimal objectified results in the elderly. Overall, it appears that an intake of approximately 0.4 g protein/kg BW per meal thus representing 1.2-1.6 g protein/kg BW/day may be recommended taking into account potential anabolic resistance. The losses of the skeletal muscle mass contribute to lower the capacity to perform activities in daily living, emphasizing that an optimal protein consumption may represent an important parameter to preserve independence and contribute to health status. However, it is worth noting that the maximal intake of protein with no adverse effect is not known, and that high levels of protein intake is associated with increased transfer of protein to the colon with potential deleterious effects. Thus, it is important to examine in each individual case the benefit that can be expected from supplementation with whey protein, taking into account the usual protein dietary intake.


Asunto(s)
Envejecimiento/metabolismo , Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Músculo Esquelético/metabolismo , Sarcopenia/dietoterapia , Proteína de Suero de Leche/administración & dosificación , Actividades Cotidianas , Anciano , Envejecimiento/patología , Aminoácidos Esenciales/administración & dosificación , Aminoácidos Esenciales/metabolismo , Composición Corporal , Proteínas en la Dieta/metabolismo , Humanos , Músculo Esquelético/patología , Ingesta Diaria Recomendada , Entrenamiento de Fuerza , Sarcopenia/metabolismo , Sarcopenia/patología , Sarcopenia/prevención & control , Proteína de Suero de Leche/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA