Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phytochem Anal ; 35(6): 1309-1322, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38686639

RESUMEN

INTRODUCTION: Andrographis paniculata (AP) has been approved by the Thai government for the treatment of mild cases of COVID-19 patients. Increasing use of AP products requires quality control to ensure efficacy and safety. At present, there is no requirement for dissolution test of AP products in the Thai Herbal Pharmacopoeia (THP). OBJECTIVE: This work aimed to examine the contents and dissolution profiles of active diterpenoids, andrographolide (AP1), 14-deoxy-11,12-didehydroandrographolide (AP3), neoandrographolide (AP4), and 14-deoxyandrographolide (AP6) in AP capsules available in Thai markets. MATERIALS AND METHODS: Four extract products (EXT. A-D) and three crude powder products (CRD. A-C) were tested for contents by using HPLC-DAD. Dissolution profiles of four diterpenoids were investigated in different media (pH 1.2, 4.5, 6.8, and 0.01 N HCl + SLS) with apparatus II (paddle type). RESULTS: The AP1 contents were 1.99%-2.90% w/w for crude capsules and 2.84%-16.27% w/w for extract capsules. In the dissolution test, the dissolution percentages of four diterpenoids from crude capsules were higher than those from extract capsules except EXT. A. AP1 in most extract products (EXT. B, C, D) was dissolved in all dissolution media at a lower percentage than the other three diterpenoids. EXT. A (aqueous extract) was the only extract capsule showing the amounts of all diterpenoids dissolved in all media >80% in 45 min. CONCLUSION: The study demonstrated that AP1 content in AP products complied with the acceptance criteria in the THP (80%-120%), and the weight variation also met the United States Pharmacopeia (USP) requirements. However, different dissolution profiles of AP products may lead to different bioavailability of diterpenoids and further affect their efficacy.


Asunto(s)
Cápsulas , Diterpenos , Extractos Vegetales , Solubilidad , Diterpenos/química , Diterpenos/análisis , Cápsulas/química , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , Andrographis/química , Andrographis paniculata/química , Tetrahidronaftalenos/química , Tetrahidronaftalenos/análisis , Glucósidos
2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612797

RESUMEN

Carbon (C) and nitrogen (N) metabolisms participate in N source-regulated secondary metabolism in medicinal plants, but the specific mechanisms involved remain to be investigated. By using nitrate (NN), ammonium (AN), urea (UN), and glycine (GN), respectively, as sole N sources, we found that N sources remarkably affected the contents of diterpenoid lactone components along with C and N metabolisms reprograming in Andrographis paniculata, as compared to NN, the other three N sources raised the levels of 14-deoxyandrographolide, andrographolide, dehydroandrographolide (except UN), and neoandrographolide (except AN) with a prominent accumulation of farnesyl pyrophosphate (FPP). These N sources also raised the photosynthetic rate and the levels of fructose and/or sucrose but reduced the activities of phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoenolpyruvate carboxylase (PEPC) and pyruvate dehydrogenase (PDH). Conversely, phosphoenolpyruvate carboxykinase (PEPCK) and malate enzyme (ME) activities were upregulated. Simultaneously, citrate, cis-aconitate and isocitrate levels declined, and N assimilation was inhibited. These results indicated that AN, UN and GN reduced the metabolic flow of carbohydrates from glycolysis into the TCA cycle and downstream N assimilation. Furthermore, they enhanced arginine and GABA metabolism, which increased C replenishment of the TCA cycle, and increased ethylene and salicylic acid (SA) levels. Thus, we proposed that the N sources reprogrammed C and N metabolism, attenuating the competition of N assimilation for C, and promoting the synthesis and accumulation of andrographolide through plant hormone signaling. To obtain a higher production of andrographolide in A. paniculata, AN fertilizer is recommended in its N management.


Asunto(s)
Andrographis paniculata , Diterpenos , Extractos Vegetales , Carbono , Plantones
3.
Pharm Biol ; 62(1): 183-194, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38351624

RESUMEN

CONTEXT: The therapeutic potential of andrographolide is hindered by its poor oral bioavailability and unpredictable pharmacokinetics, primarily due to its limited water solubility. OBJECTIVE: This work aimed to enhance the solubility and pharmacokinetics of andrographolide, a bioactive compound in Andrographis paniculata (Burm. f.) Nees (Acanthaceae), using solubilizing agents and a bioenhancer. MATERIALS AND METHODS: Four groups of beagles were compared: (1) A. paniculata powder alone (control), (2) A. paniculata powder with 50% weight/weight (w/w) ß-cyclodextrin solubilizer, (3) A. paniculata powder with 1% w/w sodium dodecyl sulfate (SDS) solubilizer, and (4) A. paniculata powder co-administered with 1% w/w SDS solubilizer and 10% piperine bioenhancer. All groups received a consistent oral dose of 3 mg/kg of andrographolide, administered both as a single dose and multiple doses over seven consecutive days. RESULTS: Thirteen chemical compounds were identified in A. paniculata powder, including 7 diterpenoids, 5 flavonoids, and 1 phenolic compound. A. paniculata co-administration with either 50% w/w ß-cyclodextrin or 1% w/w SDS, alone or in combination with 10% w/w piperine, significantly increased systemic andrographolide exposure by enhancing bioavailability (131.01% to 196.05%) following single and multiple oral co-administration. Glucuronidation is one possible biotransformation pathway for andrographolide, as evidenced by the excretion of glucuronide conjugates in urine and feces. CONCLUSION: The combination of solubilizing agents and a bioenhancer improved the oral bioavailability and pharmacokinetics of andrographolide, indicating potential implications for A. paniculata formulations and clinical therapeutic benefits. Further investigation in clinical studies is warranted.


Asunto(s)
Alcaloides , Andrographis , Benzodioxoles , Diterpenos , Piperidinas , Alcamidas Poliinsaturadas , beta-Ciclodextrinas , Animales , Perros , Andrographis paniculata , Disponibilidad Biológica , Biopotenciadores , Polvos , Andrographis/química , Extractos Vegetales , Excipientes
4.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3432-3440, 2024 Jul.
Artículo en Zh | MEDLINE | ID: mdl-39041115

RESUMEN

Molecular pharmacognosy as an emerging interdisciplinary subject based on molecular biology and Chinese materia medica aims to study the synthesis and molecular regulation of secondary metabolites in medicinal plants. Andrographis Herba, the dried aboveground part of Andrographis paniculata, has liver-protecting, bile secretion-promoting, heat-clearing, toxin-removing, antimicrobial, and anti-inflammatory effects. The quality instability caused by plant varieties, environment, and technology in the production of A. paniculata is a limiting factor for the sustainable development of this industry. Based on the research methods of molecular pharmacognosy and omics, the regulation of secondary metabolites of A. paniculata has become the key solution to the quality problems of A. paniculata. This paper summarized the recent research achievements in the molecular pharmacognosy of A. paniculata, including molecular identification of the resources, genetic diversity, multi-omics, biosynthesis of active compounds, and germplasm resource innovation, and prospected the future development trend in this field. In-depth research of molecular pharmacognosy of A. paniculata will provide more scientific and effective technical support for the development of its medicinal value, give new insights into the cultivation of new A. paniculata varieties, and promote the high-quality sustainable development of this industry.


Asunto(s)
Farmacognosia , Andrographis/química , Andrographis/genética , Medicamentos Herbarios Chinos/química , Plantas Medicinales/genética , Plantas Medicinales/química , Andrographis paniculata/genética , Andrographis paniculata/química , Andrographis paniculata/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 49(2): 379-388, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403314

RESUMEN

Andrographis paniculata is an important medicinal plant in the Lingnan region of China, which has the functions of clearing heat, removing toxins, and resisting bacteria and inflammation. The TCP gene family is a class of transcription factors that regulate plant growth, development, and stress response. In order to analysis the role of the TCP gene family under abiotic stress in A. paniculata, this study identified the TCP gene family of A. paniculata at the genome-wide level and analyzed its expression pattern in response to abiotic stress. The results showed that the A. paniculata TCP gene family had 23 members, with length of amino acid ranging from 136 to 508, the relative molecular mass between 14 854.71 and 55 944.90 kDa, and the isoelectric point between 5.67 and 10.39. All members were located in the nucleus and unevenly distributed on 13 chromosomes. Phylogenetic analysis classified them into three subfamilies: PCF, CIN and CYC/TB1. Gene structure and conserved motif analysis showed that most members of the TCP gene family contained motif 1, motif 2, motif 3 in the same order and 1-3 CDS. The analysis of promoter cis-acting elements showed that the transcriptional expression of the TCP gene family in A. paniculata might be induced by light, hormones, and adversity stress. In light of the expression pattern analysis and qRT-PCR verification, the expression of ApTCP4, ApTCP5, ApTCP6, and ApTCP11 involved in response by various abiotic stresses such as drought, high temperature, and MeJA. This study lays the foundation for in-depth exploration of the functions of A. paniculata TCP genes in response to abiotic stress.


Asunto(s)
Aminoácidos , Andrographis paniculata , Filogenia , China , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
6.
J Pharm Biomed Anal ; 240: 115924, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142499

RESUMEN

The quality standards for Andrographis paniculata, a widely used medicinal herb, exhibited significant variations across different pharmacopeias. In this study, we compared the HPLC content determination methods and total lactone content of A. paniculata samples from different regions, as specified in the Chinese (CP), United States (USP), European (EP), Thai (TP), and Indian pharmacopeias (IP), as well as the Hong Kong Chinese Materia Medica Standards (HK). We aimed to assess the differences and similarities among these pharmacopeias and harmonized international quality standards for A. paniculata. The analysis revealed variations in sample preparation, liquid chromatographic conditions, fingerprint profiles, and total lactone content among the different pharmacopeias. Specifically, the CP and HK methods exhibited superior sample preparation and chromatographic separation. Further comparing the content of 20 A. paniculata samples with the CP, USP, EP and HK methods showed consistent determinations for the same components, indicating similar detection capabilities. The discrepancies in total lactone content primarily stemmed from differences in the number and types of detected compounds. Moreover, the acceptance criteria exhibited a stringency in the order CP > HK > EP > USP. In conclusion, this comparison analysis of content determination in CP, USP, HK, EP, TP and IP provided a scientific foundation for the international standardization and trade regulations of A. paniculata. It also served as a valuable reference for the development of international quality standards for other medicinal herbs, facilitating the harmonization of global pharmaceutical standards.


Asunto(s)
Andrographis , Diterpenos , Plantas Medicinales , Andrographis paniculata , Andrographis/química , Diterpenos/análisis , Plantas Medicinales/química , Lactonas , Estándares de Referencia , Extractos Vegetales/química
7.
Phytochemistry ; 219: 113986, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219853

RESUMEN

The plant Andrographis paniculata has a long history of cultivation in Southeast Asia, especially its extensive anti-inflammatory activity, and the famous natural antibiotic andrographolide comes from this plant. In China, A. paniculata, as the main crop, has become a major source of traditional Chinese medicine (TCM) for the clinical treatment of inflammation. To further explore the diverse diterpene lactones with better anti-inflammatory activity from A. paniculata, twenty-one ent-labdanes, including six undescribed compounds (andropanilides D-I), were isolated. Their structures with absolute configurations were thoroughly determined by comprehensive NMR spectroscopic data, HRESIMS analysis and quantum chemical calculations. All isolated compounds were evaluated for anti-inflammatory activities based on the Griess method. Meanwhile, after structure-activity relationships analysis, the anti-inflammatory activity of andropanilide D (1) (IC50 = 2.31 µM) was found to be better than that of the positive control drug (dexamethasone, IC50 = 6.52 µM) and andrographolide (IC50 = 5.89 µM). Further mechanisms of activity indicated that andropanilide D significantly reduced the secretion of TNF-α, IL-6 and IL-1ß and downregulated the protein expression of COX-2 and iNOS in LPS-induced RAW264.7 macrophages in a concentration-dependent manner based on Western blot and ELISA experiments. In conclusion, andropanilide D possesses potential medicinal value for the treatment of inflammation and further expands the material basis of the anti-inflammatory effect of A. paniculata.


Asunto(s)
Andrographis , Diterpenos , Andrographis paniculata , Andrographis/química , Andrographis/metabolismo , Antiinflamatorios/farmacología , Extractos Vegetales/farmacología , Diterpenos/química , Inflamación
8.
Plant Sci ; 342: 112046, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38395069

RESUMEN

Kalmegh (Andrographis paniculata) spatiotemporally produces medicinally-important ent-labdane-related diterpenoids (ent-LRDs); andrographolide (AD), 14-deoxy-11,12-didehydroandrographolide (DDAD), neoandrographolide (NAD). ApCPS1 and ApCPS2, the ent-copalyl pyrophosphate (ent-CPP)-producing class II diterpene synthases (diTPSs) were identified, but their contributions to ent-CPP precursor supply for ent-LRD biosynthesis were not well understood. Here, we characterized ApCPS4, an additional ent-CPP-forming diTPS. Further, we elucidated in planta function of the ent-CPP-producing diTPSs (ApCPS1,2,4) by integrating transcript-metabolite co-profiles, biochemical analysis and gene functional characterization. ApCPS1,2,4 localized to the plastids, where diterpenoid biosynthesis occurs in plants, but ApCPS1,2,4 transcript expression patterns and ent-LRD contents revealed a strong correlation of ApCPS2 expression and ent-LRD accumulation in kalmegh. ApCPS1,2,4 upstream sequences differentially activated ß-glucuronidase (GUS) in Arabidopsis and transiently-transformed kalmegh. Similar to higher expression of ApCPS1 in kalmegh stem, ApCPS1 upstream sequence activated GUS in stem/hypocotyl of Arabidopsis and kalmegh. However, ApCPS2,4 upstream sequences weakly activated GUS expression in Arabidopsis, which was not well correlated with ApCPS2,4 transcript expression in kalmegh tissues. Whereas, ApCPS2,4 upstream sequences could activate GUS expression at a considerable level in kalmegh leaf and roots/calyx, respectively, suggesting the involvement of transcriptional regulator(s) of ApCPS2,4 that might participate in kalmegh-specific diterpenoid pathway. Interestingly, ApCPS2-silenced kalmegh showed a drastic reduction in AD, DDAD and NAD contents and compromised defense against insect herbivore Spodoptera litura. However, ent-LRD contents and herbivore defense in ApCPS1 or ApCPS4-silenced plants remained largely unaltered. Overall, these results suggested an important role of ApCPS2 in producing ent-CPP for medicinal ent-LRD biosynthesis and defense against insect herbivore.


Asunto(s)
Transferasas Alquil y Aril , Andrographis , Arabidopsis , Diterpenos , Glucósidos , Tetrahidronaftalenos , Andrographis paniculata , Arabidopsis/metabolismo , Herbivoria , NAD/metabolismo , Transferasas Alquil y Aril/metabolismo , Diterpenos/metabolismo , Andrographis/genética , Andrographis/metabolismo
9.
Int Immunopharmacol ; 132: 111866, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38603854

RESUMEN

OBJECTIVE: Nasopharyngeal carcinoma (NPC) remains a challenging cancer to treat. This study investigates the molecular mechanisms of Hedyotis diffusa Willd (HDW) combined with Andrographis paniculata (AP) in treating NPC. METHODS: Key compounds and target genes in HDW and AP were analyzed using network pharmacology. Protein-protein interaction (PPI) networks were constructed with STRING and visualized using Cytoscape. MCODE identified critical clusters, while DAVID facilitated GO and KEGG analyses. In vivo and in vitro experiments evaluated HDW-AP effects on NPC, including tumor volume, weight, Ki-67 expression, cell apoptosis, migration, invasion, cell cycle distribution, and DNA damage. RESULTS: The database identified 495 NPC-related genes and 26 compounds in the HDW-AP pair, targeting 165 genes. Fifty-eight potential therapeutic genes were found, leading to 18 key targets. KEGG analysis revealed a significant impact on 78 pathways, especially cancer pathways. Both in vivo and in vitro tests showed HDW-AP inhibited NPC cell proliferation, migration, invasion, and induced apoptosis. Mechanistically, this was achieved through AKT1 downregulation and VEGFA upregulation. CONCLUSION: The combination of HDW and AP targets 16 key genes to impede the development of NPC, primarily by modulating AKT1 and VEGFA pathways.


Asunto(s)
Hedyotis , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteínas Proto-Oncogénicas c-akt , Factor A de Crecimiento Endotelial Vascular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Animales , Línea Celular Tumoral , Ratones Desnudos , Apoptosis/efectos de los fármacos , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Andrographis/química , Proliferación Celular/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Ratones Endogámicos BALB C , Movimiento Celular/efectos de los fármacos , Sinergismo Farmacológico , Mapas de Interacción de Proteínas , Carcinogénesis/efectos de los fármacos , Andrographis paniculata , Regulación hacia Abajo , Masculino
10.
Artículo en Inglés | WPRIM | ID: wpr-929270

RESUMEN

Andrographis Herba, the aerial part of Andrographis paniculata (Burm. f.) Wall. ex Nees (Acanthaceae), has a wide geographic distribution and has been used for the treatment of fever, cold, inflammation, and other infectious diseases. In markets, sellers and buyers commonly inadvertently confuse with related species. In addition, most Chinese medicinal herbs are subjected to traditional processing procedures, such as steaming and boiling, before they are sold at dispensaries; therefore, it is very difficult to identify Andrographis Herba when it is processed into Chinese medicines. The identification of species and processed medicinal materials is a growing issue in the marketplace. However, conventional methods of identification have limitations, while DNA barcoding has received considerable attention as a new potential means to identify species and processed medicinal materials. In this study, 17 standard reference materials of A. paniculata, 2 standard decoctions, 27 commercial products and two adulterants were collected. Based on the ITS2 sequence, it could successfully identify A. paniculata and adulterants. Moreover, a nucleotide signature consisting of 71 bp was designed, this sequence is highly conserved and specific within A. paniculata while divergent among other species. Then, we used these new primers to amplify the nucleotide signature region from processed materials. In conclusion, the DNA barcoding method developed in the present study for authenticating A. paniculata is rapid and cost-effective. It can be used in the future to guarantee the quality of Andrographis Herba of each regulatory link for clinical use.


Asunto(s)
Andrographis , Andrographis paniculata , Cartilla de ADN , Medicamentos Herbarios Chinos
11.
Artículo en Zh | WPRIM | ID: wpr-927913

RESUMEN

The plant growth, development, and secondary metabolism are regulated by R2 R3-MYB transcription factors. This study identified the R2 R3-MYB genes in the genome of Andrographis paniculata and analyzed the chromosomal localization, gene structure, and conserved domains, phylogenetic relationship, and promoter cis-acting elements of these R2 R3-MYB genes. Moreover, the gene expression profiles of R2 R3-MYB genes under abiotic stress and hormone treatments were generated by RNA-seq and validated by qRT-PCR. The results showed that A. paniculata contained 73 R2 R3-MYB genes on 21 chromosomes. These members belonged to 34 subfamilies, 19 of which could be classified into the known subfamilies in Arabidopsis thaliana. The 73 R2 R3-MYB members included 36 acidic proteins and 37 basic proteins, with the lengths of 148-887 aa. The domains, motifs, and gene structures of R2 R3-MYBs in A. paniculata were conserved. The promoter regions of these genes contains a variety of cis-acting elements related to the responses to environmental factors and plant hormones including light, ABA, MeJA, and drought. Based on the similarity of functions of R2 R3-MYBs in the same subfamily and the transcription profiles, ApMYB13/21/35/67/73(S22) may regulate drought stress through ABA pathway; ApMYB20(S11) and ApMYB55(S2) may play a role in the response of A. paniculata to high temperature and UV-C stress; ApMYB5(S7) and ApMYB33(S20) may affect the accumulation of andrographolide by regulating the expression of key enzymes in the MEP pathway. This study provides theoretical reference for further research on the functions of R2 R3-MYB genes in A. paniculata and breeding of A. paniculata varieties with high andrographolide content.


Asunto(s)
Andrographis paniculata , Regulación de la Expresión Génica de las Plantas , Genes myb , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo
12.
Artículo en Inglés | WPRIM | ID: wpr-969508

RESUMEN

Aims@#Acne is a common skin disease among teenagers and also affects other ages. It occurs when the oil and dead skin cells plug into the hair follicles and causing pimples or whitehead. Although antibiotics have been used for many years in treating acne, the widespread use of it has led to the development of bacterial resistant, which resulted in unsuccessful treatment. Thus, in this study, Andrographis paniculata (AP) herbal formulation gel is proposed in order to determine its effectiveness in treating acne. Three different methodologies were used to compare the antimicrobial effect of A. paniculata herbal gel against acne-associated pathogens. @*Methodology and results@#Well diffusion, disc diffusion and broth dilution methods were applied to evaluate the antimicrobial effect of AP herbal gel at concentrations of 1.5% (w/w), 2.5% (w/w) and 5.0% (w/w) onto selected pathogens associated with acne which consisted of Staphylococcus epidermidis, Staphylococcus aureus, Propionibacterium acnes and Candida albicans. Among the three methods, broth dilution showed the best antimicrobial effect towards all microorganisms used. AP herbal gel at concentration 2.5% (w/w) showed the optimum antimicrobial effect of S. aureus and C. albicans, while 5.0% (w/w) exhibited the best antimicrobial activities for P. acnes and S. epidermidis. @*Conclusion, significance and impact of study@#Broth dilution method appears to be a reliable method for the determination of antimicrobial effects for the pathogens tested. In addition, AP herbal formulation gel has great potential to treat acne effectively.


Asunto(s)
Antiinfecciosos , Andrographis paniculata
13.
Artículo en Inglés | WPRIM | ID: wpr-973864

RESUMEN

Aims@#Andrographis paniculata (AP), a medicinal herb was selected to investigate the antifungal activity on selected dermatophyte fungi. The phytochemical screening was also carried out to evaluate its chemical constituents.@*Methodology and results@#The potato dextrose agar (PDA) incorporated with aqueous, ethanol and methanol AP extracts at concentrations 0.99% (v/v), 1.96% (v/v) and 7.41% (v/v) were used for selected fungi culturing; Trichophyton mentagrophytes, T. rubrum, T. interdigitale, Microsporum fulvum, M. nanum, M. gypseum, M. canis, Fusarium solani and Aspergillus fumigatus. Phytochemical screening showed the presence of flavonoids, saponins and tannins in the ethanol extract and flavonoids alone in both aqueous and methanol extracts. Studies on antifungal effects indicated that the ethanol extract significantly increased the mycelial inhibition percentage of all tested fungi, especially at a concentration of 7.41% (v/v). All ethanol AP extract concentrations inhibited M. gypseum and M. canis (p<0.05) with at least 36.00% mycelial inhibition. In aqueous AP extract, it significantly increased the mycelial inhibition of T. mentagrophytes, T. interdigitale and M. gypseum (p<0.05), while the methanol AP extract significantly inhibited all fungi at a concentration of 7.41% (v/v) except for T. rubrum, M. gypseum and F. solani (p<0.05). No spore sedimentation was recorded for the fungal spores of T. rubrum, M. nanum, T. mentagrophytes, M. gypseum and T. interdigitale at 7.41% (v/v) ethanol AP. @*Conclusion, significance and impact of study@#It is concluded that the ethanol AP extract contained phytochemical constituents and showed the highest antifungal activity. In addition, this extract has a great potential to treat dermatophytes effectively.


Asunto(s)
Antifúngicos , Fitoquímicos , Andrographis paniculata , Dermatomicosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA